Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 893
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-39000054

RESUMEN

Pesticides serve as essential tools in agriculture and public health, aiding in pest control and disease management. However, their widespread use has prompted concerns regarding their adverse effects on humans and animals. This review offers a comprehensive examination of the toxicity profile of pesticides, focusing on their detrimental impacts on the nervous, hepatic, cardiac, and pulmonary systems, and their impact on reproductive functions. Additionally, it discusses how pesticides mimic hormones, thereby inducing dysfunction in the endocrine system. Pesticides disrupt the endocrine system, leading to neurological impairments, hepatocellular abnormalities, cardiac dysfunction, and respiratory issues. Furthermore, they also exert adverse effects on reproductive organs, disrupting hormone levels and causing reproductive dysfunction. Mechanistically, pesticides interfere with neurotransmitter function, enzyme activity, and hormone regulation. This review highlights the effects of pesticides on male reproduction, particularly sperm capacitation, the process wherein ejaculated sperm undergo physiological changes within the female reproductive tract, acquiring the ability to fertilize an oocyte. Pesticides have been reported to inhibit the morphological changes crucial for sperm capacitation, resulting in poor sperm capacitation and eventual male infertility. Understanding the toxic effects of pesticides is crucial for mitigating their impact on human and animal health, and in guiding future research endeavors.


Asunto(s)
Disruptores Endocrinos , Fertilidad , Plaguicidas , Humanos , Plaguicidas/toxicidad , Plaguicidas/efectos adversos , Masculino , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/efectos adversos , Animales , Fertilidad/efectos de los fármacos , Infertilidad Masculina/inducido químicamente , Exposición a Riesgos Ambientales/efectos adversos , Reproducción/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos
2.
Reproduction ; 168(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38855990

RESUMEN

In brief: Mammalian spermatozoa actively generate reactive oxygen species (ROS) during capacitation, a maturational process necessary for fertilization in vivo. This study shows that hypotaurine, a precursor of taurine present in the oviduct, is incorporated and concentrated in hamster sperm cells via the taurine transporter, TauT, for cytoprotection against self-produced ROS. Abstract: To achieve fertilization competence, mammalian spermatozoa undergo capacitation, during which they actively generate reactive oxygen species (ROS). Therefore, mammalian spermatozoa must protect themselves from these self-generated ROS. The mammalian oviductal fluid is rich in hypotaurine, a taurine precursor, which reportedly protects mammalian spermatozoa, including those of hamsters, from ROS; however, its precise mechanism remains unknown. This study aimed to elucidate the mechanism underlying hypotaurine-mediated protection of spermatozoa from ROS using hamsters, particularly focusing on the taurine/hypotaurine transporter TauT. The effect of hypotaurine on sperm motility and ROS levels was tested using sperm motility analysis and the CellROX dye and luminol assays. RNA sequencing analysis was performed to verify TauT expression. We found that hypotaurine was necessary for maintaining sperm motility and hyperactivated motility. Hypotaurine did not scavenge extracellular ROS but lowered intracellular ROS levels and was incorporated and concentrated in hamster spermatozoa. TauT was detected at both mRNA and protein levels. ß-Alanine blocked hypotaurine transport, increased intracellular ROS levels, and inhibited hyperactivation. Elimination of Na+ or Cl- ions inhibited hypotaurine transport and increased intracellular ROS levels. Thus, these results indicated that hamster spermatozoa incorporated and concentrated hypotaurine in sperm cells via TauT to protect themselves from self-generated ROS.


Asunto(s)
Especies Reactivas de Oxígeno , Capacitación Espermática , Motilidad Espermática , Espermatozoides , Taurina , Animales , Masculino , Taurina/análogos & derivados , Taurina/farmacología , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Cricetinae , Motilidad Espermática/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Mesocricetus
3.
Sci Rep ; 14(1): 14287, 2024 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907001

RESUMEN

To acquire the ability to fertilize the egg, mammalian spermatozoa must undergo a series of changes occurring within the highly synchronized and specialized environment of the female reproductive tract, collectively known as capacitation. In an attempt to replicate this process in vitro, various culture media for mouse sperm were formulated over the past decades, sharing a similar overall composition but differing mainly in ion concentrations and metabolic substrates. The widespread use of the different media to study the mechanisms of capacitation might hinder a comprehensive understanding of this process, as the medium could become a confounding variable in the analysis. In this context, the present side-by-side study compares the influence of four commonly used culture media (FD, HTF and two TYH versions) on mouse sperm capacitation. We evaluated the induction of protein kinase A phosphorylation pathway, motility, hyperactivation and acrosome reaction. Additionally, in vitro fertilization and embryo development were also assessed. By analyzing these outcomes in two mouse colonies with different reproductive performance, our study provides critical insights to improve the global understanding of sperm function. The results obtained highlight the importance of considering variations in medium composition, and their potential implications for the future interpretation of results.


Asunto(s)
Reacción Acrosómica , Medios de Cultivo , Fertilización In Vitro , Capacitación Espermática , Espermatozoides , Animales , Capacitación Espermática/efectos de los fármacos , Masculino , Ratones , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Espermatozoides/metabolismo , Fertilización In Vitro/métodos , Femenino , Reacción Acrosómica/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Fosforilación , Fertilización , Desarrollo Embrionario/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
4.
Reproduction ; 168(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912971

RESUMEN

Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.


Asunto(s)
AMP Cíclico , Capacitación Espermática , Espermatozoides , Proteína que Contiene Valosina , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Espermatozoides/metabolismo , Ratones , AMP Cíclico/metabolismo , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
5.
Reprod Fertil Dev ; 36(10): NULL, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38905444

RESUMEN

Context The Rsa I polymorphism of the melatonin receptor MTNR1A gene affects seasonal reproduction in sheep, but its effect on ram spermatozoa and their response to melatonin is unknown. Aims This study aims to evaluate whether Rsa I polymorphism of the MTNR1A gene influences the response of ram spermatozoa to in vitro added melatonin. Methods Spermatozoa from rams carrying different Rsa I allelic variants were incubated with melatonin in a TALP medium or a capacitation-triggering medium during the reproductive and non-reproductive seasons. After incubation, sperm motility, membrane integrity, mitochondria activity, oxidative damage, apoptotic markers and capacitation status were assessed. Key results In the reproductive season, the T/T genotype was related to some adverse effects of melatonin when spermatozoa were incubated in TALP medium, whereas the C/C genotype was linked with adverse effects when the hormone was added in a capacitation-triggering medium. The decapacitating effect of melatonin on spermatozoa was also different depending on genotype. Conclusions The melatonin effect on spermatozoa from rams carrying different Rsa I genotypes differed depending on the season and the medium. Implications The knowledge of the Rsa I allelic variant of the MTNR1A gene of rams could be helpful when carrying out in vitro reproductive techniques in the ovine species.


Asunto(s)
Melatonina , Estaciones del Año , Motilidad Espermática , Espermatozoides , Melatonina/farmacología , Animales , Masculino , Espermatozoides/efectos de los fármacos , Ovinos , Motilidad Espermática/efectos de los fármacos , Motilidad Espermática/genética , Receptor de Melatonina MT1/genética , Receptor de Melatonina MT1/metabolismo , Polimorfismo Genético , Alelos , Capacitación Espermática/efectos de los fármacos , Capacitación Espermática/genética , Genotipo
6.
Reprod Toxicol ; 114: 1-6, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36198369

RESUMEN

Since COVID-19 began in 2019, therapeutic agents are being developed for its treatment. Among the numerous potential therapeutic agents, ritonavir (RTV), an anti-viral agent, has recently been identified as an important element of the COVID-19 treatment. Moreover, RTV has also been applied in the drug repurposing of cancer cells. However, previous studies have shown that RTV has toxic effects on various cell types. In addition, RTV regulates AKT phosphorylation within cancer cells, and AKT is known to control sperm functions (motility, capacitation, and so on). Although deleterious effects of RTV have been reported, it is not known whether RTV has male reproduction toxicity. Therefore, in this study, we aimed to investigate the effects of RTV on sperm function and male fertility. In the present study, sperm collected from the cauda epididymis of mice were incubated with various concentrations of RTV (0, 0.1, 1, 10, and 100 µM). The expression levels of AKT, phospho-AKT (Thr308 and Ser473), and phospho-tyrosine proteins, sperm motility, motion kinematics, capacitation status, and cell viability were assessed after capacitation. The results revealed that AKT phosphorylation at Thr308 and Ser473 was significantly increased, and the levels of tyrosine-phosphorylated proteins (at approximately 25 and 100 kDa) were significantly increased in a dose-dependent manner. In addition, RTV adversely affected sperm motility, motion kinematics, and cell viability. Taken together, RTV may have negative effects on sperm function through an abnormal increase in tyrosine phosphorylation and phospho-AKT levels. Therefore, individuals taking or prescribing RTV should be aware of its reproductive toxicity.


Asunto(s)
Ritonavir , Capacitación Espermática , Animales , Masculino , Ratones , COVID-19 , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ritonavir/toxicidad , Semen/metabolismo , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática , Espermatozoides , Tratamiento Farmacológico de COVID-19
7.
Cells ; 10(12)2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34944009

RESUMEN

The proteasome increases its activity at the onset of sperm capacitation due to the action of the SACY/PRKACA pathway; this increase is required for capacitation to progress. PRKA activity also increases and remains high during capacitation. However, intracellular levels of cAMP decrease in this process. Our goal was to evaluate the role of the proteasome in regulating PRKA activity once capacitation has started. Viable human sperm were incubated in the presence and absence of epoxomicin or with 0.1% DMSO. The activity of PRKA; the phosphorylation pattern of PRKA substrates (pPRKAs); and the expression of PRKAR1, PRKAR2, and AKAP3 were evaluated by Western blot. The localization of pPRKAs, PRKAR1, PRKAR2, and AKAP3 was evaluated by immunofluorescence. Treatment with epoxomicin changed the localization and phosphorylation pattern and decreased the percentage of pPRKAs-positive sperm. PRKA activity significantly increased at 1 min of capacitation and remained high throughout the incubation. However, epoxomicin treatment significantly decreased PRKA activity after 30 min. In addition, PRKAR1 and AKAP3 were degraded by the proteasome but with a different temporal kinetic. Our results suggest that PRKAR1 is the target of PRKA regulation by the proteasome.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Capacitación Espermática/fisiología , Proteínas de Anclaje a la Quinasa A/metabolismo , Adulto , Humanos , Fosforilación/efectos de los fármacos , Inhibidores de Proteasoma/farmacología , Proteolisis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Especificidad por Sustrato/efectos de los fármacos , Adulto Joven
8.
Int J Mol Sci ; 22(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34884450

RESUMEN

Few data exist about the presence and physiological role of Na+/H+ exchangers (NHEs) in the plasma membrane of mammalian sperm. In addition, the involvement of these channels in the ability of sperm to undergo capacitation and acrosomal reaction has not been investigated in any mammalian species. In the present study, we addressed whether these channels are implicated in these two sperm events using the pig as a model. We also confirmed the presence of NHE1 channels in the plasma membrane of ejaculated sperm by immunofluorescence and immunoblotting. The function of NHE channels during in vitro capacitation was analyzed by incubating sperm samples in capacitating medium for 300 min in the absence or presence of a specific blocker (DMA; 5-(N,N-dimethyl)-amiloride) at different concentrations (1, 5, and 10 µM); acrosome exocytosis was triggered by adding progesterone after 240 min of incubation. Sperm motility and kinematics, integrity of plasma and acrosome membranes, membrane lipid disorder, intracellular calcium and reactive oxygen species (ROS) levels, and mitochondrial membrane potential (MMP) were evaluated after 0, 60, 120, 180, 240, 250, 270, and 300 min of incubation. NHE1 localized in the connecting and terminal pieces of the flagellum and in the equatorial region of the sperm head and was found to have a molecular weight of 75 kDa. During the first 240 min of incubation, i.e., before the addition of progesterone, blocked and control samples did not differ significantly in any of the parameters analyzed. However, from 250 min of incubation, samples treated with DMA showed significant alterations in total motility and the amplitude of lateral head displacement (ALH), acrosomal integrity, membrane lipid disorder, and MMP. In conclusion, while NHE channels are not involved in the sperm ability to undergo capacitation, they could be essential for triggering acrosome exocytosis and hypermotility after progesterone stimulus.


Asunto(s)
Amilorida/análogos & derivados , Progesterona/farmacología , Intercambiadores de Sodio-Hidrógeno/antagonistas & inhibidores , Capacitación Espermática/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Amilorida/farmacología , Animales , Fenómenos Biomecánicos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Motilidad Espermática/efectos de los fármacos , Porcinos
9.
Mol Hum Reprod ; 27(12)2021 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-34792600

RESUMEN

EPPIN (epididymal protease inhibitor) is a mammalian conserved sperm-binding protein displaying an N-terminal WFDC (whey-acidic protein four-disulfide core) and a C-terminal Kunitz protease inhibitor domains. EPPIN plays a key role in regulating sperm motility after ejaculation via interaction with the seminal plasma protein SEMG1 (semenogelin-1). EPPIN ligands targeting the SEMG1 binding site in the Kunitz domain are under development as male contraceptive drugs. Nevertheless, the relative contributions of EPPIN WFDC and Kunitz domains to sperm function remain obscure. Here, we evaluated the effects of antibodies targeting specific epitopes in EPPIN's WFDC (Q20E antibody, Gln20-Glu39 epitope) and Kunitz (S21C and F21C antibodies, Ser103-Cys123 and Phe90-C110 epitopes, respectively) domains on mouse sperm motility and fertilizing ability. Computer-assisted sperm analysis showed that sperm co-incubation with S21C antibody (but not F21C antibody) lowered progressive and hyperactivated motilities and impaired kinematic parameters describing progressive (straight-line velocity; VSL, average path velocity; VAP and straightness; STR) and vigorous sperm movements (curvilinear velocity; VCL, amplitude of lateral head movement; ALH, and linearity; LIN) compared with control. Conversely, Q20E antibody-induced milder inhibition of progressive motility and kinematic parameters (VAP, VCL and ALH). Sperm co-incubation with S21C or Q20E antibodies affected in vitro fertilization as revealed by reduced cleavage rates, albeit without changes in capacitation-induced tyrosine phosphorylation. In conclusion, we show that targeting specific epitopes in EPPIN Kunitz and WFDC domains inhibits sperm motility and capacitation-associated events, which decrease their fertilizing ability; nevertheless, similar observations in vivo remain to be demonstrated. Simultaneously targeting residues in S21C and Q20E epitopes is a promising approach for the rational design of EPPIN-based ligands with spermostatic activity.


Asunto(s)
Anticuerpos/farmacología , Anticonceptivos Masculinos/farmacología , Diseño de Fármacos , Proteínas Inhibidoras de Proteinasas Secretoras/antagonistas & inhibidores , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Animales , Sitios de Unión , Fenómenos Biomecánicos , Epítopos , Femenino , Ligandos , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Inhibidoras de Proteinasas Secretoras/química , Proteínas Inhibidoras de Proteinasas Secretoras/metabolismo , Espermatozoides/metabolismo , Tirosina
10.
Sci Rep ; 11(1): 20979, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34697378

RESUMEN

Among many other molecules, nitric oxide insures the correct progress of sperm capacitation by mediating phosphorylation events. For a more comprehensive understanding of how this happens, we capacitated human spermatozoa from healthy men in the presence/absence of S-Nitrosoglutathione, a nitric oxide donor, two nitric oxide synthase inhibitors, NG-Nitro-L-arginine Methyl Ester Hydrochloride and Aminoguanidine Hemisulfate salt and, finally, with/without L-Arginine, the substrate for nitric oxide synthesis, and/or human follicular fluid. When analyzing the phosphorylation of protein kinase A substrates and tyrosine residues, we particularly observed how the inhibition of nitric oxide synthesis affects certain protein bands (~ 110, ~ 87, ~ 75 and ~ 62 kD) by lowering their phosphorylation degree, even when spermatozoa were incubated with L-Arginine and/or follicular fluid. Mass spectrometry analysis identified 29 proteins in these species, related to: spermatogenesis, binding to the zona pellucida, energy and metabolism, stress response, motility and structural organization, signaling and protein turnover. Significant changes in the phosphorylation degree of specific proteins could impair their biological activity and result in severe fertility-related phenotypes. These findings provide a deeper understanding of nitric oxide's role in the capacitation process, and consequently, future studies in infertile patients should determine how nitric oxide mediates phosphorylation events in the species here described.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Óxido Nítrico/farmacología , Mapas de Interacción de Proteínas/efectos de los fármacos , Espermatozoides/fisiología , Arginina/farmacología , Femenino , Técnicas de Inactivación de Genes , Guanidinas/farmacología , Voluntarios Sanos , Humanos , Masculino , Espectrometría de Masas , NG-Nitroarginina Metil Éster/farmacología , Fosforilación/efectos de los fármacos , Proteómica/métodos , S-Nitrosoglutatión/farmacología , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos
11.
Cell Tissue Res ; 385(3): 785-801, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33885964

RESUMEN

The sperm-derived oocyte activating factor, phospholipase C zeta (PLC ζ), is the only PLC isoform reported in cattle. The objectives were to (1) localize PLC ζ in fresh and capacitated bovine sperm and (2) investigate the activation of PLC ζ during bull sperm capacitation and contributions of PLC activity to this process. We confirmed interaction of testis-specific isoform of Na/K-ATPase (ATP1A4) with PLC ζ (immunolocalization and immunoprecipitation) and tyrosine phosphorylation (immunoprecipitation) of PLC ζ (a post-translational protein modification commonly involved in activation of PLC in somatic cells) during capacitation. Furthermore, incubation of sperm under capacitating conditions upregulated PLC-mediated hyperactivated motility, tyrosine phosphoprotein content, acrosome reaction, and F-actin formation (flow cytometry), implying that PLC activity is enhanced during capacitation and contributing to these capacitation processes. In conclusion, we inferred that PLC ζ is activated during capacitation by tyrosine phosphorylation through a mechanism involving ATP1A4, contributing to capacitation-associated biochemical events.


Asunto(s)
Ouabaína/uso terapéutico , Capacitación Espermática/efectos de los fármacos , Fosfolipasas de Tipo C/efectos de los fármacos , Animales , Bovinos , Masculino , Ouabaína/farmacología
12.
Reprod Toxicol ; 101: 74-80, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33713777

RESUMEN

Bifenthrin (BF), a broad-spectrum synthetic pyrethroid insecticide, has been generally used to eradicate harmful insects. However, according to the U.S. EPA, BF has been classified as a "Class C" carcinogenic ingredient. Furthermore, a previous study reported that BF was considered as endocrine-disrupting chemicals and causes reproductive toxicity in mammals. Despite the various effects of BF, there is a scarcity of studies about its adverse effects on male fertility. Therefore, this study was conducted to determine the effects of BF on sperm functions at various concentrations (0.1, 1, 10, and 100 µM), including a control. Sperm motility and kinematics, capacitation status, intracellular ATP levels, cell viability, PKA activation, and protein tyrosine phosphorylation were measured. Moreover, fertilization and early embryonic development were examined through in vitro fertilization. Results showed that sperm motility and kinematic parameters were significantly decreased at a high BF concentration. Consequently, the sperm capacitation status exhibited significant alteration according to the treatment concentration. Intracellular ATP levels were significantly decreased at 10 and 100 µM treatment concentrations. Moreover, the levels of phospho-PKA substrates were significantly increased in a dose-dependent manner. In contrast, the levels of phospho-tyrosine substrates were significantly decreased at 10 and 100 µM treatment concentrations. BF treatment also diminished the rate of blastocyst formation. Altogether, our results demonstrated that BF causes detrimental effects on sperm function and can influence fertilization. Therefore, our study results might be helpful in understanding the adverse effects of BF on male fertility.


Asunto(s)
Fertilidad/efectos de los fármacos , Insecticidas/toxicidad , Piretrinas/toxicidad , Adenosina Trifosfato/metabolismo , Animales , Blastocisto/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Femenino , Masculino , Ratones Endogámicos ICR , Fosforilación/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/fisiología , Tirosina/metabolismo
13.
Anim Sci J ; 92(1): e13538, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754399

RESUMEN

The purpose of this study was to investigate effects of addition of lactoferrin on characteristics and functions of bovine epididymal, ejaculated, and frozen-thawed sperm. The addition of lactoferrin was significantly (p < .05) effective on increasing values of progressive motility, straightness, and linearity in caput epididymal sperm and values of motility in cauda epididymal sperm. When ejaculated sperm were incubated in capacitation medium, percentages of motile and progressively motile sperm decreased largely within the first period of 30 min, followed by only minor changes. However, the addition of lactoferrin significantly lessened the early decreases of these parameters and additionally promoted capacitation-dependent changes of chlortetracycline staining patterns (from F pattern to B pattern). In other experiments, when ejaculated sperm were exposed to oxidative stress with 100-µM H2 O2 , the addition of lactoferrin partially protected them from dysfunction of flagellar movement and loss of progressive movement. In final experiments with frozen-thawed samples incubated in the capacitation medium, the addition of lactoferrin effectively survived dying sperm and suppressed occurrence of sperm agglutination. These results may suggest biological and biotechnological potentials of lactoferrin for modulation of bovine sperm viability, motility, capacitation state, and preservation in vitro.


Asunto(s)
Criopreservación/métodos , Criopreservación/veterinaria , Eyaculación , Epidídimo , Lactoferrina/farmacología , Preservación de Semen/métodos , Preservación de Semen/veterinaria , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Animales , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Medios de Cultivo , Masculino , Estrés Oxidativo/efectos de los fármacos , Aglutinación Espermática/efectos de los fármacos
14.
Int J Mol Sci ; 22(4)2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671466

RESUMEN

During capacitation, sperm undergo a myriad of changes, including remodeling of plasma membrane, modification of sperm motility and kinematic parameters, membrane hyperpolarization, increase in intracellular calcium levels, and tyrosine phosphorylation of certain sperm proteins. While potassium channels have been reported to be crucial for capacitation of mouse and human sperm, their role in pigs has not been investigated. With this purpose, sperm samples from 15 boars were incubated in capacitation medium for 300 min with quinine, a general blocker of potassium channels (including voltage-gated potassium channels, calcium-activated potassium channels, and tandem pore domain potassium channels), and paxilline (PAX), a specific inhibitor of calcium-activated potassium channels. In all samples, acrosome exocytosis was induced after 240 min of incubation with progesterone. Plasma membrane and acrosome integrity, membrane lipid disorder, intracellular calcium levels, mitochondrial membrane potential, and total and progressive sperm motility were evaluated after 0, 120, and 240 min of incubation, and after 5, 30, and 60 min of progesterone addition. Although blocking potassium channels with quinine and PAX prevented sperm to elicit in vitro capacitation by impairing motility and mitochondrial function, as well as reducing intracellular calcium levels, the extent of that inhibition was larger with quinine than with PAX. Therefore, while our data support that calcium-activated potassium channels are essential for sperm capacitation in pigs, they also suggest that other potassium channels, such as the voltage-gated, tandem pore domain, and mitochondrial ATP-regulated ones, are involved in that process. Thus, further research is needed to elucidate the specific functions of these channels and the mechanisms underlying its regulation during sperm capacitation.


Asunto(s)
Acrosoma/metabolismo , Exocitosis/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/metabolismo , Progesterona/farmacología , Capacitación Espermática/efectos de los fármacos , Acrosoma/efectos de los fármacos , Animales , Calcio/metabolismo , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Paxillin/farmacología , Quinina/farmacología , Motilidad Espermática/efectos de los fármacos , Porcinos
15.
Reprod Biol Endocrinol ; 19(1): 39, 2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33663544

RESUMEN

BACKGROUND: Heat shock protein 90 (Hsp90) is a highly abundant eukaryotic molecular chaperone that plays important roles in client protein maturation, protein folding and degradation, and signal transduction. Previously, we found that both Hsp90 and its co-chaperone cell division cycle protein 37 (Cdc37) were expressed in human sperm. Hsp90 is known to be involved in human sperm capacitation via unknown underlying mechanism(s). As Cdc37 was a kinase-specific co-chaperone of Hsp90, Hsp90 may regulate human sperm capacitation via other kinases. It has been reported that two major mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinase 1/2 (Erk1/2) and p38, are expressed in human sperm in the same locations as Hsp90 and Cdc37. Phosphorylated Erk1/2 has been shown to promote sperm hyperactivated motility and acrosome reaction, while phosphorylated p38 inhibits sperm motility. Therefore, in this study we explored whether Hsp90 modulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways. METHODS: Human sperm was treated with the Hsp90-specific inhibitor 17-allylamino-17-demethoxygeldanamycin (17-AAG) during capacitation. Computer-assisted sperm analyzer (CASA) was used to detect sperm motility and hyperactivation. The sperm acrosome reaction was analyzed by using fluorescein isothiocyanate-conjugated Pisum sativum agglutinin (PSA-FITC) staining. The interactions between Hsp90, Cdc37, Erk1/2 and p38 were assessed using co-immunoprecipitation (Co-IP) experiments. Western blotting analysis was used to evaluate the levels of protein expression and phosphorylation. RESULTS: Human sperm hyperactivation and acrosome reaction were inhibited by 17-AAG, suggesting that Hsp90 is involved in human sperm capacitation. In addition, Co-IP experiments revealed that 17-AAG reduced the interaction between Hsp90 and Cdc37, leading to the dissociation of Erk1/2 from the Hsp90-Cdc37 protein complex. Western blotting analysis revealed that levels of Erk1/2 and its phosphorylated form were subsequently decreased. Decreasing of Hsp90-Cdc37 complex also affected the interaction between Hsp90 and p38. Nevertheless, p38 dissociated from the Hsp90 protein complex and was activated by autophosphorylation. CONCLUSIONS: Taken together, our findings indicate that Hsp90 is involved in human sperm hyperactivation and acrosome reaction. In particular, Hsp90 and its co-chaperone Cdc37 form a protein complex with Erk1/2 and p38 to regulate their kinase activity. These results suggest that Hsp90 regulates human sperm capacitation via the Erk1/2 and p38 MAPK signaling pathways.


Asunto(s)
Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Adulto , Benzoquinonas/farmacología , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Lactamas Macrocíclicas/farmacología , Masculino , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
FASEB J ; 35(4): e21528, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33742713

RESUMEN

We have recently reported two different methodologies that improve sperm functionality. The first method involved transient exposure to the Ca2+ ionophore A23187 , and the second required sperm incubation in the absence of energy nutrients (starvation). Both methods were associated with an initial loss of motility followed by a rescue step involving ionophore removal or addition of energy metabolites, respectively. In this work, we show that starvation is accompanied by an increase in intracellular Ca2+ ([Ca2+ ]i ). Additionally, the starved cells acquire a significantly enhanced capacity to undergo a progesterone-induced acrosome reaction. Electrophysiological measurements show that CatSper channel remains active in starvation conditions. However, the increase in [Ca2+ ]i was also observed in sperm from CatSper null mice. Upon starvation, addition of energy nutrients reversed the effects on [Ca2+ ]i and decreased the effect of progesterone on the acrosome reaction to control levels. These data indicate that both methods have common molecular features.


Asunto(s)
Calcio/metabolismo , Progesterona/farmacología , Capacitación Espermática/efectos de los fármacos , Inanición/metabolismo , Reacción Acrosómica/efectos de los fármacos , Animales , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Femenino , Masculino , Ratones , Progesterona/metabolismo , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismo
17.
J Cell Biochem ; 122(6): 653-666, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33469950

RESUMEN

Lysozyme (LYZ) c-like proteins are primarily present in the testis and epididymis of male reproductive tissues. Here, we report a novel member of the c-type LYZ family, the seminal vesicle-secreted LYZ c-like protein (SVLLP). Three forms of SVLLP were purified from mouse seminal vesicle secretions and characterized as glycoproteins with the same protein core but different N-linked glycans. SVLLP is structurally similar to c-type LYZ proteins. Only one of the 20 invariant residues was altered in the consensus sequence of c-type LYZs; however, the changed residue (N53S) is one of two essential catalytic residues. LYZ activity assays demonstrated that the three glycoforms of SVLLP lacked enzyme activity. SVLLP is primarily expressed in seminal vesicles. Immunohistochemistry revealed that it occurs in the luminal fluid and mucosal epithelium of the seminal vesicles. Testosterone is not the primary regulator for its expression in the seminal vesicle. SVLLP binds to sperm and suppresses bovine serum albumin-induced sperm capacitation, inhibits the acrosome reaction, and blocks sperm-oocyte interactions in vitro, suggesting that SVLLP is a sperm capacitation inhibitor.


Asunto(s)
Vesículas Seminales/metabolismo , Capacitación Espermática/fisiología , Espermatozoides/metabolismo , Reacción Acrosómica/efectos de los fármacos , Animales , Transporte Biológico/efectos de los fármacos , Western Blotting , AMP Cíclico/metabolismo , Inmunohistoquímica , Masculino , Ratones , Muramidasa/efectos de los fármacos , Muramidasa/metabolismo , Vesículas Seminales/efectos de los fármacos , Capacitación Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testosterona/farmacología
18.
Int J Mol Sci ; 22(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406808

RESUMEN

Polyamines are ubiquitous polycationic compounds that are highly charged at physiological pH. While passing through the epididymis, sperm lose their capacity to synthesize the polyamines and, upon ejaculation, again come into contact with the polyamines contained in the seminal fluid, unleashing physiological events that improve sperm motility and capacitation. In the present work, we hypothesize about the influence of polyamines, namely, spermine, spermidine, and putrescine, on the activity of sperm channels, evaluating the intracellular concentrations of chloride [Cl-]i, calcium [Ca2+]i, sodium [Na+]i, potassium [K+]i, the membrane Vm, and pHi. The aim of this is to identify the possible regulatory mechanisms mediated by the polyamines on sperm-specific channels under capacitation and non-capacitation conditions. The results showed that the presence of polyamines did not directly influence the activity of calcium and chloride channels. However, the results suggested an interaction of polyamines with sodium and potassium channels, which may contribute to the membrane Vm during capacitation. In addition, alkalization of the pHi revealed the possible activation of sperm-specific Na+/H+ exchangers (NHEs) by the increased levels of cyclic AMP (cAMP), which were produced by soluble adenylate cyclase (sAC) and interact with the polyamines, evidence that is supported by in silico analysis.


Asunto(s)
Canales Iónicos/fisiología , Poliaminas/farmacología , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Canales Iónicos/efectos de los fármacos , Masculino , Potenciales de la Membrana , Ratones , Potasio/metabolismo , Espermatozoides/efectos de los fármacos
19.
Sci Rep ; 11(1): 646, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436823

RESUMEN

Earlier we have reported mercury-induced alterations in functional dynamics of buck spermatozoa through free radicals-mediated oxidative stress and spontaneous acrosome reaction. Based on our earlier findings, we aimed to investigate the effect of mercury exposure on motility, kinematic patterns, DNA damage, apoptosis and ultra-structural alterations in goat spermatozoa following in vitro exposure to different concentrations (0.031-1.25 µg/ml) of mercuric chloride for 15 min and 3 h. Following exposure of sperm cells to 0.031 µg/ml of mercuric chloride for 3 h, livability and motility of sperms was significantly reduced along with altered kinematic patterns, significant increase in per cent necrotic sperm cells and number of cells showing DNA damage; and this effect was dose- and time-dependent. Contrary to up-regulation of Bax gene after 3 h in control group, there was significant increase in expression of Bcl-2 in mercury-treated groups. Transmission electron microscopy studies revealed rifts and nicks in plasma and acrosomal membrane, mitochondrial sheath, and collapsed mitochondria with loss of helical organization of mitochondria in the middle piece of spermatozoa. Our findings evidently suggest that mercury induces necrosis instead of apoptosis and targets the membrane, acrosome, mid piece of sperms; and the damage to mitochondria seems to be responsible for alterations in functional and kinematic attributes of spermatozoa.


Asunto(s)
Mercurio/toxicidad , Mitocondrias/patología , Membranas Mitocondriales/patología , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/patología , Animales , Fenómenos Biomecánicos , Cabras , Masculino , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Espermatozoides/efectos de los fármacos
20.
Reprod Toxicol ; 100: 120-125, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33515694

RESUMEN

A semi-synthetic methylenedioxyphenyl compound piperonyl butoxide (PBO) has been used as a ubiquitous synergist to increase the insecticidal effect of pesticides for agricultural and household use. Despite previously demonstrated effects of PBO, the detailed mechanism of PBO in spermatozoa and reproductive toxic effects on male germ cells have not been fully elucidated. Therefore, this study evaluated the effects of PBO on various sperm functions during capacitation and clarified the mechanisms of reproductive toxic effects on male fertility at different concentrations of PBO (0.1, 1, 10, and 100 µM). Sperm motility and kinematics were assessed using computer-assisted sperm analysis and the status of capacitation was evaluated using combined H33258/chlortetracycline (CTC) staining. Intracellular adenosine triphosphate (ATP) and cell viability levels were also measured. In addition, protein kinase A (PKA) activity and protein tyrosine phosphorylation were evaluated. In addition, in vitro fertilization was performed to determine the effects of PBO on cleavage and blastocyst formation rates. We found that PBO significantly decreased sperm motility, kinematics, and acrosome-reacted and capacitated spermatozoa. In addition, PBO suppressed the intracellular ATP levels and directly affected cell viability. Moreover, PBO detrimentally decreased the activation of PKA and altered the levels of tyrosine-phosphorylated proteins. Consequently, cleavage and blastocyst formation rates were significantly reduced in a dose-dependent manner. In line with our observations, the synergist of pesticides PBO may directly and/or indirectly cause disorder in male fertility. Hence, we suggest that careful attention is made to consider reproductive toxicity when using PBO as a synergist.


Asunto(s)
Sinergistas de Plaguicidas/toxicidad , Butóxido de Piperonilo/toxicidad , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Reacción Acrosómica/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Femenino , Fertilización/efectos de los fármacos , Infertilidad Masculina/inducido químicamente , Masculino , Ratones , Ratones Endogámicos ICR , Capacitación Espermática/efectos de los fármacos , Motilidad Espermática/efectos de los fármacos , Espermatozoides/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...