Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Laryngoscope ; 134(3): 1363-1371, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37551886

RESUMEN

OBJECTIVE: Fragile X Syndrome (FXS) is a hereditary form of autism spectrum disorder. It is caused by a trinucleotide repeat expansion in the Fmr1 gene, leading to a loss of Fragile X Protein (FMRP) expression. The loss of FMRP causes auditory hypersensitivity: FXS patients display hyperacusis and the Fmr1- knock-out (KO) mouse model for FXS exhibits auditory seizures. FMRP is strongly expressed in the cochlear nucleus and other auditory brainstem nuclei. We hypothesize that the Fmr1-KO mouse has altered gene expression in the cochlear nucleus that may contribute to auditory hypersensitivity. METHODS: RNA was isolated from cochlear nuclei of Fmr1-KO and WT mice. Using next-generation sequencing (RNA-seq), the transcriptomes of Fmr1-KO mice and WT mice (n = 3 each) were compared and analyzed using gene ontology programs. RESULTS: We identified 270 unique, differentially expressed genes between Fmr1-KO and WT cochlear nuclei. Upregulated genes (67%) are enriched in those encoding secreted molecules. Downregulated genes (33%) are enriched in neuronal function, including synaptic pathways, some of which are ideal candidate genes that may contribute to hyperacusis. CONCLUSION: The loss of FMRP can affect the expression of genes in the cochlear nucleus that are important for neuronal signaling. One of these, Kcnab2, which encodes a subunit of the Shaker voltage-gated potassium channel, is expressed at an abnormally low level in the Fmr1-KO cochlear nucleus. Kcnab2 and other differentially expressed genes may represent pathways for the development of hyperacusis. Future studies will be aimed at investigating the effects of these altered genes on hyperacusis. LEVEL OF EVIDENCE: N/A Laryngoscope, 134:1363-1371, 2024.


Asunto(s)
Trastorno del Espectro Autista , Núcleo Coclear , Síndrome del Cromosoma X Frágil , Humanos , Ratones , Animales , Núcleo Coclear/metabolismo , Hiperacusia/genética , Transcriptoma , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
2.
J Gen Physiol ; 155(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37212728

RESUMEN

Voltage-gated K+ channels have distinct gates that regulate ion flux: the activation gate (A-gate) formed by the bundle crossing of the S6 transmembrane helices and the slow inactivation gate in the selectivity filter. These two gates are bidirectionally coupled. If coupling involves the rearrangement of the S6 transmembrane segment, then we predict state-dependent changes in the accessibility of S6 residues from the water-filled cavity of the channel with gating. To test this, we engineered cysteines, one at a time, at S6 positions A471, L472, and P473 in a T449A Shaker-IR background and determined the accessibility of these cysteines to cysteine-modifying reagents MTSET and MTSEA applied to the cytosolic surface of inside-out patches. We found that neither reagent modified either of the cysteines in the closed or the open state of the channels. On the contrary, A471C and P473C, but not L472C, were modified by MTSEA, but not by MTSET, if applied to inactivated channels with open A-gate (OI state). Our results, combined with earlier studies reporting reduced accessibility of residues I470C and V474C in the inactivated state, strongly suggest that the coupling between the A-gate and the slow inactivation gate is mediated by rearrangements in the S6 segment. The S6 rearrangements are consistent with a rigid rod-like rotation of S6 around its longitudinal axis upon inactivation. S6 rotation and changes in its environment are concomitant events in slow inactivation of Shaker KV channels.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Canales de Potasio de la Superfamilia Shaker , Canales de Potasio de la Superfamilia Shaker/genética , Metanosulfonato de Etilo , Cisteína/genética , Cisteína/química , Potasio/metabolismo
3.
Cells ; 11(21)2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36359834

RESUMEN

The malignancy with the greatest global mortality rate is lung cancer. Lung adenocarcinoma (LUAD) is the most common subtype. The evidence demonstrated that voltage-gated potassium channel subunit beta-2 (KCNAB2) significantly participated in the initiation of colorectal cancer and its progression. However, the biological function of KCNAB2 in LUAD and its effect on the tumor immune microenvironment are still unknown. In this study, we found that the expression of KCNAB2 in tissues of patients with LUAD was markedly downregulated, and its downregulation was linked to accelerated cancer growth and poor clinical outcomes. In addition, low KCNAB2 expression was correlated with a deficiency in immune infiltration. The mechanism behind this issue might be that KCNAB2 influenced the immunological process such that the directed migration of immune cells was affected. Furthermore, overexpression of KCNAB2 in cell lines promoted the expression of CCL2, CCL3, CCL4, CCL18, CXCL9, CXCL10, and CXCL12, which are necessary for the recruitment of immune cells. In conclusion, KCNAB2 may play a key function in immune infiltration and can be exploited as a predictive biomarker for evaluating prognosis and a possible immunotherapeutic target.


Asunto(s)
Adenocarcinoma del Pulmón , Canales de Potasio de la Superfamilia Shaker , Humanos , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Canales de Potasio con Entrada de Voltaje , Canales de Potasio de la Superfamilia Shaker/genética , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Pronóstico
4.
J Neurophysiol ; 128(1): 62-72, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35788155

RESUMEN

Ion channel complexes typically consist of both pore-forming subunits and auxiliary subunits that do not directly conduct current but can regulate trafficking or alter channel properties. Isolating the role of these auxiliary subunits in neurons has proved difficult due to a lack of specific pharmacological agents and the potential for developmental compensation in constitutive knockout models. Here, we use cell-type-specific viral-mediated CRISPR/Cas9 mutagenesis to target the potassium channel auxiliary subunit Kvß2 (Kcnab2) in dopamine neurons in the adult mouse brain. We find that mutagenesis of Kcnab2 reduces surface expression of Kv1.2, the primary Kv1 pore-forming subunit expressed in dopamine neurons, and shifts the voltage dependence of inactivation of potassium channel currents toward more hyperpolarized potentials. Loss of Kcnab2 broadens the action potential waveform in spontaneously firing dopamine neurons recorded in slice, reduces the afterhyperpolarization amplitude, and increases spike timing irregularity and excitability, all of which is consistent with a reduction in potassium channel current. Similar effects were observed with mutagenesis of the pore-forming subunit Kv1.2 (Kcna2). These results identify Kv1 currents as important contributors to dopamine neuron firing and demonstrate a role for Kvß2 subunits in regulating the trafficking and gating properties of these ion channels. Furthermore, they demonstrate the utility of CRISPR-mediated mutagenesis in the study of previously difficult to isolate ion channel subunits.NEW & NOTEWORTHY Here, we utilize CRISPR/Cas9-mediated mutagenesis in dopamine neurons in mice to target the gene encoding Kvß2, an auxiliary subunit that forms a part of Kv1 channel complexes. We find that the absence of Kvß2 alters action potential properties by reducing surface expression of pore-forming subunits and shifting the voltage dependence of channel inactivation. This work establishes a new function for Kvß2 subunits and Kv1 complexes in regulating dopamine neuron activity.


Asunto(s)
Neuronas Dopaminérgicas , Canales de Potasio , Animales , Neuronas Dopaminérgicas/metabolismo , Ratones , Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética
5.
PLoS One ; 16(12): e0261087, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34932577

RESUMEN

Age-related changes in ion channel expression are likely to affect neuronal signaling. Here, we examine how age affects Kv4/Shal and Kv1/Shaker K+ channel protein levels in Drosophila. We show that Kv4/Shal protein levels decline sharply from 3 days to 10 days, then more gradually from 10 to 40 days after eclosion. In contrast, Kv1/Shaker protein exhibits a transient increase at 10 days that then stabilizes and eventually declines at 40 days. We present data that begin to show a relationship between reactive oxygen species (ROS), Kv4/Shal, and locomotor performance. We show that Kv4/Shal levels are negatively affected by ROS, and that over-expression of Catalase or RNAi knock-down of the ROS-generating enzyme, Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase (NOX), can attenuate the loss of Kv4/Shal protein. Finally, we compare levels of Kv4.2 and Kv4.3 in the hippocampus, olfactory bulb, cerebellum, and motor cortex of mice aged 6 weeks and 1 year. While there was no global decline in Kv4.2/4.3 that parallels what we report in Drosophila, we did find that Kv4.2/4.3 are differentially affected in various brain regions; this survey of changes may help inform mammalian studies that examine neuronal function with age.


Asunto(s)
Potenciales de Acción , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas/fisiología , Especies Reactivas de Oxígeno/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Canales de Potasio Shal/metabolismo , Factores de Edad , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Masculino , Neuronas/citología , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio Shal/genética
6.
J Plant Physiol ; 266: 153529, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34583134

RESUMEN

Potassium is a major cationic nutrient involved in numerous physiological processes in plants. The uptake of K+ is mediated by K+ channels and transporters, and the Shaker K+ channel gene family plays an essential role in K+ uptake and stress resistance in plants. However, little is known regarding this family in soybean. In this study, 14 members of the Shaker K+ channel gene family were identified in soybean and were classified into five groups. Protein domain analysis revealed that Shaker K+ channel gene members have an ion transport domain (ion trans), a cyclic nucleotide-binding domain, ankyrin repeat domains, and a dimerization domain in the potassium ion channel. Quantitative real-time polymerase chain reaction analysis indicated that the expression of eight genes (notably GmAKT1) in soybean leaves and roots was significantly increased in response to salt and drought stress. Furthermore, the overexpression of GmAKT1 in Arabidopsis enhanced root length, K+ concentration, and fresh/dry weight ratio compared with wild-type plants subjected to salt and drought stress; this suggests that GmAKT1 improves the tolerance of soybean to abiotic stress. Our results provide important insight into the characterization of Shaker K+ channel gene family members in soybean and highlight the function of GmAKT1 in soybean plants under salt and drought stress.


Asunto(s)
Arabidopsis/fisiología , Glycine max/genética , Proteínas de Plantas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Arabidopsis/genética , Sequías , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/fisiología , Canales de Potasio de la Superfamilia Shaker/genética , Cloruro de Sodio , Estrés Fisiológico
7.
Proc Natl Acad Sci U S A ; 118(14)2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33782120

RESUMEN

Temperature-dependent regulation of ion channel activity is critical for a variety of physiological processes ranging from immune response to perception of noxious stimuli. Our understanding of the structural mechanisms that underlie temperature sensing remains limited, in part due to the difficulty of combining high-resolution structural analysis with temperature stimulus. Here, we use NMR to compare the temperature-dependent behavior of Shaker potassium channel voltage sensor domain (WT-VSD) to its engineered temperature sensitive (TS-VSD) variant. Further insight into the molecular basis for temperature-dependent behavior is obtained by analyzing the experimental results together with molecular dynamics simulations. Our studies reveal that the overall secondary structure of the engineered TS-VSD is identical to the wild-type channels except for local changes in backbone torsion angles near the site of substitution (V369S and F370S). Remarkably however, these structural differences result in increased hydration of the voltage-sensing arginines and the S4-S5 linker helix in the TS-VSD at higher temperatures, in contrast to the WT-VSD. These findings highlight how subtle differences in the primary structure can result in large-scale changes in solvation and thereby confer increased temperature-dependent activity beyond that predicted by linear summation of solvation energies of individual substituents.


Asunto(s)
Ingeniería de Proteínas , Canales de Potasio de la Superfamilia Shaker/química , Escherichia coli , Calor , Simulación de Dinámica Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Canales de Potasio de la Superfamilia Shaker/genética
8.
J Gen Physiol ; 153(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33683319

RESUMEN

Voltage-gated potassium (KV) channels can be opened by negatively charged resin acids and their derivatives. These resin acids have been proposed to attract the positively charged voltage-sensor helix (S4) toward the extracellular side of the membrane by binding to a pocket located between the lipid-facing extracellular ends of the transmembrane segments S3 and S4. By contrast to this proposed mechanism, neutralization of the top gating charge of the Shaker KV channel increased resin-acid-induced opening, suggesting other mechanisms and sites of action. Here, we explore the binding of two resin-acid derivatives, Wu50 and Wu161, to the activated/open state of the Shaker KV channel by a combination of in silico docking, molecular dynamics simulations, and electrophysiology of mutated channels. We identified three potential resin-acid-binding sites around S4: (1) the S3/S4 site previously suggested, in which positively charged residues introduced at the top of S4 are critical to keep the compound bound, (2) a site in the cleft between S4 and the pore domain (S4/pore site), in which a tryptophan at the top of S6 and the top gating charge of S4 keeps the compound bound, and (3) a site located on the extracellular side of the voltage-sensor domain, in a cleft formed by S1-S4 (the top-VSD site). The multiple binding sites around S4 and the anticipated helical-screw motion of the helix during activation make the effect of resin-acid derivatives on channel function intricate. The propensity of a specific resin acid to activate and open a voltage-gated channel likely depends on its exact binding dynamics and the types of interactions it can form with the protein in a state-specific manner.


Asunto(s)
Canales de Potasio , Canales de Potasio de la Superfamilia Shaker , Sitios de Unión , Fenómenos Biofísicos , Simulación por Computador , Canales de Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
9.
Elife ; 102021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620313

RESUMEN

In Shaker K+ channels, the S4-S5 linker couples the voltage sensor (VSD) and pore domain (PD). Another coupling mechanism is revealed using two W434F-containing channels: L361R:W434F and L366H:W434F. In L361R:W434F, W434F affects the L361R VSD seen as a shallower charge-voltage (Q-V) curve that crosses the conductance-voltage (G-V) curve. In L366H:W434F, L366H relieves the W434F effect converting a non-conductive channel in a conductive one. We report a chain of residues connecting the VSD (S4) to the selectivity filter (SF) in the PD of an adjacent subunit as the molecular basis for voltage sensor selectivity filter gate (VS-SF) coupling. Single alanine substitutions in this region (L409A, S411A, S412A, or F433A) are enough to disrupt the VS-SF coupling, shown by the absence of Q-V and G-V crossing in L361R:W434F mutant and by the lack of ionic conduction in the L366H:W434F mutant. This residue chain defines a new coupling between the VSD and the PD in voltage-gated channels.


Asunto(s)
Proteínas de Drosophila/genética , Canales de Potasio de la Superfamilia Shaker/genética , Xenopus laevis/fisiología , Animales , Proteínas de Drosophila/metabolismo , Femenino , Canales de Potasio de la Superfamilia Shaker/metabolismo
10.
Cardiovasc Toxicol ; 21(4): 322-335, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33389602

RESUMEN

Consumption of illicit pharmaceutical products containing sibutramine has been reported to cause cardiovascular toxicity problems. This study aimed to demonstrate the toxicity profile of sibutramine, and thereby provide important implications for the development of more effective strategies in both clinical approaches and drug design studies. Action potentials (APs) were determined from freshly isolated ventricular cardiomyocytes with whole-cell configuration of current clamp as online. The maximum amplitude of APs (MAPs), the resting membrane potential (RMP), and AP duration from the repolarization phases were calculated from original records. The voltage-dependent K+-channel currents (IK) were recorded in the presence of external Cd2+ and both inward and outward parts of the current were calculated, while their expression levels were determined with qPCR. The levels of intracellular free Ca2+ and H+ (pHi) as well as reactive oxygen species (ROS) were measured using either a ratiometric micro-spectrofluorometer or confocal microscope. The mechanical activity of isolated hearts was observed with Langendorff-perfusion system. Acute sibutramine applications (10-8-10-5 M) induced significant alterations in both MAPs and RMP as well as the repolarization phases of APs and IK in a concentration-dependent manner. Sibutramine (10 µM) induced Ca2+-release from the sarcoplasmic reticulum under either electrical or caffeine stimulation, whereas it depressed left ventricular developed pressure with a marked decrease in the end-diastolic pressure. pHi inhibition by sibutramine supports the observed negative alterations in contractility. Changes in mRNA levels of different IK subunits are consistent with the acute inhibition of the repolarizing IK, affecting AP parameters, and provoke the cardiotoxicity.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Fármacos Antiobesidad/toxicidad , Ciclobutanos/toxicidad , Cardiopatías/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Calcio/metabolismo , Cardiotoxicidad , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/fisiopatología , Concentración de Iones de Hidrógeno , Preparación de Corazón Aislado , Masculino , Miocitos Cardíacos/metabolismo , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Factores de Tiempo , Función Ventricular Izquierda/efectos de los fármacos
11.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33397806

RESUMEN

Physiological functioning and homeostasis of the brain rely on finely tuned synaptic transmission, which involves nanoscale alignment between presynaptic neurotransmitter-release machinery and postsynaptic receptors. However, the molecular identity and physiological significance of transsynaptic nanoalignment remain incompletely understood. Here, we report that epilepsy gene products, a secreted protein LGI1 and its receptor ADAM22, govern transsynaptic nanoalignment to prevent epilepsy. We found that LGI1-ADAM22 instructs PSD-95 family membrane-associated guanylate kinases (MAGUKs) to organize transsynaptic protein networks, including NMDA/AMPA receptors, Kv1 channels, and LRRTM4-Neurexin adhesion molecules. Adam22ΔC5/ΔC5 knock-in mice devoid of the ADAM22-MAGUK interaction display lethal epilepsy of hippocampal origin, representing the mouse model for ADAM22-related epileptic encephalopathy. This model shows less-condensed PSD-95 nanodomains, disordered transsynaptic nanoalignment, and decreased excitatory synaptic transmission in the hippocampus. Strikingly, without ADAM22 binding, PSD-95 cannot potentiate AMPA receptor-mediated synaptic transmission. Furthermore, forced coexpression of ADAM22 and PSD-95 reconstitutes nano-condensates in nonneuronal cells. Collectively, this study reveals LGI1-ADAM22-MAGUK as an essential component of transsynaptic nanoarchitecture for precise synaptic transmission and epilepsy prevention.


Asunto(s)
Proteínas ADAM/genética , Epilepsia/genética , Guanilato-Quinasas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas del Tejido Nervioso/genética , Transmisión Sináptica/genética , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/genética , Modelos Animales de Enfermedad , Epilepsia/patología , Epilepsia/prevención & control , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Proteínas de la Membrana/genética , Ratones , Moléculas de Adhesión de Célula Nerviosa/genética , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Canales de Potasio de la Superfamilia Shaker/genética
13.
Gene ; 768: 145311, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33220344

RESUMEN

The Shaker K+ channel family plays a vital role in potassium absorption and stress resistance in plants. However little information on the genes family is available about sweetpotato. In the present study, eleven sweetpotato Shaker K+ channel genes were identified and classified into five groups based on phylogenetic relationships, conserved motifs, and gene structure analyses. Based on synteny analysis, four duplicated gene pairs were identified, derived from both ancient and recent duplication, whereas only one resulted from tandem duplication events. Different expression pattern of Shaker K+ channel genes in roots of Xu32 and NZ1 resulted in different K+ deficiency tolerances, suggesting there is different mechanism of K+ uptake in sweetpotato cultivars with different K+-tolerance levels. Quantitative real-time PCR analysis revealed that the shaker K+ channel genes responded to drought and high salt stresses. Higher K+ influx under normal condition and lower K+ efflux under K+ deficiency stress were observed in IbAKT1 overexpressing transgenic roots than in adventitious roots, which indicated that IbAKT1 may play an important role in the regulation of K+ deficiency tolerance in sweetpotato. This is the first genome-wide analysis of Shaker K+ channel genes and the first functional analysis of IbAKT1 in sweetpotato. Our results provide valuable information on the gene structure, evolution, expression and functions of the Shaker K+ channel gene family in sweetpotato.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Ipomoea batatas/crecimiento & desarrollo , Canales de Potasio de la Superfamilia Shaker/genética , Secuenciación Completa del Genoma/métodos , Mapeo Cromosómico , Sequías , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas , Secuenciación de Nucleótidos de Alto Rendimiento , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino , Canales de Potasio de la Superfamilia Shaker/metabolismo , Sintenía
14.
Elife ; 92020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33185190

RESUMEN

The palmitoyl acyltransferase (PAT) ZDHHC14 is highly expressed in the hippocampus and is the only PAT predicted to bind Type-I PDZ domain-containing proteins. However, ZDHHC14's neuronal roles are unknown. Here, we identify the PDZ domain-containing Membrane-associated Guanylate Kinase (MaGUK) PSD93 as a direct ZDHHC14 interactor and substrate. PSD93, but not other MaGUKs, localizes to the axon initial segment (AIS). Using lentiviral-mediated shRNA knockdown in rat hippocampal neurons, we find that ZDHHC14 controls palmitoylation and AIS clustering of PSD93 and also of Kv1 potassium channels, which directly bind PSD93. Neurodevelopmental expression of ZDHHC14 mirrors that of PSD93 and Kv1 channels and, consistent with ZDHHC14's importance for Kv1 channel clustering, loss of ZDHHC14 decreases outward currents and increases action potential firing in hippocampal neurons. To our knowledge, these findings identify the first neuronal roles and substrates for ZDHHC14 and reveal a previously unappreciated role for palmitoylation in control of neuronal excitability.


Asunto(s)
Aciltransferasas/metabolismo , Axones/enzimología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Aciltransferasas/genética , Animales , Fenómenos Electrofisiológicos , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Unión Proteica , Canales de Potasio de la Superfamilia Shaker/genética , Técnicas del Sistema de Dos Híbridos
15.
Acta Neuropathol ; 140(6): 863-879, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32918118

RESUMEN

Prion diseases are fatal and transmissible neurodegenerative disorders caused by the misfolding and aggregation of prion protein. Although recent studies have implicated epigenetic variation in common neurodegenerative disorders, no study has yet explored their role in human prion diseases. Here we profiled genome-wide blood DNA methylation in the most common human prion disease, sporadic Creutzfeldt-Jakob disease (sCJD). Our case-control study (n = 219), when accounting for differences in cell type composition between individuals, identified 38 probes at genome-wide significance (p < 1.24 × 10-7). Nine of these sites were taken forward in a replication study, performed in an independent case-control (n = 186) cohort using pyrosequencing. Sites in or close to FKBP5, AIM2 (2 probes), UHRF1, KCNAB2 successfully replicated. The blood-based DNA methylation signal was tissue- and disease-specific, in that the replicated probe signals were unchanged in case-control studies using sCJD frontal-cortex (n = 84), blood samples from patients with Alzheimer's disease, and from inherited and acquired prion diseases. Machine learning algorithms using blood DNA methylation array profiles accurately distinguished sCJD patients and controls. Finally, we identified sites whose methylation levels associated with prolonged survival in sCJD patients. Altogether, this study has identified a peripheral DNA methylation signature of sCJD with a variety of potential biomarker applications.


Asunto(s)
Encéfalo/patología , Síndrome de Creutzfeldt-Jakob/genética , Síndrome de Creutzfeldt-Jakob/metabolismo , Metilación de ADN/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Estudios de Casos y Controles , Síndrome de Creutzfeldt-Jakob/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Persona de Mediana Edad , Enfermedades por Prión/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo
16.
Mar Drugs ; 18(8)2020 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-32823677

RESUMEN

Recently, Conorfamide-Sr3 (CNF-Sr3) was isolated from the venom of Conus spurius and was demonstrated to have an inhibitory concentration-dependent effect on the Shaker K+ channel. The voltage-gated potassium channels play critical functions on cellular signaling, from the regeneration of action potentials in neurons to the regulation of insulin secretion in pancreatic cells, among others. In mammals, there are at least 40 genes encoding voltage-gated K+ channels and the process of expression of some of them may include alternative splicing. Given the enormous variety of these channels and the proven use of conotoxins as tools to distinguish different ligand- and voltage-gated ion channels, in this work, we explored the possible effect of CNF-Sr3 on four human voltage-gated K+ channel subtypes homologous to the Shaker channel. CNF-Sr3 showed a 10 times higher affinity for the Kv1.6 subtype with respect to Kv1.3 (IC50 = 2.7 and 24 µM, respectively) and no significant effect on Kv1.4 and Kv1.5 at 10 µM. Thus, CNF-Sr3 might become a novel molecular probe to study diverse aspects of human Kv1.3 and Kv1.6 channels.


Asunto(s)
Venenos de Moluscos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Caracol Conus , Activación del Canal Iónico , Canal de Potasio Kv1.3/antagonistas & inhibidores , Canal de Potasio Kv1.3/genética , Canal de Potasio Kv1.3/metabolismo , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/genética , Canal de Potasio Kv1.4/metabolismo , Canal de Potasio Kv1.5/antagonistas & inhibidores , Canal de Potasio Kv1.5/genética , Canal de Potasio Kv1.5/metabolismo , Canal de Potasio Kv1.6/antagonistas & inhibidores , Canal de Potasio Kv1.6/genética , Canal de Potasio Kv1.6/metabolismo , Potenciales de la Membrana , Oocitos , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
17.
PLoS Negl Trop Dis ; 14(7): e0008479, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32687496

RESUMEN

The existing mosquito pesticide repertoire faces great challenges to sustainability, and new classes of pesticides are vitally needed to address established and emerging mosquito-borne infectious diseases. RNA interference- (RNAi-) based pesticides are emerging as a promising new biorational mosquito control strategy. In this investigation, we describe characterization of an interfering RNA pesticide (IRP) corresponding to the mosquito Shaker (Sh) gene, which encodes an evolutionarily conserved voltage-gated potassium channel subunit. Delivery of the IRP to Aedes aegypti adult mosquitoes in the form of siRNA that was injected or provided as an attractive toxic sugar bait (ATSB) led to Sh gene silencing that resulted in severe neural and behavioral defects and high levels of adult mortality. Likewise, when provided to A. aegypti larvae in the form of short hairpin RNA (shRNA) expressed in Saccharomyces cerevisiae (baker's yeast) that had been formulated into a dried inactivated yeast tablet, the yeast IRP induced neural defects and larval death. Although the Sh IRP lacks a known target site in humans or other non-target organisms, conservation of the target site in the Sh genes of multiple mosquito species suggested that it may function as a biorational broad-range mosquito insecticide. In support of this, the Sh IRP induced both adult and larval mortality in treated Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus mosquitoes, but was not toxic to non-target arthropods. These studies indicated that IRPs targeting Sh could one day be used in integrated biorational mosquito control programs for the prevention of multiple mosquito-borne illnesses. The results of this investigation also suggest that the species-specificity of ATSB technology, a new paradigm for vector control, could be enhanced through the use of RNAi-based pesticides.


Asunto(s)
Agentes de Control Biológico/farmacología , Culicidae/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Oligonucleótidos/farmacología , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , ADN , Daphnia , Femenino , Silenciador del Gen , Larva/efectos de los fármacos , ARN Interferente Pequeño , Canales de Potasio de la Superfamilia Shaker/genética
18.
Commun Biol ; 3(1): 174, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32296133

RESUMEN

Genes and neural circuits coordinately regulate animal sleep. However, it remains elusive how these endogenous factors shape sleep upon environmental changes. Here, we demonstrate that Shaker (Sh)-expressing GABAergic neurons projecting onto dorsal fan-shaped body (dFSB) regulate temperature-adaptive sleep behaviors in Drosophila. Loss of Sh function suppressed sleep at low temperature whereas light and high temperature cooperatively gated Sh effects on sleep. Sh depletion in GABAergic neurons partially phenocopied Sh mutants. Furthermore, the ionotropic GABA receptor, Resistant to dieldrin (Rdl), in dFSB neurons acted downstream of Sh and antagonized its sleep-promoting effects. In fact, Rdl inhibited the intracellular cAMP signaling of constitutively active dopaminergic synapses onto dFSB at low temperature. High temperature silenced GABAergic synapses onto dFSB, thereby potentiating the wake-promoting dopamine transmission. We propose that temperature-dependent switching between these two synaptic transmission modalities may adaptively tune the neural property of dFSB neurons to temperature shifts and reorganize sleep architecture for animal fitness.


Asunto(s)
Conducta Animal , Encéfalo/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Neuronas GABAérgicas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Sueño , Transmisión Sináptica , Sensación Térmica , Ciclos de Actividad , Animales , Animales Modificados Genéticamente , Ritmo Circadiano , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Luz , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Factores de Tiempo
19.
J Neurosurg ; 134(3): 787-793, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32109873

RESUMEN

OBJECTIVE: Prior profiling of the human pituitary adenoma (PA) DNA methylome showed the potassium channel subunit-encoding gene KCNAB2 to be highly differentially methylated between nonfunctional PAs (NFPAs) and growth hormone (GH)-secreting PAs, with greater KCNAB2 methylation detected in secretory PAs. KCNAB2 encodes an aldo-keto reductase that, among other things, negatively regulates members of the voltage-gated potassium channel (Kv) family. In this study, the authors aimed to determine whether modulation of Kcnab2 expression would alter GH secretion in the GH3 mammosomatotroph rat cell line. In addition, they examined whether dosing GH3 cells with the antiarrhythmic drug quinidine, a known inhibitor of Kv and voltage-gated sodium channels, would affect hormonal secretion. METHODS: Previously generated RNA-seq data were reanalyzed to compare KCNAB2 expression levels in human NFPAs and GH-secreting PAs. Kcnab2 was overexpressed in GH3 cells using plasmid transfection and knocked down using shRNA, with confirmation by quantitative polymerase chain reaction (qPCR). GH concentrations in cell culture supernatants collected 24 hours after cell seeding were measured using enzyme-linked immunosorbent assay (ELISA). Separately, quinidine was administered to GH3 cells at graduated doses. GH and prolactin concentrations in supernatants collected 48 hours after quinidine treatment were measured by fluorometric immunoassay. RESULTS: Modulation of expression at the transcript level in GH3 cells resulted in proportionate changes in the expression of GH mRNA and secretion of GH peptide, as confirmed by qPCR and ELISA. Specifically, partial knockdown of Kcnab2 was associated with fewer GH RNA transcripts and less GH secretion compared with controls, while augmentation of Kcnab2 expression was associated with more GH transcripts and secretion than the controls. Administration of quinidine (≥ 50 µM) reduced both GH and prolactin secretion in a dose-dependent fashion (p ≤ 0.05). CONCLUSIONS: GH secretion in a somatotroph cell line is partially dependent on KCNAB2 gene expression and may be mitigated in vitro by quinidine. These results collectively suggest a potential new target and pharmacological candidate to be considered in the development of clinical therapeutics for acromegaly.


Asunto(s)
Regulación Neoplásica de la Expresión Génica/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/genética , Adenoma Hipofisario Secretor de Hormona del Crecimiento/metabolismo , Hormonas Hipofisarias/metabolismo , Neoplasias Hipofisarias/genética , Neoplasias Hipofisarias/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Técnicas de Silenciamiento del Gen , Antagonistas de Hormonas/farmacología , Hormona de Crecimiento Humana/metabolismo , Humanos , Prolactina/metabolismo , Quinidina/farmacología , ARN Interferente Pequeño/genética , Ratas , Canales de Potasio de la Superfamilia Shaker/biosíntesis
20.
Plant J ; 102(6): 1249-1265, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31958173

RESUMEN

The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the Shaker-type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+ -permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock-out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod-factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Técnicas de Inactivación de Genes , Medicago truncatula/genética , Medicago truncatula/fisiología , Oocitos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo , Transpiración de Plantas , Potasio/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/fisiología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA