Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Epilepsia Open ; 9(4): 1176-1191, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39093319

RESUMEN

OBJECTIVE: KCNT1-related epilepsies encompass three main phenotypes: (i) epilepsy of infancy with migrating focal seizures (EIMFS), (ii) autosomal dominant or sporadic sleep-related hypermotor epilepsy [(AD)SHE], and (iii) different types of developmental and epileptic encephalopathies (DEE). Many patients present with drug-resistant seizures and global developmental delays. In addition to conventional anti-seizure medications (ASM), multiple alternative therapies have been tested including the ketogenic diet (KD), cannabidiol (CBD-including Epidyolex © and other CBD derivatives) and quinidine (QUIN). We aimed to clarify the current state of the art concerning the benefits of those therapies administered to the three groups of patients. METHODS: We performed a literature review on PubMed and EMBase with the keyword "KCNT1" and selected articles reporting qualitative and/or quantitative information on responses to these treatments. A treatment was considered beneficial if it improved seizure frequency and/or intensity and/or quality of life. Patients were grouped by phenotype. RESULTS: A total of 43 studies including 197 patients were reviewed. For EIMFS patients (32 studies, 135 patients), KD resulted in benefit in 62.5% (25/40), all types of CBD resulted in benefit in 50% (6/12), and QUIN resulted in benefit in 44.6% (25/56). For (AD)SHE patients (10 studies, 32 patients), we found only one report of treatment with KD, with no benefit noted. QUIN was trialed in 8 patients with no reported benefit. For DEE patients (10 studies, 30 patients), KD resulted in benefit for 4/7, CBD for 1/2, and QUIN for 6/9. In all groups, conventional ASM are rarely reported as beneficial (in 5%-25% of patients). SIGNIFICANCE: Ketogenic diet, CBD, and QUIN treatments appear to be beneficial in a subset of patient with drug-resistant epilepsy. The KD and CBD are reasonable to trial in patients with KCNT1-related epilepsy. Further studies are needed to identify optimal treatment strategies and to establish predictive response factors. PLAIN LANGUAGE SUMMARY: We performed an extensive review of scientific articles providing information about the therapeutic management of epilepsy in patients with epilepsy linked to a mutation in the KCNT1 gene. Conventional anti-seizure treatments were rarely reported to be beneficial. The ketogenic diet (a medical diet with very high fat, adequate protein and very low carbohydrate intake) and cannabidiol appeared to be useful, but larger studies are needed to reach a conclusion.


Asunto(s)
Anticonvulsivantes , Cannabidiol , Dieta Cetogénica , Quinidina , Humanos , Quinidina/uso terapéutico , Anticonvulsivantes/uso terapéutico , Cannabidiol/uso terapéutico , Canales de potasio activados por Sodio , Epilepsia/dietoterapia , Epilepsia/tratamiento farmacológico , Resultado del Tratamiento , Proteínas del Tejido Nervioso
2.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38931004

RESUMEN

Potassium channels have recently emerged as suitable target for the treatment of epileptic diseases. Among potassium channels, KCNT1 channels are the most widely characterized as responsible for several epileptic and developmental encephalopathies. Nevertheless, the medicinal chemistry of KCNT1 blockers is underdeveloped so far. In the present review, we describe and analyse the papers addressing the issue of KCNT1 blockers' development and identification, also evidencing the pros and the cons of the scientific approaches therein described. After a short introduction describing the epileptic diseases and the structure-function of potassium channels, we provide an extensive overview of the chemotypes described so far as KCNT1 blockers, and the scientific approaches used for their identification.


Asunto(s)
Química Farmacéutica , Epilepsia , Bloqueadores de los Canales de Potasio , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Química Farmacéutica/métodos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Relación Estructura-Actividad , Animales , Anticonvulsivantes/química , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de potasio activados por Sodio
3.
Molecules ; 29(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38893312

RESUMEN

Gain-of-function mutations in the KCNT1 gene, which encodes the sodium-activated potassium channel known as SLACK, are associated with the rare but devastating developmental and epileptic encephalopathy known as epilepsy of infancy with migrating focal seizures (EIMFS). The design of small molecule inhibitors of SLACK channels represents a potential therapeutic approach to the treatment of EIMFS, other childhood epilepsies, and developmental disorders. Herein, we describe a hit optimization effort centered on a xanthine SLACK inhibitor (8) discovered via a high-throughput screen. Across three distinct regions of the chemotype, we synthesized 58 new analogs and tested each one in a whole-cell automated patch-clamp assay to develop structure-activity relationships for inhibition of SLACK channels. We further evaluated selected analogs for their selectivity versus a variety of other ion channels and for their activity versus clinically relevant SLACK mutants. Selectivity within the series was quite good, including versus hERG. Analog 80 (VU0948578) was a potent inhibitor of WT, A934T, and G288S SLACK, with IC50 values between 0.59 and 0.71 µM across these variants. VU0948578 represents a useful in vitro tool compound from a chemotype that is distinct from previously reported small molecule inhibitors of SLACK channels.


Asunto(s)
Bloqueadores de los Canales de Potasio , Relación Estructura-Actividad , Humanos , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacología , Canales de potasio activados por Sodio , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Xantina/química , Xantina/farmacología , Técnicas de Placa-Clamp , Células HEK293 , Estructura Molecular , Xantinas/química , Xantinas/farmacología
4.
J Med Chem ; 67(11): 9124-9149, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38782404

RESUMEN

Gain-of-function (GoF) variants in KCNT1 channels cause severe, drug-resistant forms of epilepsy. Quinidine is a known KCNT1 blocker, but its clinical use is limited due to severe drawbacks. To identify novel KCNT1 blockers, a homology model of human KCNT1 was built and used to screen an in-house library of compounds. Among the 20 molecules selected, five (CPK4, 13, 16, 18, and 20) showed strong KCNT1-blocking ability in an in vitro fluorescence-based assay. Patch-clamp experiments confirmed a higher KCNT1-blocking potency of these compounds when compared to quinidine, and their selectivity for KCNT1 over hERG and Kv7.2 channels. Among identified molecules, CPK20 displayed the highest metabolic stability; this compound also blocked KCNT2 currents, although with a lower potency, and counteracted GoF effects prompted by 2 recurrent epilepsy-causing KCNT1 variants (G288S and A934T). The present results provide solid rational basis for future design of novel compounds to counteract KCNT1-related neurological disorders.


Asunto(s)
Epilepsia , Humanos , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Animales , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Proteínas del Tejido Nervioso/genética , Relación Estructura-Actividad , Células HEK293 , Simulación por Computador , Canales de potasio activados por Sodio
5.
Biophys J ; 123(14): 2145-2153, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38605520

RESUMEN

The Na+-activated K+ channel KNa1.1, encoded by the KCNT1 gene, is an important regulator of neuronal excitability. How intracellular Na+ ions bind and increase channel activity is not well understood. Analysis of KNa1.1 channel structures indicate that there is a large twisting of the ßN-αQ loop in the intracellular RCK2 domain between the inactive and Na+-activated conformations, with a lysine (K885, human subunit numbering) close enough to potentially form a salt bridge with an aspartate (D839) in ßL in the Na+-activated state. Concurrently, an aspartate (D884) adjacent in the same loop adopts a position within a pocket formed by the ßO strand. In carrying out mutagenesis and electrophysiology with human KNa1.1, we found that alanine substitution of selected residues in these regions resulted in almost negligible currents in the presence of up to 40 mM intracellular Na+. The exception was D884A, which resulted in constitutively active channels in both the presence and absence of intracellular Na+. Further mutagenesis of this site revealed an amino acid size-dependent effect. Substitutions at this site by an amino acid smaller than aspartate (D884V) also yielded constitutively active KNa1.1, and D884I had Na+ dependence similar to wild-type KNa1.1, while increasing the side-chain size larger than aspartate (D884E or D884F) yielded channels that could not be activated by up to 40 mM intracellular Na+. We conclude that Na+ binding results in a conformational change that accommodates D884 in the ßO pocket, which triggers further conformational changes in the RCK domains and channel activation.


Asunto(s)
Canales de potasio activados por Sodio , Sodio , Humanos , Sodio/metabolismo , Dominios Proteicos , Activación del Canal Iónico , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Modelos Moleculares , Animales , Secuencia de Aminoácidos
6.
Brain Res Bull ; 212: 110966, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670469

RESUMEN

Intraoperative remifentanil administration has been linked to increased postoperative pain sensitivity. Recent studies have identified the involvement of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2/G9a) in neuropathic pain associated with the transcriptional silencing of many potassium ion channel genes. This study investigates whether G9a regulates the potassium sodium-activated channel subfamily T member 1 (Slo2.2) in remifentanil-induced post-incisional hyperalgesia (RIH) in rodents. We performed remifentanil infusion (1 µg·kg-1·min-1 for 60 min) followed by plantar incision to induce RIH in rodents. Our results showed that RIH was accompanied by increased G9a and H3K9me2 production and decreased Slo2.2 expression 48 h postoperatively. Deletion of G9a rescued Slo2.2 expression in DRG and reduced RIH intensity. Slo2.2 overexpression also reversed this hyperalgesia phenotype. G9a overexpression decreased Slo2.2-mediated leak current and increased excitability in the small-diameter DRG neurons and laminal II small-diameter neurons in the spinal dorsal horn, which was implicated in peripheral and central sensitization. These results suggest that G9a contributes to the development of RIH by epigenetically silencing Slo2.2 in DRG neurons, leading to decreased central sensitization in the spinal cord. The findings may have implications for the development of novel therapeutic targets for the treatment of postoperative pain.


Asunto(s)
N-Metiltransferasa de Histona-Lisina , Hiperalgesia , Remifentanilo , Células Receptoras Sensoriales , Animales , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Masculino , Remifentanilo/farmacología , Hiperalgesia/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Canales de potasio activados por Sodio , Ratones , Analgésicos Opioides/farmacología , Ganglios Espinales/metabolismo , Ganglios Espinales/efectos de los fármacos , Neuralgia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Ratas , Umbral del Dolor/efectos de los fármacos , Ratas Sprague-Dawley , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso
7.
Sci Rep ; 14(1): 5698, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459095

RESUMEN

The objective of this study was to elaborate Doppler ultrasonographic scan, genetic resistance and serum profile of markers associated with endometritis susceptibility in Egyptian buffalo-cows. The enrolled animals were designed as; twenty five apparently healthy buffalo-cows considered as a control group and twenty five infected buffalo with endometritis. There were significant (p < 0.05) increased of cervical diameter, endometrium thickness, uterine horn diameter, TAMEAN, TAMAX and blood flow through middle uterine artery with significant decrease of PI and RI values in endometritis buffalo-cows. Gene expression levels were considerably higher in endometritis-affected buffaloes than in resistant ones for the genes A2M, ADAMTS20, KCNT2, MAP3K4, MAPK14, FKBP5, FCAMR, TLR2, IRAK3, CCl2, EPHA4, and iNOS. The RXFP1, NDUFS5, TGF-ß, SOD3, CAT, and GPX genes were expressed at substantially lower levels in endometritis-affected buffaloes. The PCR-DNA sequence verdicts of healthy and affected buffaloes revealed differences in the SNPs in the amplified DNA bases related to endometritis for the investigated genes. However, MAP3K4 elicited a monomorphic pattern. There was a significant decrease of red blood cells (RBCs) count, Hb and packed cell volume (PCV) with neutrophilia, lymphocytosis and monocytosis in endometritis group compared with healthy ones. The serum levels of Hp, SAA, Cp, IL-6, IL-10, TNF-α, NO and MDA were significantly (P˂0.05) increased, along with reduction of CAT, GPx, SOD and TAC in buffalo-cows with endometritis compared to healthy ones. The variability of Doppler ultrasonographic scan and studied genes alongside alterations in the serum profile of investigated markers could be a reference guide for limiting buffalo endometritis through selective breeding of natural resistant animals.


Asunto(s)
Bison , Enfermedades de los Bovinos , Endometritis , Animales , Femenino , Humanos , Bovinos , Endometritis/diagnóstico por imagen , Endometritis/genética , Endometritis/veterinaria , Búfalos/genética , Antioxidantes , Egipto , Expresión Génica , Canales de potasio activados por Sodio
8.
Cell Rep ; 43(3): 113904, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38457342

RESUMEN

The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, KNa1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na+-dependent K+ (KNa) and voltage-dependent sodium (NaV) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of NaV channel subunits, particularly that of NaV1.6, is upregulated and that the length of the axon initial segment and of axonal NaV immunostaining is increased in both neuron types. Our study on the coordinate regulation of KNa currents and the expression of NaV channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.


Asunto(s)
Epilepsia , Canales de Potasio , Humanos , Axones/metabolismo , Epilepsia/genética , Mutación/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio , Animales , Ratones
9.
J Neurodev Disord ; 16(1): 13, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38539105

RESUMEN

BACKGROUND: Global developmental delay or intellectual disability usually accompanies various genetic disorders as a part of the syndrome, which may include seizures, autism spectrum disorder and multiple congenital abnormalities. Next-generation sequencing (NGS) techniques have improved the identification of pathogenic variants and genes related to developmental delay. This study aimed to evaluate the yield of whole exome sequencing (WES) and neurodevelopmental disorder gene panel sequencing in a pediatric cohort from Ukraine. Additionally, the study computationally predicted the effect of variants of uncertain significance (VUS) based on recently published genetic data from the country's healthy population. METHODS: The study retrospectively analyzed WES or gene panel sequencing findings of 417 children with global developmental delay, intellectual disability, and/or other symptoms. Variants of uncertain significance were annotated using CADD-Phred and SIFT prediction scores, and their frequency in the healthy population of Ukraine was estimated. RESULTS: A definitive molecular diagnosis was established in 66 (15.8%) of the individuals. WES diagnosed 22 out of 37 cases (59.4%), while the neurodevelopmental gene panel identified 44 definitive diagnoses among the 380 tested patients (12.1%). Non-diagnostic findings (VUS and carrier) were reported in 350 (83.2%) individuals. The most frequently diagnosed conditions were developmental and epileptic encephalopathies associated with severe epilepsy and GDD/ID (associated genes ARX, CDKL5, STXBP1, KCNQ2, SCN2A, KCNT1, KCNA2). Additionally, we annotated 221 VUS classified as potentially damaging, AD or X-linked, potentially increasing the diagnostic yield by 30%, but 18 of these variants were present in the healthy population of Ukraine. CONCLUSIONS: This is the first comprehensive study on genetic causes of GDD/ID conducted in Ukraine. This study provides the first comprehensive investigation of the genetic causes of GDD/ID in Ukraine. It presents a substantial dataset of diagnosed genetic conditions associated with GDD/ID. The results support the utilization of NGS gene panels and WES as first-line diagnostic tools for GDD/ID cases, particularly in resource-limited settings. A comprehensive approach to resolving VUS, including computational effect prediction, population frequency analysis, and phenotype assessment, can aid in further reclassification of deleterious VUS and guide further testing in families.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Niño , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Pruebas Genéticas/métodos , Trastorno del Espectro Autista/epidemiología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/complicaciones , Estudios Retrospectivos , Epilepsia/complicaciones , Canales de potasio activados por Sodio/genética , Proteínas del Tejido Nervioso/genética
11.
Sci Rep ; 14(1): 3357, 2024 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336906

RESUMEN

Mutations in the KCNT1 potassium channel cause severe forms of epilepsy which are poorly controlled with current treatments. In vitro studies have shown that KCNT1-epilepsy mutations are gain of function, significantly increasing K+ current amplitudes. To investigate if Drosophila can be used to model human KCNT1 epilepsy, we generated Drosophila melanogaster lines carrying human KCNT1 with the patient mutation G288S, R398Q or R928C. Expression of each mutant channel in GABAergic neurons gave a seizure phenotype which responded either positively or negatively to 5 frontline epilepsy drugs most commonly administered to patients with KCNT1-epilepsy, often with little or no improvement of seizures. Cannabidiol showed the greatest reduction of the seizure phenotype while some drugs increased the seizure phenotype. Our study shows that Drosophila has the potential to model human KCNT1- epilepsy and can be used as a tool to assess new treatments for KCNT1- epilepsy.


Asunto(s)
Drosophila , Epilepsia , Canales de potasio activados por Sodio , Animales , Humanos , Drosophila/genética , Drosophila melanogaster/genética , Evaluación Preclínica de Medicamentos , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Modelos Animales , Mutación , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética , Convulsiones/tratamiento farmacológico , Convulsiones/genética , Transgenes
12.
Cardiol Young ; 34(3): 701-703, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38229505

RESUMEN

KCNT1 mutations are associated with childhood epilepsy, developmental delay, and vascular malformations. We report a child with a likely pathogenic KCNT1 mutation (c.1885A>C, p.Lys629Glu) with recurrent pulmonary haemorrhage due to aortopulmonary collaterals successfully managed with coil embolisation followed by right upper lobectomy.


Asunto(s)
Prótesis Vascular , Malformaciones Vasculares , Niño , Humanos , Mutación , Proteínas del Tejido Nervioso/genética , Canales de potasio activados por Sodio/genética
13.
Sci Rep ; 13(1): 23039, 2023 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-38155185

RESUMEN

Citrullinated vimentin has been linked to several chronic and autoimmune diseases, but how citrullinated vimentin is associated with disease prevalence and genetic variants in a clinical setting remains unknown. The aim of this study was to obtain a better understanding of the genetic variants and pathologies associated with citrullinated and MMP-degraded vimentin. Patient Registry data, serum samples and genotypes were collected for a total of 4369 Danish post-menopausal women enrolled in the Prospective Epidemiologic and Risk Factor study (PERF). Circulating citrullinated and MMP-degraded vimentin (VICM) was measured. Genome-wide association studies (GWAS) and phenome wide association studies (PheWAS) with levels of VICM were performed. High levels of VICM were significantly associated with the prevalence of chronic pulmonary diseases and death from respiratory and cardiovascular diseases (CVD). GWAS identified 33 single nucleotide polymorphisms (SNPs) with a significant association with VICM. These variants were in the peptidylarginine deiminase 3/4 (PADI3/PADI4) and Complement Factor H (CFH)/KCNT2 gene loci on chromosome 1. Serum levels of VICM, a marker of citrullinated and MMP-degraded vimentin, were associated with chronic pulmonary diseases and genetic variance in PADI3/PADI4 and CFH/ KCNT2. This points to the potential for VICM to be used as an activity marker of both citrullination and inflammation, identifying responders to targeted treatment and patients likely to experience disease progression.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedades Pulmonares , Humanos , Femenino , Desiminasas de la Arginina Proteica/genética , Vimentina/genética , Estudios Prospectivos , Posmenopausia/genética , Enfermedades Pulmonares/genética , Hidrolasas/genética , Canales de potasio activados por Sodio/genética , Arginina Deiminasa Proteína-Tipo 3
14.
Bioorg Med Chem ; 95: 117487, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37812884

RESUMEN

Malignant migrating partial seizure of infancy (MMPSI) is a devastating and pharmacoresistant form of infantile epilepsy. MMPSI has been linked to multiple gain-of-function (GOF) mutations in the KCNT1 gene, which encodes for a potassium channel often referred to as SLACK. SLACK channels are sodium-activated potassium channels distributed throughout the central nervous system (CNS) and the periphery. The investigation described here aims to discover SLACK channel inhibitor tool compounds and profile their pharmacokinetic and pharmacodynamic properties. A SLACK channel inhibitor VU0531245 (VU245) was identified via a high-throughput screen (HTS) campaign. Structure-activity relationship (SAR) studies were conducted in five distinct regions of the hit VU245. VU245 analogs were evaluated for their ability to affect SLACK channel activity using a thallium flux assay in HEK-293 cells stably expressing wild-type (WT) human SLACK. Selected analogs were tested for metabolic stability in mouse liver microsomes and plasma-protein binding in mouse plasma. The same set of analogs was tested via thallium flux for activity versus human A934T SLACK and other structurally related potassium channels, including SLICK and Maxi-K. In addition, potencies for selected VU245 analogs were obtained using whole-cell electrophysiology (EP) assays in CHO cells stably expressing WT human SLACK through an automated patch clamp system. Results revealed that this scaffold tolerates structural changes in some regions, with some analogs demonstrating improved SLACK inhibitory activity, good selectivity against the other channels tested, and modest improvements in metabolic clearance. Analog VU0935685 represents a new, structurally distinct small-molecule inhibitor of SLACK channels that can serve as an in vitro tool for studying this target.


Asunto(s)
Canales de Potasio , Talio , Animales , Cricetinae , Humanos , Ratones , Cricetulus , Células HEK293 , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/metabolismo , Convulsiones , Talio/metabolismo , Oxadiazoles/química , Oxadiazoles/metabolismo
15.
Commun Biol ; 6(1): 1029, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821582

RESUMEN

Mutations of the Na+-activated K+ channel Slack (KCNT1) are associated with terrible epilepsy syndromes that already begin in infancy. Here we report increased severity of acute kainic acid-induced seizures in adult and juvenile Slack knockout mice (Slack-/-) in vivo. Fittingly, we find exacerbation of cell death following kainic acid exposure in organotypic hippocampal slices as well as dissociated hippocampal cultures from Slack-/- in vitro. Furthermore, in cultured Slack-/- neurons, kainic acid-triggered Ca2+ influx and K+ efflux as well as depolarization-induced tetrodotoxin-sensitive inward currents are higher compared to the respective controls. This apparent changes in ion homeostasis could possibly explain altered action potential kinetics of Slack-/- neurons: steeper rise slope, decreased threshold, and duration of afterhyperpolarization, which ultimately lead to higher action potential frequencies during kainic acid application or injection of depolarizing currents. Based on our data, we propose Slack as crucial gatekeeper of neuronal excitability to acutely limit seizure severity.


Asunto(s)
Ácido Kaínico , Canales de Potasio , Ratones , Animales , Canales de Potasio/genética , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/metabolismo , Ácido Kaínico/toxicidad , Ácido Kaínico/metabolismo , Neuronas/fisiología , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Ratones Noqueados
16.
J Pak Med Assoc ; 73(8): 1720-1722, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37697770

RESUMEN

Pathological mutation of potassium channel subfamily T member 1 (KCNT1) gene causes an autosomal dominant disorder characterised by secondarily generalised seizures/migratory focal seizure, cyanosis, and dysmorphic features. We report the case of a five-month old male with pathological KCNT1 variant who presented with focal clonic seizures, Mongol spots, and grade two systolic murmur at the left lower sternal border and loud P2. The seizures were refractory to most anti-epileptic drugs but showed some response to Valproic acid. This case demonstrated that EIMFS is a grave infantile epileptic encephalopathy which is refractory to anti epileptic drugs and can present with a wide spectrum of neurogenic and cardiogenic symptoms.


Asunto(s)
Epilepsia , Convulsiones , Lactante , Masculino , Humanos , Convulsiones/etiología , Ácido Valproico/uso terapéutico , Cianosis , Canales de Potasio , Canales de potasio activados por Sodio/genética , Proteínas del Tejido Nervioso
17.
Cell Rep ; 42(8): 112858, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37494189

RESUMEN

The sodium-activated Slo2.2 channel is abundantly expressed in the brain, playing a critical role in regulating neuronal excitability. The Na+-binding site and the underlying mechanisms of Na+-dependent activation remain unclear. Here, we present cryoelectron microscopy (cryo-EM) structures of human Slo2.2 in closed, open, and inhibitor-bound form at resolutions of 2.6-3.2 Å, revealing gating mechanisms of Slo2.2 regulation by cations and a potent inhibitor. The cytoplasmic gating ring domain of the closed Slo2.2 harbors multiple K+ and Zn2+ sites, which stabilize the channel in the closed conformation. The open Slo2.2 structure reveals at least two Na+-sensitive sites where Na+ binding induces expansion and rotation of the gating ring that opens the inner gate. Furthermore, a potent inhibitor wedges into a pocket formed by pore helix and S6 helix and blocks the pore. Together, our results provide a comprehensive structural framework for the investigation of Slo2.2 channel gating, Na+ sensation, and inhibition.


Asunto(s)
Canales de Potasio , Sodio , Humanos , Canales de Potasio/metabolismo , Microscopía por Crioelectrón , Canales de potasio activados por Sodio , Sodio/metabolismo
18.
Childs Nerv Syst ; 39(11): 3295-3299, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37368068

RESUMEN

Lhermitte-Duclos disease (LDD) refers to cerebellar dysplastic gangliocytoma, a slow-growing tumor. Pathogenic variants of voltage-gated potassium channels have been associated with epilepsy of variable severity. These include the sodium-activated potassium channel subfamily T member 2 (KCNT2) gene, which encodes for pore-forming alpha subunits. KCNT2 gene mutations have been recently described to cause developmental and epileptic encephalopathies (DEEs). The purpose of the present article is to describe an extremely rare case of a young child who has both LDD and KCNT2 mutation. Our patient is an 11-year-old boy who presented with an absence episode, and his investigations revealed electroencephalography (EEG) abnormalities, LDD, and a heterozygous KCNT2 mutation. Regarding LDD patients, epileptic seizures have been reported in very few cases. Reports of patients with mutated KCNT2 variants are also extremely rare. It is for sure that LDD and KCNT2 mutation is an extremely rare combination. Although further follow-up is mandatory in order to draw safe conclusions for our case, the available data support that our patient is either the first reported case of a subclinical KCNT2 mutation or the first case of its clinical expression in late childhood so far.


Asunto(s)
Neoplasias Cerebelosas , Epilepsia , Síndrome de Hamartoma Múltiple , Masculino , Humanos , Niño , Síndrome de Hamartoma Múltiple/complicaciones , Síndrome de Hamartoma Múltiple/genética , Síndrome de Hamartoma Múltiple/patología , Neoplasias Cerebelosas/cirugía , Mutación/genética , Epilepsia/genética , Epilepsia/complicaciones , Sodio , Imagen por Resonancia Magnética , Canales de potasio activados por Sodio/genética
19.
Epilepsia ; 64(8): 2126-2136, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37177976

RESUMEN

OBJECTIVE: Gain of function variants in the sodium-activated potassium channel KCNT1 have been associated with pediatric epilepsy disorders. Here, we systematically examine a spectrum of KCNT1 variants and establish their impact on channel function in multiple cellular systems. METHODS: KCNT1 variants identified from published reports and genetic screening of pediatric epilepsy patients were expressed in Xenopus oocytes and HEK cell lines. Variant impact on current magnitude, current-voltage relationships, and sodium ion modulation were examined. RESULTS: We determined basic properties of KCNT1 in Xenopus oocyte and HEK systems, including the role of extra- and intracellular sodium in regulating KCNT1 activity. The most common six KCNT1 variants demonstrated strong gain of function (GOF) effects on one or more channel properties. Analysis of 36 total variants identified phenotypic heterogeneity but a strong tendency for pathogenic variants to exert GOF effects on channel properties. By controlling intracellular sodium, we demonstrate that multiple pathogenic KCNT1 variants modulate channel voltage dependence by altering the sensitivity to sodium ions. SIGNIFICANCE: This study represents the largest systematic functional examination of KCNT1 variants to date. We both confirm previously reported GOF channel phenotypes and expand the number of variants with in vitro GOF effects. Our data provide further evidence that novel KCNT1 variants identified in epilepsy patients lead to disease through generalizable GOF mechanisms including increases in current magnitude and/or current-voltage relationships.


Asunto(s)
Epilepsia , Mutación con Ganancia de Función , Humanos , Canales de potasio activados por Sodio/genética , Mutación , Epilepsia/genética , Canales de Potasio/genética , Canales de Potasio/metabolismo , Proteínas del Tejido Nervioso/genética
20.
Genome Med ; 15(1): 30, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-37127706

RESUMEN

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) provides valuable insights into human islet cell types and their corresponding stable gene expression profiles. However, this approach requires cell dissociation that complicates its utility in vivo. On the other hand, single-nucleus RNA sequencing (snRNA-seq) has compatibility with frozen samples, elimination of dissociation-induced transcriptional stress responses, and affords enhanced information from intronic sequences that can be leveraged to identify pre-mRNA transcripts. METHODS: We obtained nuclear preparations from fresh human islet cells and generated snRNA-seq datasets. We compared these datasets to scRNA-seq output obtained from human islet cells from the same donor. We employed snRNA-seq to obtain the transcriptomic profile of human islets engrafted in immunodeficient mice. In both analyses, we included the intronic reads in the snRNA-seq data with the GRCh38-2020-A library. RESULTS: First, snRNA-seq analysis shows that the top four differentially and selectively expressed genes in human islet endocrine cells in vitro and in vivo are not the canonical genes but a new set of non-canonical gene markers including ZNF385D, TRPM3, LRFN2, PLUT (ß-cells); PTPRT, FAP, PDK4, LOXL4 (α-cells); LRFN5, ADARB2, ERBB4, KCNT2 (δ-cells); and CACNA2D3, THSD7A, CNTNAP5, RBFOX3 (γ-cells). Second, by integrating information from scRNA-seq and snRNA-seq of human islet cells, we distinguish three ß-cell sub-clusters: an INS pre-mRNA cluster (ß3), an intermediate INS mRNA cluster (ß2), and an INS mRNA-rich cluster (ß1). These display distinct gene expression patterns representing different biological dynamic states both in vitro and in vivo. Interestingly, the INS mRNA-rich cluster (ß1) becomes the predominant sub-cluster in vivo. CONCLUSIONS: In summary, snRNA-seq and pre-mRNA analysis of human islet cells can accurately identify human islet cell populations, subpopulations, and their dynamic transcriptome profile in vivo.


Asunto(s)
Islotes Pancreáticos , Transcriptoma , Humanos , Ratones , Animales , Perfilación de la Expresión Génica , Precursores del ARN/metabolismo , Islotes Pancreáticos/metabolismo , Análisis de Secuencia de ARN , ARN Nuclear Pequeño/metabolismo , ARN Mensajero/metabolismo , Análisis de la Célula Individual , Canales de potasio activados por Sodio/genética , Canales de potasio activados por Sodio/metabolismo , Proteína-Lisina 6-Oxidasa/genética , Proteína-Lisina 6-Oxidasa/metabolismo , Glicoproteínas de Membrana/genética , Proteínas del Tejido Nervioso/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...