Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-34429357

RESUMEN

The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window. In particular, ion channels shape the intrinsic biophysical properties of precursor cells and neurons and control their membrane potential throughout the cell cycle. We found that hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel subunits are expressed in mouse, rat, and human neural progenitors. Loss of HCN channel function in rat neural stem cells impaired their proliferation by affecting the cell-cycle progression, causing G1 accumulation and dysregulation of genes associated with human microcephaly. Transgene-mediated, dominant-negative loss of HCN channel function in the embryonic mouse telencephalon resulted in pronounced microcephaly. Together, our findings suggest a role for HCN channel subunits as a part of a general mechanism influencing cortical development in mammals.


Asunto(s)
Proliferación Celular/fisiología , Corteza Cerebral/embriología , Canalopatías/etiología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Microcefalia/etiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Ciclo Celular , Muerte Celular , Células Cultivadas , Corteza Cerebral/citología , Canalopatías/embriología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Ratones , Ratones Transgénicos , Microcefalia/embriología , Células-Madre Neurales/metabolismo , Ratas
2.
Nat Rev Neurosci ; 22(5): 275-289, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828309

RESUMEN

Fragile X syndrome (FXS) is the most common inherited form of intellectual disability and the leading monogenic cause of autism. The condition stems from loss of fragile X mental retardation protein (FMRP), which regulates a wide range of ion channels via translational control, protein-protein interactions and second messenger pathways. Rapidly increasing evidence demonstrates that loss of FMRP leads to numerous ion channel dysfunctions (that is, channelopathies), which in turn contribute significantly to FXS pathophysiology. Consistent with this, pharmacological or genetic interventions that target dysregulated ion channels effectively restore neuronal excitability, synaptic function and behavioural phenotypes in FXS animal models. Recent studies further support a role for direct and rapid FMRP-channel interactions in regulating ion channel function. This Review lays out the current state of knowledge in the field regarding channelopathies and the pathogenesis of FXS, including promising therapeutic implications.


Asunto(s)
Canalopatías/etiología , Canalopatías/fisiopatología , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/fisiopatología , Animales , Canalopatías/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , Humanos
3.
Biochim Biophys Acta Gen Subj ; 1865(6): 129873, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33610740

RESUMEN

The TRP-family of ion channels consists of 27 members in humans. Most TRP channels are non- selective cation channels with the exception of TRPV5 and TRPV6 which exhibit a high permeability for Ca2+ ions. A functional channel is formed by 4 identical subunits [1]. A growing number of mutations are present in human TRPV6 genes which alter channel function and can lead to elevated blood levels of the parathyroid hormone accompanied by transient hyperparathyroidism. Recent publications suggest that TRPV6 mutations could also trigger non-alcoholic chronic pancreatitis. This review summarises the consequences of these mutations within the TRPV6 gene.


Asunto(s)
Canales de Calcio/genética , Calcio/metabolismo , Canalopatías/patología , Mutación , Canales Catiónicos TRPV/genética , Canales de Calcio/metabolismo , Canalopatías/etiología , Humanos , Canales Catiónicos TRPV/metabolismo
4.
Int J Mol Sci ; 21(8)2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32331416

RESUMEN

Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.


Asunto(s)
Canalopatías/etiología , Canalopatías/terapia , Predisposición Genética a la Enfermedad , Canal de Potasio Kv.1.1/genética , Mutación , Alelos , Animales , Canalopatías/diagnóstico , Canalopatías/metabolismo , Manejo de la Enfermedad , Regulación de la Expresión Génica , Estudios de Asociación Genética , Genotipo , Humanos , Activación del Canal Iónico , Canal de Potasio Kv.1.1/química , Canal de Potasio Kv.1.1/metabolismo , Terapia Molecular Dirigida , Fenotipo , Relación Estructura-Actividad
5.
Endocrinology ; 159(12): 4043-4055, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30395240

RESUMEN

Ca2+ influx through voltage-gated Ca2+ channels (VGCCs) plays a key role in GH secretion. In this review, we summarize the current state of knowledge regarding the physiology and molecular machinery of VGCCs in pituitary somatotrophs. We next discuss the possible involvement of Ca2+ channelopathies in pituitary disease and the potential use of Ca2+ channel blockers to treat pituitary disease. Various types of VGCCs exist in pituitary cells. However, because L-type Ca2+ channels (LTCCs) contribute the major component to Ca2+ influx in somatotrophs, lactotrophs, and corticotrophs, we focused on these channels. An increasing number of studies in recent years have linked genetic missense mutations in LTCCs to diseases of the human cardiovascular, nervous, and endocrine systems. These disease-associated genetic mutations occur at homologous functional positions (activation gates) in LTCCs. Thus, it is plausible that similar homologous missense mutations in pituitary LTCCs can cause abnormal hormone secretion and underlying pituitary disorders. The existence of LTCCs in pituitary cells opens questions about their sensitivity to dihydropyridines, a group of selective LTCC blockers. The dihydropyridine sensitivity of pituitary cells, as with any other excitable cell, depends primarily on two parameters: the pattern of their electrical activity and the dihydropyridine sensitivity of their LTCC isoforms. These two parameters are discussed in detail in relation to somatotrophs. These discussions are also relevant to lactotrophs and corticotrophs. High dihydropyridine sensitivity may facilitate their use as drugs to treat pituitary oversecretion disorders such as acromegaly, hyperprolactinemia, and Cushing disease.


Asunto(s)
Canales de Calcio/metabolismo , Canalopatías/terapia , Terapia Molecular Dirigida , Enfermedades de la Hipófisis/terapia , Adenohipófisis/metabolismo , Somatotrofos/metabolismo , Acromegalia/etiología , Acromegalia/terapia , Animales , Calcio/fisiología , Canalopatías/etiología , Canalopatías/metabolismo , Humanos , Hiperprolactinemia/etiología , Hiperprolactinemia/terapia , Terapia Molecular Dirigida/métodos , Terapia Molecular Dirigida/tendencias , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/etiología , Hipersecreción de la Hormona Adrenocorticotrópica Pituitaria (HACT)/terapia , Enfermedades de la Hipófisis/etiología , Enfermedades de la Hipófisis/metabolismo , Adenohipófisis/patología , Somatotrofos/patología
6.
Handb Clin Neurol ; 155: 205-215, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29891059

RESUMEN

Primary episodic ataxias (EAs) are a group of dominantly inherited disorders characterized by transient recurrent incoordination and truncal instability, often triggered by physical exertion and emotional stress, variably associated with progressive baseline ataxia. There are now eight designated subtypes based largely on genetic loci. Mutations have been identified in multiple individuals and families with EA1, EA2, and EA6, mostly with onset before adulthood. EA1 and EA2 are prototypical neurologic channelopathies. EA1 is caused by heterozygous mutations in KCNA1, which encodes the α1 subunit of a neuronal voltage-gated potassium channel, Kv1.1. EA2, the most common and best characterized, is caused by heterozygous mutations in CACNA1A, which encodes the α1A subunit of a neuronal voltage-gated calcium channel, Cav2.1. EA6 is caused by heterozygous mutations in SLC1A3, which encodes a subunit of a glial excitatory amino acid transporter, EAAT1. The other EA subtypes were defined in single families awaiting gene identification and further confirmation. This chapter focuses on the best-characterized EA syndromes, the clinical assessment and genetic diagnosis of EA, and the management of EA, as well as newly recognized allelic disorders that have greatly expanded the clinical spectrum of EA2. Illustrative cases are discussed, with a focus on sporadic patients with congenital features without episodic ataxia who present diagnostic and therapeutic challenges.


Asunto(s)
Ataxia/genética , Canal de Potasio Kv.1.1/genética , Mutación/genética , Ataxia/clasificación , Canalopatías/etiología , Canalopatías/genética , Transportador 1 de Aminoácidos Excitadores/genética , Humanos
7.
Curr Opin Immunol ; 52: 39-50, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29635109

RESUMEN

Ion channels and transporters move ions across membrane barriers and are essential for a host of cell functions in many organs. They conduct K+, Na+ and Cl-, which are essential for regulating the membrane potential, H+ to control intracellular and extracellular pH and divalent cations such as Ca2+, Mg2+ and Zn2+, which function as second messengers and cofactors for many proteins. Inherited channelopathies due to mutations in ion channels or their accessory proteins cause a variety of diseases in the nervous, cardiovascular and other tissues, but channelopathies that affect immune function are not as well studied. Mutations in ORAI1 and STIM1 genes that encode the Ca2+ release-activated Ca2+ (CRAC) channel in immune cells, the Mg2+ transporter MAGT1 and the Cl- channel LRRC8A all cause immunodeficiency with increased susceptibility to infection. Mutations in the Zn2+ transporters SLC39A4 (ZIP4) and SLC30A2 (ZnT2) result in nutritional Zn2+ deficiency and immune dysfunction. These channels, however, only represent a fraction of ion channels that regulate immunity as demonstrated by immune dysregulation in channel knockout mice. The immune system itself can cause acquired channelopathies that are associated with a variety of diseases of nervous, cardiovascular and endocrine systems resulting from autoantibodies binding to ion channels. These autoantibodies highlight the therapeutic potential of functional anti-ion channel antibodies that are being developed for the treatment of autoimmune, inflammatory and other diseases.


Asunto(s)
Canalopatías/inmunología , Canalopatías/metabolismo , Susceptibilidad a Enfermedades , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Canales Iónicos/metabolismo , Agammaglobulinemia/etiología , Agammaglobulinemia/metabolismo , Animales , Autoanticuerpos/inmunología , Canales de Calcio Activados por la Liberación de Calcio/genética , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Canalopatías/etiología , Humanos , Infecciones/complicaciones , Infecciones/inmunología , Infecciones/metabolismo , Canales Iónicos/genética , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo , Zinc/deficiencia
8.
Int J Mol Sci ; 19(3)2018 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-29495624

RESUMEN

Long QT syndrome, short QT syndrome, Brugada syndrome and catecholaminergic polymorphic ventricular tachycardia are inherited primary electrical disorders that predispose to sudden cardiac death in the absence of structural heart disease. Also known as cardiac channelopathies, primary electrical disorders respond to mutations in genes encoding cardiac ion channels and/or their regulatory proteins, which result in modifications in the cardiac action potential or in the intracellular calcium handling that lead to electrical instability and life-threatening ventricular arrhythmias. These disorders may have low penetrance and expressivity, making clinical diagnosis often challenging. However, because sudden cardiac death might be the first presenting symptom of the disease, early diagnosis becomes essential. Genetic testing might be helpful in this regard, providing a definite diagnosis in some patients. Yet important limitations still exist, with a significant proportion of patients remaining with no causative mutation identifiable after genetic testing. This review aims to provide the latest knowledge on the genetic basis of cardiac channelopathies and discuss the role of the affected proteins in the pathophysiology of each one of these diseases.


Asunto(s)
Canalopatías/etiología , Canalopatías/metabolismo , Muerte Súbita Cardíaca/etiología , Canales Iónicos/genética , Canales Iónicos/metabolismo , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada/etiología , Síndrome de Brugada/metabolismo , Síndrome de Brugada/fisiopatología , Electrofisiología Cardíaca , Canalopatías/complicaciones , Canalopatías/diagnóstico , Predisposición Genética a la Enfermedad , Humanos , Síndrome de QT Prolongado/etiología , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Fenotipo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/metabolismo , Taquicardia Ventricular/fisiopatología
9.
Int J Mol Sci ; 19(3)2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29518895

RESUMEN

The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG) channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP) or cyclic adenosine monophosphate (cAMP). Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and voltage-gated potassium channels (KCN). In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Retina/metabolismo , Transducción de Señal , Animales , Biomarcadores , Canalopatías/etiología , Canalopatías/metabolismo , Canalopatías/fisiopatología , Canalopatías/terapia , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Terapia Genética , Humanos , Activación del Canal Iónico , Fototransducción , Ratones Transgénicos , Células Fotorreceptoras/metabolismo , Relación Estructura-Actividad , Visión Ocular
10.
Shock ; 49(2): 221-228, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28562477

RESUMEN

Skeletal muscles (∼50% of the body weight) are affected during acute and late sepsis and represent one sepsis associate organ dysfunction. Cell membrane changes have been proposed to result from a channelopathy of yet unknown cause associated with mitochondrial dysfunction and muscle atrophy. We hypothesize that the channelopathy might be explained at least in part by the expression of non-selective channels. Here, this possibility was studied in a characterized mice model of late sepsis with evident skeletal muscle atrophy induced by cecal ligation and puncture (CLP). At day seven after CLP, skeletal myofibers were found to present de novo expression (immunofluorescence) of connexins 39, 43, and 45 and P2X7 receptor whereas pannexin1 did not show significant changes. These changes were associated with increased sarcolemma permeability (∼4 fold higher dye uptake assay), ∼25% elevated in intracellular free-Ca concentration (FURA-2), activation of protein degradation via ubiquitin proteasome pathway (Murf and Atrogin 1 reactivity), moderate reduction in oxygen consumption not explained by changes in levels of relevant respiratory proteins, ∼3 fold decreased mitochondrial membrane potential (MitoTracker Red CMXRos) and ∼4 fold increased mitochondrial superoxide production (MitoSox). Since connexin hemichannels and P2X7 receptors are permeable to ions and small molecules, it is likely that they are main protagonists in the channelopathy by reducing the electrochemical gradient across the cell membrane resulting in detrimental metabolic changes and muscular atrophy.


Asunto(s)
Canalopatías/etiología , Músculo Esquelético/patología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Animales , Peso Corporal , Calcio/metabolismo , Conexinas/metabolismo , Inmunoensayo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología
11.
Handb Exp Pharmacol ; 246: 371-399, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28965172

RESUMEN

Voltage-gated sodium channels belong to the superfamily of voltage-gated cation channels. Their structure is based on domains comprising a voltage sensor domain (S1-S4 segments) and a pore domain (S5-S6 segments). Mutations in positively charged residues of the S4 segments may allow protons or cations to pass directly through the gating pore constriction of the voltage sensor domain; these anomalous currents are referred to as gating pore or omega (ω) currents. In the skeletal muscle disorder hypokalemic periodic paralysis, and in arrhythmic dilated cardiomyopathy, inherited mutations of S4 arginine residues promote omega currents that have been shown to be a contributing factor in the pathogenesis of these sodium channel disorders. Characterization of gating pore currents in these channelopathies and with artificial mutations has been possible by measuring the voltage-dependence and selectivity of these leak currents. The basis of gating pore currents and the structural basis of S4 movement through the gating pore has also been studied extensively with molecular dynamics. These simulations have provided valuable insight into the nature of S4 translocation and the physical basis for the effects of mutations that promote permeation of protons or cations through the gating pore.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales de Sodio Activados por Voltaje/fisiología , Potenciales de Acción , Animales , Canalopatías/etiología , Humanos , Mutación , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/genética
12.
Handb Exp Pharmacol ; 246: 309-330, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28939973

RESUMEN

The NaV1.4 sodium channel is highly expressed in skeletal muscle, where it carries almost all of the inward Na+ current that generates the action potential, but is not present at significant levels in other tissues. Consequently, mutations of SCN4A encoding NaV1.4 produce pure skeletal muscle phenotypes that now include six allelic disorders: sodium channel myotonia, paramyotonia congenita, hyperkalemic periodic paralysis, hypokalemic periodic paralysis, congenital myasthenia, and congenital myopathy with hypotonia. Mutation-specific alternations of NaV1.4 function explain the mechanistic basis for the diverse phenotypes and identify opportunities for strategic intervention to modify the burden of disease.


Asunto(s)
Canalopatías/etiología , Enfermedades Musculares/etiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.4/genética , Animales , Humanos , Miotonía/etiología , Miotonía Congénita/etiología , Parálisis Periódica Hiperpotasémica/etiología
13.
Handb Exp Pharmacol ; 246: 401-422, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29030712

RESUMEN

Two features common to diverse sick excitable cells are "leaky" Nav channels and bleb damage-damaged membranes. The bleb damage, we have argued, causes a channel kinetics based "leakiness." Recombinant (node of Ranvier type) Nav1.6 channels voltage-clamped in mechanically-blebbed cell-attached patches undergo a damage intensity dependent kinetic change. Specifically, they experience a coupled hyperpolarizing (left) shift of the activation and inactivation processes. The biophysical observations on Nav1.6 currents formed the basis of Nav-Coupled Left Shift (Nav-CLS) theory. Node of Ranvier excitability can be modeled with Nav-CLS imposed at varying LS intensities and with varying fractions of total nodal membrane affected. Mild damage from which sick excitable cells might recover is of most interest pathologically. Accordingly, Na+/K+ ATPase (pump) activity was included in the modeling. As we described more fully in our other recent reviews, Nav-CLS in nodes with pumps proves sufficient to predict many of the pathological excitability phenomena reported for sick excitable cells. This review explains how the model came about and outlines how we have used it. Briefly, we direct the reader to studies in which Nav-CLS is being implemented in larger scale models of damaged excitable tissue. For those who might find it useful for teaching or research purposes, we coded the Nav-CLS/node of Ranvier model (with pumps) in NEURON. We include, here, the resulting "Regimes" plot of classes of excitability dysfunction.


Asunto(s)
Canalopatías/etiología , Canales de Sodio Activados por Voltaje/fisiología , Potenciales de Acción , Animales , Axones/fisiología , Canalopatías/fisiopatología , Humanos
14.
J Assoc Physicians India ; 65(11): 98-99, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29322723

RESUMEN

Thyrotoxic periodic paralysis (TPP), a disorder most commonly seen in Asian men, is characterized by abrupt onset of hypokalemia and paralysis. The condition primarily affects the lower extremities and is secondary to thyrotoxicosis. Early recognition of TPP is vital to initiating appropriate treatment and to avoiding the risk of rebound hyperkalemia that may occur if high-dose potassium replacement is given. Here we present a case of 31 year old male with thyrotoxic periodic paralysis with diagnostic and therapeutic approach.


Asunto(s)
Fibrilación Atrial , Carbimazol/administración & dosificación , Canalopatías , Parálisis Periódica Hipopotasémica , Debilidad Muscular , Potasio , Propranolol/administración & dosificación , Tirotoxicosis , Adulto , Antiarrítmicos/administración & dosificación , Antitiroideos/administración & dosificación , Fibrilación Atrial/diagnóstico , Fibrilación Atrial/etiología , Fibrilación Atrial/terapia , Canalopatías/diagnóstico , Canalopatías/etiología , Canalopatías/fisiopatología , Canalopatías/terapia , Diagnóstico Diferencial , Electrocardiografía/métodos , Humanos , Parálisis Periódica Hipopotasémica/diagnóstico , Parálisis Periódica Hipopotasémica/etiología , Parálisis Periódica Hipopotasémica/fisiopatología , Parálisis Periódica Hipopotasémica/terapia , Masculino , Debilidad Muscular/diagnóstico , Debilidad Muscular/terapia , Potasio/administración & dosificación , Potasio/sangre , Potasio/orina , Tirotoxicosis/complicaciones , Tirotoxicosis/diagnóstico , Tirotoxicosis/tratamiento farmacológico , Resultado del Tratamiento
15.
Med Sci (Paris) ; 31(8-9): 735-41, 2015.
Artículo en Francés | MEDLINE | ID: mdl-26340832

RESUMEN

Voltage gated ion channels (VGIC) constitute a large family of ion channels. VGIC are responsible for ions to cross the membrane. They are composed of a pore domain associated to voltage sensor domains (VSD), which regulate the function of the pore. The VSD has been recognized as the unit responsible for sensing electrical signals of all VGIC. Recently, mutations within the VSD have been studied and revealed the creation of a new permeation pathway directly through the usually non-conductive VSD. This new permeation pathway has been called omega pore or gating pore. Given the number, the diversity and the large roles of VSD, gating pores might become an important pathological defect. Indeed, several mutations have been associated to the development of several pathologies such as periodic paralysis, arrhythmias and cardiac dilatation or also the peripheral nerve hyperexcitability.


Asunto(s)
Canalopatías/etiología , Canales Iónicos/fisiología , Animales , Humanos
16.
Trends Mol Med ; 20(10): 544-50, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008557

RESUMEN

Diabetes mellitus, a major global health problem, is commonly associated with painful peripheral neuropathy, which can substantially erode quality of life. Despite its clinical importance, the pathophysiology of painful diabetic neuropathy is incompletely understood. It has traditionally been thought that diabetes may cause neuropathy in patients with appropriate genetic makeup. Here, we propose a hypothesis whereby painful neuropathy is not a complication of diabetes, but rather occurs as a result of mutations that, in parallel, confer vulnerability to injury in pancreatic ß cells and pain-signaling dorsal root ganglion (DRG) neurons. We suggest that mutations of sodium channel NaV1.7, which is present in both cell types, may increase susceptibility for development of diabetes via ß cell injury and produce painful neuropathy via a distinct effect on DRG neurons.


Asunto(s)
Canalopatías/genética , Neuropatías Diabéticas/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Enfermedades del Sistema Nervioso Periférico/genética , Canalopatías/etiología , Neuropatías Diabéticas/etiología , Neuropatías Diabéticas/patología , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Predisposición Genética a la Enfermedad , Humanos , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patología , Mutación , Dolor/etiología , Enfermedades del Sistema Nervioso Periférico/etiología
17.
Gene ; 517(1): 1-11, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23266818

RESUMEN

Channelopathies are diseases caused by dysfunctional ion channels, due to either genetic or acquired pathological factors. Inherited cardiac arrhythmic syndromes are among the most studied human disorders involving ion channels. Since seminal observations made in 1995, thousands of mutations have been found in many of the different genes that code for cardiac ion channel subunits and proteins that regulate the cardiac ion channels. The main phenotypes observed in patients carrying these mutations are congenital long QT syndrome (LQTS), Brugada syndrome (BrS), catecholaminergic polymorphic ventricular tachycardia (CPVT), short QT syndrome (SQTS) and variable types of conduction defects (CD). The goal of this review is to present an update of the main genetic and molecular mechanisms, as well as the associated phenotypes of cardiac channelopathies as of 2012.


Asunto(s)
Canalopatías/etiología , Variación Genética , Cardiopatías/etiología , Canales Iónicos/genética , Animales , Canalopatías/diagnóstico , Canalopatías/prevención & control , Cardiopatías/diagnóstico , Cardiopatías/prevención & control , Humanos
18.
Rev. cuba. invest. bioméd ; 31(2): 0-0, abr.-jun. 2012.
Artículo en Español | LILACS | ID: lil-648601

RESUMEN

La taquicardia ventricular polimórfica catecolaminérgica es una canalopatía caracterizada por la inducción de arritmias ventriculares polimórficas en presencia de catecolaminas. Deberá sospecharse en todo paciente joven, en especial niño o adolescente, que presente síncopes relacionados con el ejercicio físico o el estrés emocional, que no tenga cardiopatía estructural y que su electrocardiograma muestre un intervalo QT normal. Es poco frecuente, pero importante por el riesgo elevado de muerte súbita, que en ocasiones puede ser el debut. Las arritmias ventriculares son polimórficas o bidireccionales, fácilmente inducibles con el ejercicio físico y con infusión de isuprel, tienen un umbral predecible y una complejidad progresiva. Los antecedentes patológicos familiares de muerte súbita se observan entre el 30 y 40 pociento de los pacientes. Se han identificado 2 mutaciones genéticas causantes de la entidad (receptores de rianodina 2, con herencia autosómica dominante y calsecuestrina 2, con herencia autosómica reseciva); pero solo entre 50-55 porciento de los enfermos se ha testado una mutación causal. Las mutaciones condicionan la fuga de Ca2+ del retículo sarcoplásmico que favorece el origen de posdespolarizaciones tardías, las que inducirán la actividad ectópica ventricular. Los Ô-bloqueadores son el tratamiento de elección. El desfibrilador automático implantable está indicado en los pacientes recuperados de un evento de muerte súbita y en los sintomáticos a pesar del tratamiento farmacológico. La denervación simpática cardíaca izquierda, el verapamilo, la flecainida y la propafenona, son opciones alternativas en los sintomáticos a pesar del uso de β-bloqueadores


Catecholaminergic polymorphic ventricular tachycardia is a channelopathy characterized by the induction of polymorphic ventricular arrhythmias in the presence of catecholamines. It should be suspected in any young patient, especially a child or adolescent, presenting with syncope associated with physical exercise or emotional stress, with no structural heart disease and an ECG showing a normal QT interval. It is a rare disease, its importance lying in the high risk of sudden death, which may sometimes be its debut. Ventricular arrhythmias may be polymorphic or bidirectional. They are highly inducible by physical exercise and Isuprel infusion, their threshold is predictable and their complexity progressive. A family history of sudden death is reported in 30 to 40 percent of patients. Two genetic mutations have been identified as causes of the condition (ryanodine receptor 2 with autosomal dominant inheritance and calsequestrin 2, with autosomal recessive inheritance). However, a causal mutation has been found in only 50-55 percent of patients. Mutations influence sarcoplasmic reticulum Ca 2+ leak, facilitating the appearance of late post-depolarisations, which will in turn induce ventricular ectopic activity. Beta-blockers are the treatment of choice. The automatic implantable defibrillator is indicated in patients recovered from a sudden death event and in those who remain symptomatic despite medical therapy. Left cardiac sympathetic denervation, verapamil, flecainide and propafenone are alternative options for patients who remain symptomatic despite the use of beta-blockers


Asunto(s)
Humanos , Masculino , Femenino , Niño , Adolescente , Canalopatías/etiología , Canalopatías/genética , Muerte Súbita/etiología , Taquicardia Ventricular/diagnóstico , Taquicardia Ventricular/tratamiento farmacológico
19.
Rev Med Interne ; 32(12): 742-50, 2011 Dec.
Artículo en Francés | MEDLINE | ID: mdl-22079421

RESUMEN

Autoimmune channelopathies are rare neuromuscular diseases that have been characterized clinically for several decades but for which the evidence of associated antibodies has only been recently demonstrated. Ion channels have an important role of activation, inhibition and regulation in neuromuscular transmission. Myasthenia gravis, generally associated with the presence of anti-acetylcholine receptor antibody, is the best-known channelopathy. Other anti-channel antibodies, including voltage-dependent, are associated with several neurological diseases, as illustrated by anti-voltage-gated calcium channels found in Lambert-Eaton myasthenic syndrome and paraneoplastic cerebellar ataxia, and anti-voltage-gated potassium channels found in neuromyotonia, Morvan's syndrome and limbic encephalitis. The treatment of autoimmune channelopathies is logically based on corticosteroids, immunosuppressant drugs, intravenous immunoglobulins and plasmapheresis.


Asunto(s)
Enfermedades Autoinmunes/etiología , Enfermedades Autoinmunes/terapia , Canalopatías/etiología , Canalopatías/terapia , Autoanticuerpos/sangre , Autoanticuerpos/metabolismo , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/inmunología , Canalopatías/complicaciones , Canalopatías/inmunología , Humanos , Modelos Biológicos , Miastenia Gravis/complicaciones , Miastenia Gravis/diagnóstico , Miastenia Gravis/etiología , Miastenia Gravis/terapia , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/terapia , Timectomía , Timoma/complicaciones , Timoma/diagnóstico , Timoma/cirugía , Neoplasias del Timo/complicaciones , Neoplasias del Timo/diagnóstico , Neoplasias del Timo/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...