Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.035
Filtrar
1.
Acta Biochim Pol ; 71: 11999, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38721306

RESUMEN

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Asunto(s)
Antifúngicos , Bacillus subtilis , Candida glabrata , Permeabilidad de la Membrana Celular , Lipopéptidos , Pruebas de Sensibilidad Microbiana , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/aislamiento & purificación , Bacillus subtilis/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Antifúngicos/farmacología , Antifúngicos/química , Antifúngicos/aislamiento & purificación , Permeabilidad de la Membrana Celular/efectos de los fármacos , Humanos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo
2.
BMC Microbiol ; 24(1): 154, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704559

RESUMEN

BACKGROUND: Side effects associated with antimicrobial drugs, as well as their high cost, have prompted a search for low-cost herbal medicinal substances with fewer side effects. These substances can be used as supplements to medicine or to strengthen their effects. The current study investigated the effect of oleuropein on the inhibition of fungal and bacterial biofilm in-vitro and at the molecular level. MATERIALS AND METHODS: In this experimental study, antimicrobial properties were evaluated using microbroth dilution method. The effect of oleuropein on the formation and eradication of biofilm was assessed on 96-well flat bottom microtiter plates and their effects were observed through scanning electron microscopy (SEM). Its effect on key genes (Hwp1, Als3, Epa1, Epa6, LuxS, Pfs) involved in biofilm formation was investigated using the quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) method. RESULTS: The minimum inhibitory concentration (MIC) and minimum fungicidal/bactericidal concentration (MFC/MBC) for oleuropein were found to be 65 mg/ml and 130 mg/ml, respectively. Oleuropein significantly inhibited biofilm formation at MIC/2 (32.5 mg/ml), MIC/4 (16.25 mg/ml), MIC/8 (8.125 mg/ml) and MIC/16 (4.062 mg/ml) (p < 0.0001). The anti-biofilm effect of oleuropein was confirmed by SEM. RT-qPCR indicated significant down regulation of expression genes involved in biofilm formation in Candida albicans (Hwp1, Als3) and Candida glabrata (Epa1, Epa6) as well as Escherichia coli (LuxS, Pfs) genes after culture with a MIC/2 of oleuropein (p < 0.0001). CONCLUSIONS: The results indicate that oleuropein has antifungal and antibacterial properties that enable it to inhibit or destroy the formation of fungal and bacterial biofilm.


Asunto(s)
Antifúngicos , Biopelículas , Candida albicans , Candida glabrata , Escherichia coli , Fluconazol , Glucósidos Iridoides , Iridoides , Pruebas de Sensibilidad Microbiana , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Glucósidos Iridoides/farmacología , Candida glabrata/efectos de los fármacos , Candida glabrata/fisiología , Candida glabrata/genética , Candida albicans/efectos de los fármacos , Candida albicans/genética , Candida albicans/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Iridoides/farmacología , Fluconazol/farmacología , Antifúngicos/farmacología , Farmacorresistencia Fúngica , Antibacterianos/farmacología , Microscopía Electrónica de Rastreo
3.
Eur Rev Med Pharmacol Sci ; 28(6): 2558-2568, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567615

RESUMEN

OBJECTIVE: The frequency and mortality of candidemia remain important. Non-albicans Candida species such as C. auris are increasing. PATIENTS AND METHODS: A retrospective review of adult patients diagnosed with bloodstream infection due to Candida species in the 17 months between July 1, 2020, and December 1, 2021, was performed. Yeast colonies grown in culture were identified by matrix-assisted laser desorption/ionization time-of-flight. Antifungal susceptibility tests of Candida strains were performed with Sensititre YeastOne (TREK Diagnostic Systems Inc., Westlake, Ohio) kits, and minimum inhibitory concentration values were evaluated according to the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST) clinical breakpoints. RESULTS: In total, 217 patients (mean age 64.9±15.7 years) were included. C. albicans was the most common fungus (detected in 82 patients; 37.8%), followed by C. parapsilosis (17.1%), C. glabrata (15.2%), C. tropicalis (15.2%), and C. auris (9%). Candidemia developed in 175 (81.4%) of the cases during their intensive care unit stay. Fluconazole (41.0%) and caspofungin (36.4%) were the two most frequently used antifungal agents in antifungal therapy. There were 114 (52.3%) deaths in the study group. Mortality rates were found to be lower in patients infected with C. parapsilosis or C. auris. Age and previous COVID-19 infection were other important risk factors. When the 217 Candida spp. were examined, resistance and intermediate susceptibility results were higher when EUCAST criteria were used. While the two methods were found to be fully compatible only for fluconazole, a partial agreement was also observed for voriconazole. CONCLUSIONS: As our study observed, the COVID-19 pandemic brought increasing numbers of immunosuppressed patients, widespread use of antibacterials, and central venous catheters, increasing the frequency and mortality of candidemia cases. All health institutions should be prepared for the diagnosis and treatment of candidemia. In addition, C. auris, the frequency of which has increased in recent years, is a new factor that should be considered in candidemia cases.


Asunto(s)
COVID-19 , Candidemia , Adulto , Humanos , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candidemia/tratamiento farmacológico , Candidemia/epidemiología , Candidemia/microbiología , Fluconazol/farmacología , Fluconazol/uso terapéutico , Pandemias , Candida , Candida albicans , Candida glabrata , Pruebas de Sensibilidad Microbiana , Hospitales Urbanos
4.
Front Immunol ; 15: 1367048, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38585259

RESUMEN

Objective: In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods: RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results: Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion: Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.


Asunto(s)
Candida glabrata , Candidiasis , Animales , Ratones , Candida glabrata/fisiología , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Sirolimus/farmacología , Ratones Endogámicos BALB C , Autofagia , Macrófagos , Serina-Treonina Quinasas TOR/metabolismo , Mamíferos
5.
J Vis Exp ; (205)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38619255

RESUMEN

Facing a 40% mortality rate in candidemia patients, drug-resistant Candida and their petite mutants remain a major treatment challenge. Antimicrobial photodynamic therapy (aPDT) targets multiple fungal structures, unlike antibiotics/antifungals, potentially thwarting resistance. Traditional methods for inducing petite colonies rely on ethidium bromide or fluconazole, which can influence drug susceptibility and stress responses. This study investigated the application of green light (peak 520 nm) and rose bengal (RB) photosensitizer to combat a drug-resistant Candida glabrata isolate. The findings revealed that aPDT treatment significantly inhibited cell growth (≥99.9% reduction) and effectively induced petite colony formation, as evidenced by reduced size and loss of mitochondrial redox indicator staining. This study provides initial evidence that aPDT can induce petite colonies in a multidrug-resistant C. glabrata strain in vitro, offering a potentially transformative approach for combating resistant fungal infections.


Asunto(s)
Candida , Fotoquimioterapia , Humanos , Rosa Bengala/farmacología , Candida glabrata , Fármacos Fotosensibilizantes/farmacología
6.
BMC Microbiol ; 24(1): 128, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38641593

RESUMEN

BACKGROUND: Biofilm formation is viewed as a vital mechanism in C. glabrata pathogenesis. Although, it plays a significant role in virulence but transcriptomic architecture and metabolic pathways governing the biofilm growth mode of C. glabrata remain elusive. The present study intended to investigate the genes implicated in biofilm growth phase of C. glabrata through global transcriptomic approach. RESULTS: Functional analysis of Differentially expressed genes (DEGs) using gene ontology and pathways analysis revealed that upregulated genes are involved in the glyoxylate cycle, carbon-carbon lyase activity, pre-autophagosomal structure membrane and vacuolar parts whereas, down- regulated genes appear to be associated with glycolysis, ribonucleoside biosynthetic process, ribosomal and translation process in the biofilm growth condition. The RNA-Seq expression of eight selected DEGs (CgICL1, CgMLS1, CgPEP1, and CgNTH1, CgERG9, CgERG11, CgTEF3, and CgCOF1) was performed with quantitative real-time PCR (RT-qPCR). The gene expression profile of selected DEGs with RT-qPCR displayed a similar pattern of expression as observed in RNA-Seq. Phenotype screening of mutant strains generated for genes CgPCK1 and CgPEP1, showed that Cgpck1∆ failed to grow on alternative carbon substrate (Glycerol, Ethanol, Oleic acid) and similarly, Cgpep1∆ unable to grow on YPD medium supplemented with hydrogen peroxide. Our results suggest that in the absence of glucose, C. glabrata assimilate glycerol, oleic acid and generate acetyl coenzyme-A (acetyl-CoA) which is a central and connecting metabolite between catabolic and anabolic pathways (glyoxylate and gluconeogenesis) to produce glucose and fulfil energy requirements. CONCLUSIONS: The study was executed using various approaches (transcriptomics, functional genomics and gene deletion) and it revealed that metabolic plasticity of C. glabrata (NCCPF-100,037) in biofilm stage modulates its virulence and survival ability to counter the stress and may promote its transition from commensal to opportunistic pathogen. The observations deduced from the present study along with future work on characterization of the proteins involved in this intricate process may prove to be beneficial for designing novel antifungal strategies.


Asunto(s)
Candida glabrata , Ácido Oléico , Candida glabrata/genética , Candida glabrata/metabolismo , Ácido Oléico/metabolismo , Carbono/metabolismo , Glicerol , Antifúngicos/metabolismo , Estrés Oxidativo , Biopelículas , Glucosa/metabolismo , Glioxilatos/metabolismo
7.
J Dent ; 145: 104984, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583645

RESUMEN

OBJECTIVES: To incorporate the nanostructured silver vanadate decorated with silver nanoparticles (AgVO3) into denture base materials: heat-cured (HC) and 3D printed (3DP) resins, at concentrations of 2.5 %, 5 %, and 10 %; and to evaluate the antimicrobial activity in two multi-species biofilm: (1) Candida albicans, Candida glabrata, and Streptococcus mutans, (2) Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus, and the wettability. METHODS: The AgVO3 was added to the HC powder, and printed samples were coated with 3DP with AgVO3 incorporated. After biofilm formation, the antimicrobial activity was evaluated by colony forming units per milliliter (CFU/mL), metabolic activity, and epifluorescence microscopy. Wettability was assessed by the contact angles with water and artificial saliva. RESULTS: In biofilm (1), HC-5 % and HC-10 % showed activity against S. mutans, HC-10 % against C. glabrata, and HC-10 % and 3DP-10 % had higher CFU/mL of C. albicans. 3DP-5 % had lower metabolic activity than the 3DP control. In biofilm (2), HC-10 % reduced S. aureus and P. aeruginosa, and HC-5 %, 3DP-2.5 %, and 3DP-5 % reduced S. aureus. 3DP incorporated with AgVO3, HC-5 %, and HC-10 % reduced biofilm (2) metabolic activity. 3DP-5 % and 3DP-10 % increased wettability with water and saliva. CONCLUSION: HC-10 % was effective against C. glabrata, S. mutans, P. aeruginosa, and S. aureus, and HC-5 % reduced S. mutans and S. aureus. For 3DP, 2.5 % and 5 % reduced S. aureus. The incorporation of AgVO3 into both resins reduced the metabolic activity of biofilms but had no effect on C. albicans. The wettability of the 3DP with water and saliva increased with the addition of AgVO3. CLINICAL SIGNIFICANCE: The incorporation of silver vanadate into the denture base materials provides antimicrobial efficacy and can prevent the aggravation of oral and systemic diseases. The incorporation of nanomaterials into printed resins is challenging and the coating is an alternative to obtain the inner denture base with antimicrobial effect.


Asunto(s)
Biopelículas , Candida albicans , Bases para Dentadura , Nanopartículas del Metal , Pseudomonas aeruginosa , Plata , Staphylococcus aureus , Streptococcus mutans , Vanadatos , Humectabilidad , Biopelículas/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Candida albicans/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Vanadatos/farmacología , Vanadatos/química , Pseudomonas aeruginosa/efectos de los fármacos , Plata/farmacología , Plata/química , Bases para Dentadura/microbiología , Nanopartículas del Metal/química , Antiinfecciosos/farmacología , Candida glabrata/efectos de los fármacos , Impresión Tridimensional , Ensayo de Materiales , Humanos , Nanoestructuras , Compuestos de Plata/farmacología , Compuestos de Plata/química , Materiales Dentales/química , Materiales Dentales/farmacología
8.
Bioorg Chem ; 145: 107254, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432152

RESUMEN

Vanillic acid (VA) - a naturally occurring phenolic compound in plants - is not only used as a flavoring agent but also a prominent metabolite post tea consumption. VA and its associated compounds are believed to play a significant role in preventing diseases, underscoring the need for a systematic investigation. Herein, we report a 4-step synthesis employing the classical organic reactions, such as Willamson's alkylation, Fischer-Spier reaction, and Steglich esterification, complemented with a protection-deprotection strategy to prepare 46 VA derivatives across the five series (1a-1i, 2a-2i, 3, 3a-3i, 4a-4i, 5a-5i) in high yields. The synthesized compounds were investigated for their antifungal, anti-inflammatory, and toxic effects. Notably, compound 1a demonstrated remarkable ROS inhibition with an IC50 value of 5.1 ± 0.7 µg/mL, which is more than twice as effective as the standard ibuprofen drug. A subset of the synthesized derivatives (2b, 2c, 2e, 3b-3d, 4a-4c, 5a, and 5e) manifested their antifungal effect against drug-resistant Candida strains. Compound 5g, in particular, revealed synergism with the established antifungal drugs amphotericin B (AMB) and fluconazole (FLZ), doubling FLZ's potency against azole resistant Candida albican ATCC 36082. Furthermore, 5g improved the potency of these antifungals against FLZ-sensitive strains, including C. glabrata ATCC 2001 and C. parapsilosis ATCC 22019, as well as various multidrug-resistant (MDR) Candida strains, namely C. albicans ATCC 14053, C. albicans CL1, and C. krusei SH2L OM341600. Additionally, pharmacodynamics of compound 5g was examined using time-kill assay, and a benign safety profile was observed with no hemolytic activity in whole blood, and no cytotoxicity towards the normal BJ human cell line. The synergistic potential of 5g was further investigated through both experimental methods and docking simulations.These findings highlight the therapeutic potential of VA derivatives, particularly in addressing inflammation and circumventing FLZ resistance in Candida albicans.


Asunto(s)
Antifúngicos , Micosis , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Ácido Vanílico/farmacología , Ácido Vanílico/uso terapéutico , Azoles/farmacología , Pruebas de Sensibilidad Microbiana , Micosis/tratamiento farmacológico , Fluconazol/farmacología , Candida , Candida albicans , Candida glabrata , Inflamación/tratamiento farmacológico
9.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473787

RESUMEN

The current trend in microbiological research aimed at limiting the development of biofilms of multidrug-resistant microorganisms is increasingly towards the search for possible synergistic effects between various compounds. This work presents a combination of a naturally occurring compound, ß-aescin, newly synthesized alkylamidobetaines (AABs) with a general structure-CnTMDAB, and antifungal drugs. The research we conducted consists of several stages. The first stage concerns determining biological activity (antifungal) against selected multidrug-resistant strains of Candida glabrata (C. glabrata) with the highest ability to form biofilms. The second stage of this study determined the activity of ß-aescin combinations with antifungal compounds and alkylamidobetaines. In the next stage of this study, the ability to eradicate a biofilm on the polystyrene surface of the combination of ß-aescin with alkylamidobetaines was examined. It has been shown that the combination of ß-aescin and alkylamidobetaine can firmly remove biofilms and reduce their viability. The last stage of this research was to determine the safety regarding the cytotoxicity of both ß-aescin and alkylamidobetaines. Previous studies on the fibroblast cell line have shown that C9 alkylamidobetaine can be safely used as a component of anti-biofilm compounds. This research increases the level of knowledge about the practical possibilities of using anti-biofilm compounds in combined therapies against C. glabrata.


Asunto(s)
Antifúngicos , Candida glabrata , Antifúngicos/farmacología , Escina/farmacología , Candida albicans , Pruebas de Sensibilidad Microbiana , Biopelículas
11.
mBio ; 15(4): e0007224, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38501869

RESUMEN

Recent epidemiological studies documented an alarming increase in the prevalence of echinocandin-resistant (ECR) Candida glabrata blood isolates. ECR isolates are known to arise from a minor subpopulation of a clonal population, termed echinocandin persisters. Although it is believed that isolates with a higher echinocandin persistence (ECP) are more likely to develop ECR, the implication of ECP needs to be better understood. Moreover, replacing laborious and time-consuming traditional approaches to determine ECP levels with rapid, convenient, and reliable tools is imperative to advance our understanding of this emerging concept in clinical practice. Herein, using extensive ex vivo and in vivo systemic infection models, we showed that high ECP isolates are less effectively cleared by micafungin treatment and exclusively give rise to ECR colonies. Additionally, we developed a flow cytometry-based tool that takes advantage of a SYTOX-based assay for the stratification of ECP levels. Once challenged with various collections of echinocandin-susceptible blood isolates, our assay reliably differentiated ECP levels in vitro and predicted ECP levels in real time under ex vivo and in vivo conditions when compared to traditional methods relying on colony-forming unit counting. Given the high and low ECP predictive values of 92.3% and 82.3%, respectively, our assay showed a high agreement with traditional approach. Collectively, our study supports the concept of ECP level determination in clinical settings and provides a robust tool scalable for high-throughput settings. Application of this tool facilitates the interrogation of mutant and drug libraries to further our understanding of persister biology and designing anti-persister therapeutics. IMPORTANCE: Candida glabrata is a prevalent fungal pathogen able to replicate inside macrophages and rapidly develop resistance against frontline antifungal echinocandins. Multiple studies have shown that echinocandin resistance is fueled by the survival of a small subpopulation of susceptible cells surviving lethal concentrations of echinocandins. Importantly, bacterial pathogens that exhibit high antibiotic persistence also impose a high burden and generate more antibiotic-resistant colonies. Nonetheless, the implications of echinocandin persistence (ECP) among the clinical isolates of C. glabrata have not been defined. Additionally, ECP level determination relies on a laborious and time-consuming method, which is prone to high variation. By exploiting in vivo systemic infection and ex vivo models, we showed that C. glabrata isolates with a higher ECP are associated with a higher burden and more likely develop echinocandin resistance upon micafungin treatment. Additionally, we developed an assay that reliably determines ECP levels in real time. Therefore, our study identified C. glabrata isolates displaying high ECP levels as important entities and provided a reliable and convenient tool for measuring echinocandin persistence, which is extendable to other fungal and bacterial pathogens.


Asunto(s)
Candida glabrata , Equinocandinas , Equinocandinas/farmacología , Candida glabrata/genética , Micafungina/farmacología , Farmacorresistencia Fúngica/genética , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antibacterianos/farmacología
12.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38542416

RESUMEN

Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool.


Asunto(s)
Candida , Candidiasis , Humanos , Estudios de Seguimiento , Candidiasis/diagnóstico , Candidiasis/tratamiento farmacológico , Candida glabrata , Antifúngicos/uso terapéutico
13.
Antimicrob Agents Chemother ; 68(5): e0158423, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526046

RESUMEN

Rezafungin is a long-acting, intravenously administered echinocandin for the treatment of candidemia and invasive candidiasis (IC). Non-inferiority of rezafungin vs caspofungin for the treatment of adults with candidemia and/or IC was demonstrated in the Phase 3 ReSTORE study based on the primary endpoints of day 14 global cure and 30-day all-cause mortality. Here, an analysis of ReSTORE data evaluating efficacy outcomes by baseline Candida species is described. Susceptibility testing was performed for Candida species using the Clinical and Laboratory Standards Institute reference broth microdilution method. There were 93 patients in the modified intent-to-treat population who received rezafungin; 94 received caspofungin. Baseline Candida species distribution was similar in the two treatment groups; C. albicans (occurring in 41.9% and 42.6% of patients in the rezafungin and caspofungin groups, respectively), C. glabrata (25.8% and 26.6%), and C. tropicalis (21.5% and 18.1%) were the most common pathogens. Rates of global cure and mycological eradication at day 14 and day 30 all-cause mortality by Candida species were comparable in the rezafungin and caspofungin treatment groups and did not appear to be impacted by minimal inhibitory concentration (MIC) values for either rezafungin or caspofungin. Two patients had baseline isolates with non-susceptible MIC values (both in the rezafungin group: one non-susceptible to rezafungin and one to caspofungin, classified as intermediate); both were candidemia-only patients in whom rezafungin treatment was successful based on the day 30 all-cause mortality endpoint. This analysis of ReSTORE demonstrated the efficacy of rezafungin for candidemia and IC in patients infected with a variety of Candida species.


Asunto(s)
Antifúngicos , Candidemia , Candidiasis Invasiva , Caspofungina , Equinocandinas , Pruebas de Sensibilidad Microbiana , Caspofungina/uso terapéutico , Caspofungina/farmacología , Equinocandinas/uso terapéutico , Equinocandinas/farmacología , Humanos , Antifúngicos/uso terapéutico , Antifúngicos/farmacología , Candidemia/tratamiento farmacológico , Candidemia/mortalidad , Candidemia/microbiología , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/microbiología , Candidiasis Invasiva/mortalidad , Masculino , Femenino , Persona de Mediana Edad , Candida/efectos de los fármacos , Adulto , Anciano , Lipopéptidos/uso terapéutico , Candida albicans/efectos de los fármacos , Resultado del Tratamiento , Candida tropicalis/efectos de los fármacos , Candida glabrata/efectos de los fármacos
14.
Sci Rep ; 14(1): 3594, 2024 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351313

RESUMEN

Fungal pathogens are considered as serious factors for deadly diseases and are a case of medical concern. Invasive fungal infections also complicate the clinical course of COVID-19, leading to a significant increase in mortality. Furthermore, fungal strains' multidrug resistance has increased the demand for antifungals with a different mechanism of action. The present study aimed to identify antifungal compounds targeting yeast topoisomerase II (yTOPOII) derived from well-known human topoisomerase II (hTOPOII) poisons C-1305 and C-1311. Two sets of derivatives: triazoloacridinones (IKE1-8) and imidazoacridinones (IKE9-14) were synthetized and evaluated with a specific emphasis on the molecular mechanism of action. Our results indicated that their effectiveness as enzyme inhibitors was not solely due to intercalation ability but also as a result of influence on catalytic activity by the formation of covalent complexes between plasmid DNA and yTOPOII. Lysine conjunction increased the strength of the compound's interaction with DNA and improved penetration into the fungal cells. Triazoloacridinone derivatives in contrast to starting compound C-1305 exhibited moderate antifungal activity and at least twice lower cytotoxicity. Importantly, compounds (IKE5-8) were not substrates for multidrug ABC transporters whereas a derivative conjugated with lysine (IKE7), showed the ability to overcome C. glabrata fluconazole-resistance (MIC 32-64 µg mL-1).


Asunto(s)
Antifúngicos , Lisina , Humanos , Antifúngicos/farmacología , Fluconazol/farmacología , Transportadoras de Casetes de Unión a ATP , Candida glabrata , ADN , Pruebas de Sensibilidad Microbiana
15.
Support Care Cancer ; 32(3): 185, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393420

RESUMEN

PURPOSE: Allogeneic hematopoietic stem cell transplant (HSCT) recipients receiving long-term and high-dose immunosuppressive medications suffer commonly from oral candida infections. This prospective cohort study examined oral fungal carriage in HSCT recipients and screened the susceptibility against commonly used antifungal agents. An increasing oral occurrence of Candida spp. and the development of resistance against clinically administered fluconazole were hypothesized. METHODS: Two hundred HSCT recipients were included and followed up for 2 years post-HSCT. Oral microbiological specimens were analyzed with matrix-assisted laser desorption/ionization-time of flight mass spectrometry assays (MALDI-TOF). The colorimetric method was applied for the susceptibility testing by commercially available Sensititre YeastOne (SYO®, TREK Diagnostics Systems, Thermo-Fisher, UK). RESULTS: The prevalence of oral Candida spp. carriage increased statistically significantly after a year post-HSCT being 30, 26, 35, 44, and 47%, pre-HSCT, 3, 6, 12, and 24 months post-HSCT, respectively. Altogether, 169 clinical oral Candida strains were isolated. Fourteen Candida spp. were identified, and C. albicans was predominant in 74% of the isolates pre-HSCT with a descending prevalence down to 44% 2 years post-HSCT. An increasing relative proportion of non-albicans species post-HSCT was evident. No development of resistance of C. albicans against fluconazole was found. Instead, a shift from C. albicans towards non-albicans species, especially C. dubliensis, C. glabrata, and relatively seldom found C. krusei, was observed. CONCLUSION: Oral Candida carriage increases after HSCT. Instead of the expected development of resistance of C. albicans against fluconazole, the relative proportion of non-albicans strains with innate resistance against azole-group antifungals increased.


Asunto(s)
Antifúngicos , Trasplante de Células Madre Hematopoyéticas , Humanos , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida , Fluconazol/farmacología , Estudios Prospectivos , Pruebas de Sensibilidad Microbiana , Candida glabrata
16.
Med Mycol ; 62(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38308518

RESUMEN

Candida glabrata is the most common non-albicans Candida species that causes vulvovaginal candidiasis (VVC). Given the intrinsically low susceptibility of C. glabrata to azole drugs, investigations into C. glabrata prevalence, fungal susceptibility profile, and molecular epidemiology are necessary to optimise the treatment of VVC. This molecular epidemiological study was conducted to determine antifungal drug profile, single nucleotide polymorphisms (SNPs) associated with phenotypic antifungal resistance and epidemic diversity of C. glabrata isolates from women with VVC in Namibia. Candida glabrata isolates were identified using phenotypic and molecular methods. Antifungal susceptibility of strains was determined for fluconazole, itraconazole, amphotericin B, and anidulafungin. Whole genome sequencing was used to determine SNPs in antifungal resistance genes and sequence type (ST) allocation. Among C. glabrata isolates, all (20/20; 100%) exhibited phenotypic resistance to the azole class antifungal drug, (fluconazole), and phenotypic susceptibility to the polyene class (amphotericin B), and the echinocandins (anidulafungin). Non-synonymous SNPs were identified in antifungal resistance genes of all fluconazole-resistant C. glabrata isolates including ERG6 (15%), ERG7 (15%), CgCDR1 (25%), CgPDR1 (60%), SNQ2 (10%), FKS1 (5.0%), FKS2 (5.0%), CgFPS1 (5.0%), and MSH2 (15%). ST15 (n = 8/20, 40%) was predominant. This study provides important insight into phenotypic and genotypic antifungal resistance across C. glabrata isolates from women with VVC in Namibia. In this study, azole resistance is determined by an extensive range of SNPs, while the observed polyene and echinocandin resistance-associated SNPs despite phenotypic susceptibility require further investigation.


Candida glabrata is inherently resistant to azole drugs. In this study, we identified a clone that was predominant in women with vulvovaginal candidiasis in Namibia, and that harboured various mutations in resistance-associated genes. This study provides important insight into antifungal resistance across C. glabrata isolates in a sub-Sahara African setting.


Asunto(s)
Antifúngicos , Candidiasis Vulvovaginal , Femenino , Humanos , Antifúngicos/farmacología , Candida glabrata , Candidiasis Vulvovaginal/microbiología , Candidiasis Vulvovaginal/veterinaria , Fluconazol , Anfotericina B , Antibacterianos , Anidulafungina , Epidemiología Molecular , Namibia/epidemiología , Pruebas de Sensibilidad Microbiana/veterinaria , Farmacorresistencia Bacteriana , Equinocandinas , Azoles , Polienos , Farmacorresistencia Fúngica/genética
17.
Med Mycol ; 62(2)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38318635

RESUMEN

Followed by Candida albicans, Candida glabrata ranks as the second major species contributing to invasive candidiasis. Given the higher medical burden and lower susceptibility to azoles in C. glabrata infections, identifying these infections is critical. From 2016 to 2021, patients with deep-seated candidiasis due to C. glabrata and non-glabrata Candida met the criteria to be enrolled in the study. Clinical data were randomly divided into training and validation cohorts. A predictive model and nomogram were constructed using R software based on the stepwise algorithm and logistic regression. The performance of the model was assessed by the area under the receiver operating characteristic curve and decision curve analysis (DCA). A total of 197 patients were included in the study, 134 of them infected with non-glabrata Candida and 63 with C. glabrata. The predictive model for C. glabrata infection consisted of gastrointestinal cancer, co-infected with bacteria, diabetes mellitus, and kidney dysfunction. The specificity was 84.1% and the sensitivity was 61.5% in the validation cohort when the cutoff value was set to the same as the training cohort. Based on the model, treatment for patients with a high-risk threshold was better than 'treatment for all' in DCA, while opting low-risk patients out of treatment was also better than 'treatment for none' in opt-out DCA. The predictive model provides a rapid method for judging the probability of infections due to C. glabrata and will be of benefit to clinicians making decisions about therapy strategies.


Asunto(s)
Candidiasis Invasiva , Neoplasias , Humanos , Candida glabrata , Antifúngicos/uso terapéutico , Candida , Candida albicans , Candidiasis Invasiva/tratamiento farmacológico , Candidiasis Invasiva/veterinaria , Neoplasias/complicaciones , Neoplasias/veterinaria
18.
Medicina (B Aires) ; 84(1): 168-170, 2024.
Artículo en Español | MEDLINE | ID: mdl-38271946

RESUMEN

Acute cholangitis is a bile duct infection associated with bile duct obstruction. Bile culture is positive in most cases, and the most frequent etiological agent is Escherichia coli. Candida sp acute cholangitis is a rare finding, which is more common in patients with immunosuppression, use of corticosteroids, prolonged antibiotic treatment or surgical procedures of the bile duct. We present the case of a 67-year-old woman with none of the above-mentioned history who consulted for fever, abdominal pain and jaundice. MRI of the abdomen revealed a lithiasic image in the common bile duct with dilation. It required endoscopic drainage of the biliary tract. Direct microscopic examination of the bile fluid revealed gram-negative bacilli and yeast, and in the culture of bile fluid Klebsiella pneumoniae producing extended spectrum beta-lactamase (ESBL) and Candida glabrata were isolated. The patient completed the antibiotic treatment with piperacillin tazobactam and anidulafungin with good evolution. Bile duct infection by association of Gram-negative bacilli and Candida sp is a rare entity, more in patients without underlying diseases.


La colangitis aguda es una infección de la vía biliar, asociada a la obstrucción de esta. El cultivo de la bilis es positivo en la mayoría de los casos y el agente etiológico más frecuente es Escherichia coli. La colangitis aguda por Candida sp es un hallazgo poco común, que es más frecuente en pacientes con inmunocompromiso, uso de corticoides, tratamiento antibiótico prolongado o procedimientos quirúrgicos de la vía biliar. Presentamos el caso de una mujer de 67 años, que no presentaba ninguno de los antecedentes mencionados, y que consultó por fiebre, dolor abdominal e ictericia. En la resonancia magnética nuclear de abdomen se constató imagen litiásica en el colédoco con dilatación de la vía biliar. Requirió drenaje endoscópico del tracto biliar. En el examen microscópico directo del líquido biliar se evidenciaron levaduras y bacilos Gram negativos, y en el cultivo se aisló Klebsiella pneumoniae productora de betalactamasa de espectro extendido (BLEE) y Candida glabrata. La paciente completó el tratamiento antibiótico con piperacilina tazobactam y anidulafungina con buena evolución. La infección de la vía biliar por la asociación de bacilos Gram negativos y Candida sp es una entidad poco frecuente, más en pacientes sin enfermedades subyacentes.


Asunto(s)
Colangitis , Klebsiella pneumoniae , Femenino , Humanos , Anciano , Candida glabrata , Colangitis/tratamiento farmacológico , Colangitis/etiología , Colangitis/cirugía , Antibacterianos/uso terapéutico , Bilis , Bacterias Gramnegativas , Escherichia coli
19.
mSphere ; 9(1): e0055423, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38171022

RESUMEN

The protein phosphatase calcineurin is vital for the virulence of the opportunistic fungal pathogen Candida glabrata. The host-induced stresses that activate calcineurin signaling are unknown, as are the targets of calcineurin relevant to virulence. To potentially shed light on these processes, millions of transposon insertion mutants throughout the genome of C. glabrata were profiled en masse for fitness defects in the presence of FK506, a specific inhibitor of calcineurin. Eighty-seven specific gene deficiencies depended on calcineurin signaling for full viability in vitro both in wild-type and pdr1∆ null strains lacking pleiotropic drug resistance. Three genes involved in cell wall biosynthesis (FKS1, DCW1, FLC1) possess co-essential paralogs whose expression depended on calcineurin and Crz1 in response to micafungin, a clinical antifungal that interferes with cell wall biogenesis. Interestingly, 80% of the FK506-sensitive mutants were deficient in different aspects of vesicular trafficking, such as endocytosis, exocytosis, sorting, and biogenesis of secretory proteins in the endoplasmic reticulum (ER). In response to the experimental antifungal manogepix that blocks GPI-anchor biosynthesis in the ER, calcineurin signaling increased and strongly prevented cell death independent of Crz1, one of its major targets. Comparisons between manogepix, micafungin, and the ER-stressing tunicamycin reveal a correlation between the degree of calcineurin signaling and the degree of cell survival. These findings suggest that calcineurin plays major roles in mitigating stresses of vesicular trafficking. Such stresses may arise during host infection and in response to antifungal therapies.IMPORTANCECalcineurin plays critical roles in the virulence of most pathogenic fungi. This study sheds light on those roles in the opportunistic pathogen Candida glabrata using a genome-wide analysis in vitro. The findings could lead to antifungal developments that also avoid immunosuppression.


Asunto(s)
Aminopiridinas , Antifúngicos , Candidiasis , Isoxazoles , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Candida glabrata/fisiología , Micafungina/uso terapéutico , Candidiasis/microbiología , Calcineurina/genética , Tacrolimus/farmacología , Tacrolimus/uso terapéutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
20.
Microb Genom ; 10(1)2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38226964

RESUMEN

Candida glabrata is a commensal yeast of the gastrointestinal tract and skin of humans. However, it causes opportunistic infections in immunocompromised patients, and is the second most common Candida pathogen causing bloodstream infections. Although there are many studies on the epidemiology of C. glabrata infections, the fine- and large-scale geographical nature of C. glabrata remain incompletely understood. Here we investigated both the fine- and large-scale population structure of C. glabrata through genome sequencing of 80 clinical isolates obtained from six tertiary hospitals in Qatar and by comparing with global collections. Our fine-scale analyses revealed high genetic diversity within the Qatari population of C. glabrata and identified signatures of recombination, inbreeding and clonal expansion within and between hospitals, including evidence for nosocomial transmission among coronavirus disease 2019 (COVID-19) patients. In addition to signatures of recombination at the population level, both MATa and MATα alleles were detected in most hospitals, indicating the potential for sexual reproduction in clinical environments. Comparisons with global samples showed that the Qatari C. glabrata population was very similar to those from other parts of the world, consistent with the significant role of recent anthropogenic activities in shaping its population structure. Genome-wide association studies identified both known and novel genomic variants associated with reduced susceptibilities to fluconazole, 5-flucytosine and echinocandins. Together, our genomic analyses revealed the diversity, transmission patterns and antifungal drug resistance mechanisms of C. glabrata in Qatar as well as the relationships between Qatari isolates and those from other parts of the world.


Asunto(s)
Candida glabrata , Infección Hospitalaria , Humanos , Candida glabrata/genética , Infección Hospitalaria/epidemiología , Estudio de Asociación del Genoma Completo , Metagenómica , Genómica , Recombinación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA