Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
Genes (Basel) ; 15(6)2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38927667

RESUMEN

The Cucumber mosaic virus (CMV) presents a significant threat to pepper cultivation worldwide, leading to substantial yield losses. We conducted a transcriptional comparative study between CMV-resistant (PBC688) and -susceptible (G29) pepper accessions to understand the mechanisms of CMV resistance. PBC688 effectively suppressed CMV proliferation and spread, while G29 exhibited higher viral accumulation. A transcriptome analysis revealed substantial differences in gene expressions between the two genotypes, particularly in pathways related to plant-pathogen interactions, MAP kinase, ribosomes, and photosynthesis. In G29, the resistance to CMV involved key genes associated with calcium-binding proteins, pathogenesis-related proteins, and disease resistance. However, in PBC688, the crucial genes contributing to CMV resistance were ribosomal and chlorophyll a-b binding proteins. Hormone signal transduction pathways, such as ethylene (ET) and abscisic acid (ABA), displayed distinct expression patterns, suggesting that CMV resistance in peppers is associated with ET and ABA. These findings deepen our understanding of CMV resistance in peppers, facilitating future research and variety improvement.


Asunto(s)
Capsicum , Cucumovirus , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas , Cucumovirus/genética , Cucumovirus/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/genética , Capsicum/virología , Capsicum/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Etilenos/metabolismo , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica/métodos , Interacciones Huésped-Patógeno/genética , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/farmacología
2.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38717918

RESUMEN

The tomato spotted wilt virus (TSWV) is a member of the Tospoviridae family and has an negative/ambisense single-stranded RNA genome. Frankliniella occidentalis and F. intonsa are known to be dominant pests in Capsicum annuum (hot pepper) and can cause damage to the plant either directly by feeding, or indirectly by transmitting TSWV in a persistent and propagative manner, resulting in serious economic damage. This study compared the immune responses of two different thrips species against TSWV infection by transcriptome analysis, which then allowed the assessment of antiviral responses using RNA interference (RNAi). Both adult thrips shared about 90 % of the transcripts in non-viruliferous conditions. Most signal components of the immune pathways were shared by these two thrips species, and their expression levels fluctuated differentially in response to TSWV infection at early immature stages. The functional assays using RNAi treatments indicated that the Toll and JAK/STAT pathways were associated with the antiviral responses, but the IMD pathway was not. The upregulation of dorsal switch protein one supported its physiological role in recognizing TSWV infection and triggering the eicosanoid biosynthetic pathway, which mediates melanization and apoptosis in thrips. In addition, the signal components of the RNAi pathways fluctuated highly after TSWV infection. Individual RNAi treatments specific to the antiviral signalling and response components led to significant increases in the TSWV amount in the thrips, causing virus-induced mortality. These findings suggest that immune signalling pathways leading to antiviral responses are operating in the thrips to regulate TSWV litres to prevent a fatal viral overload. This study also indicates the differential antiviral responses between the TSWV-transmitting F. occidentalis and F. intonsa.


Asunto(s)
Enfermedades de las Plantas , Thysanoptera , Tospovirus , Tospovirus/inmunología , Tospovirus/fisiología , Tospovirus/genética , Animales , Thysanoptera/virología , Thysanoptera/inmunología , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Capsicum/virología , Capsicum/inmunología , Replicación Viral , Interferencia de ARN , Insectos Vectores/virología , Insectos Vectores/inmunología , Perfilación de la Expresión Génica , Transducción de Señal
3.
Arch Virol ; 169(5): 113, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38684570

RESUMEN

Many countries have identified tomato mottle mosaic virus (ToMMV) as a serious threat to tomato production. Here, we constructed and characterized infectious clones of ToMMV isolated from Japanese sweet pepper seeds. The genome of the Japanese isolate is 6399 nucleotides in length and exhibits the highest identity with previously characterized isolates. For example, it is 99.7% identical to that of the Mauritius isolate, which occurs worldwide. Phylogenetic analysis based on complete genome sequences revealed that the Japanese isolates clustered in the same clade as those from other countries. When homozygous tomato cultivars with tobamovirus resistance genes were inoculated with an infectious cDNA clone of ToMMV, the virus systemically infected tomato plants with symptoms typical of Tm-1-carrying tomato cultivars. In contrast, tomato cultivars carrying Tm-2 or Tm-22 showed symptoms only on the inoculated leaves. Furthermore, when commercial cultivars of Tm-22 heterozygous tomato were inoculated with ToMMV, systemic infections were observed in all cultivars, with infection frequencies ranging from 25 to 100%. Inoculation of heterozygous sweet pepper cultivars with tobamovirus resistance genes (L1, L3, and L4) with ToMMV resulted in an infection frequency of about 70%, but most of the infected L1, L3, and L4 cultivars were symptomless, and 10-20% showed symptoms of necrosis and yellowing. Tomato mosaic virus strain L11A, an attenuated virus, did not provide cross-protection against ToMMV and led to systemic infection with typical symptoms. These results suggest that ToMMV might cause extensive damage to existing tomato and sweet pepper cultivars commonly grown in Japan.


Asunto(s)
Capsicum , Genoma Viral , Filogenia , Enfermedades de las Plantas , Semillas , Solanum lycopersicum , Enfermedades de las Plantas/virología , Capsicum/virología , Japón , Solanum lycopersicum/virología , Semillas/virología , Genoma Viral/genética , Tobamovirus/genética , Tobamovirus/aislamiento & purificación
4.
J Basic Microbiol ; 64(6): e2400023, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558182

RESUMEN

P0 proteins encoded by the pepper vein yellow virus (PeVYV) are pathogenic factors that cause hypersensitive response (HR). However, the host gene expression related to PeVYV P0-induced HR has not been thoroughly studied. Transcriptomic technology was used to investigate the host pathways mediated by the PeVYV P0 protein to explore the molecular mechanisms underlying its function. We found 12,638 differentially expressed genes (DEGs); 6784 and 5854 genes were significantly upregulated and downregulated, respectively. Transcriptomic and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) analyses revealed that salicylic acid (SA) and jasmonic acid (JA) synthesis-related gene expression was upregulated, and ethylene synthesis-related gene expression was downregulated. Ultrahigh performance liquid chromatography-tandem mass spectrometry was used to quantify SA and JA concentrations in Nicotiana benthamiana, and the P0 protein induced SA and JA biosynthesis. We then hypothesized that the pathogenic activity of the P0 protein might be owing to proteins related to host hormones in the SA and JA pathways, modulating host resistance at different times. Viral gene silencing suppression technology was used in N. benthamiana to characterize candidate proteins, and downregulating NbHERC3 (Homologous to E6-AP carboxy-terminus domain and regulator of choromosome condensation-1 dmain protein 3) accelerated cell necrosis in the host. The downregulation of NbCRR reduced cell death, while that of NbBax induced necrosis and curled heart leaves. Our findings indicate that NbHERC3, NbBax, and NbCRR are involved in P0 protein-driven cell necrosis.


Asunto(s)
Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Nicotiana , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas , Ácido Salicílico , Proteínas Virales , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Enfermedades de las Plantas/virología , Ácido Salicílico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Nicotiana/virología , Nicotiana/genética , Potyvirus/patogenicidad , Potyvirus/genética , Hojas de la Planta/virología , Hojas de la Planta/metabolismo , Resistencia a la Enfermedad/genética , Interacciones Huésped-Patógeno , Perfilación de la Expresión Génica , Capsicum/virología , Capsicum/genética , Capsicum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo
5.
Phytopathology ; 114(6): 1276-1288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38330173

RESUMEN

Mathematical models are widely used to understand the evolution and epidemiology of plant pathogens under a variety of scenarios. Here, we used this approach to analyze the effects of different traits intrinsic and extrinsic to plant-virus interactions on the dynamics of virus pathotypes in genetically heterogeneous plant-virus systems. For this, we propose an agent-based epidemiological model that includes epidemiologically significant pathogen life-history traits related to virulence, transmission, and survival in the environment and allows for integrating long- and short-distance transmission, primary and secondary infections, and within-host pathogen competition in mixed infections. The study focuses on the tobamovirus-pepper pathosystem. Model simulations allowed us to integrate pleiotropic effects of resistance-breaking mutations on different virus life-history traits into the net costs of resistance breaking, allowing for predictions on multiyear pathotype dynamics. We also explored the effects of two control measures, the use of host resistance and roguing of symptomatic plants, that modify epidemiological attributes of the pathogens to understand how their populations will respond to evolutionary pressures. One major conclusion points to the importance of pathogen competition within mixed-infected hosts as a component of the overall fitness of each pathogen that, thus, drives their multiyear dynamics.


Asunto(s)
Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Tobamovirus/genética , Tobamovirus/fisiología , Tobamovirus/patogenicidad , Capsicum/virología , Modelos Teóricos , Virulencia , Modelos Biológicos , Virus de Plantas/fisiología , Virus de Plantas/genética , Virus de Plantas/patogenicidad , Coinfección/virología , Resistencia a la Enfermedad/genética
6.
Plant Dis ; 108(6): 1769-1775, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38240655

RESUMEN

Watermelon silver mottle virus (WSMoV), a potentially invasive virus, is known to reduce the yield and degrade the quality of infected crops in Cucurbitaceae and Solanaceae families, resulting in significant economic losses in limited areas of several Asian countries. WSMoV, previously detected on various crops in southern China, has now become more prevalent on watermelon and sweet pepper in the northern cities of China for the first time. A sequencing-based phylogenetic analysis has confirmed that the viral strains infecting cucumber, watermelon, and sweet pepper plants in Shandong Province are most closely related to those isolated from Guangdong, Guangxi, and Taiwan, suggesting a farther and continuous spread of WSMoV throughout China. To develop a fast, accurate, and practical protocol for WSMoV detection, we designed a set of primers from the conserved sequence of the WSMoV nucleocapsid protein (N) gene for a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP). The RT-LAMP assay was performed successfully for 50 min at 61°C and exhibited a highly specific result without cross-reactions with other similar viruses and a sensitivity that is 100-fold higher than that of the traditional RT-PCR. The confirmation of 26 WSMoV suspect samples collected from various regions in Shandong through the RT-LAMP testing has demonstrated that the assay is suitable and practical for detection of WSMoV in both laboratory and field settings.


Asunto(s)
Citrullus , Técnicas de Amplificación de Ácido Nucleico , Filogenia , Enfermedades de las Plantas , Enfermedades de las Plantas/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Citrullus/virología , China , Transcripción Reversa , Tospovirus/genética , Tospovirus/aislamiento & purificación , Tospovirus/clasificación , ARN Viral/genética , Capsicum/virología , Técnicas de Diagnóstico Molecular
7.
Nature ; 613(7942): 145-152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36517600

RESUMEN

Phytohormone signalling pathways have an important role in defence against pathogens mediated by cell-surface pattern recognition receptors and intracellular nucleotide-binding leucine-rich repeat class immune receptors1,2 (NLR). Pathogens have evolved counter-defence strategies to manipulate phytohormone signalling pathways to dampen immunity and promote virulence3. However, little is known about the surveillance of pathogen interference of phytohormone signalling by the plant innate immune system. The pepper (Capsicum chinense) NLR Tsw, which recognizes the effector nonstructural protein NSs encoded by tomato spotted wilt orthotospovirus (TSWV), contains an unusually large leucine-rich repeat (LRR) domain. Structural modelling predicts similarity between the LRR domain of Tsw and those of the jasmonic acid receptor COI1, the auxin receptor TIR1 and the strigolactone receptor partner MAX2. This suggested that NSs could directly target hormone receptor signalling to promote infection, and that Tsw has evolved a LRR resembling those of phytohormone receptors LRR to induce immunity. Here we show that NSs associates with COI1, TIR1 and MAX2 through a common repressor-TCP21-which interacts directly with these phytohormone receptors. NSs enhances the interaction of COI1, TIR1 or MAX2 with TCP21 and blocks the degradation of corresponding transcriptional repressors to disable phytohormone-mediated host immunity to the virus. Tsw also interacts directly with TCP21 and this interaction is enhanced by viral NSs. Downregulation of TCP21 compromised Tsw-mediated defence against TSWV. Together, our findings reveal that a pathogen effector targets TCP21 to inhibit phytohormone receptor function, promoting virulence, and a plant NLR protein has evolved to recognize this interference as a counter-virulence strategy, thereby activating immunity.


Asunto(s)
Capsicum , Enfermedades de las Plantas , Reguladores del Crecimiento de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Receptores de Reconocimiento de Patrones , Leucina , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reguladores del Crecimiento de las Plantas/metabolismo , Inmunidad de la Planta/inmunología , Proteínas de Plantas/química , Proteínas de Plantas/inmunología , Proteínas de Plantas/metabolismo , Receptores de Reconocimiento de Patrones/química , Receptores de Reconocimiento de Patrones/inmunología , Receptores de Reconocimiento de Patrones/metabolismo , Reconocimiento de Inmunidad Innata , Capsicum/inmunología , Capsicum/metabolismo , Capsicum/virología , Virulencia
8.
Gene ; 823: 146320, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35218893

RESUMEN

Tomato zonate spotvirus (TZSV) often incurs significant losses in many food and ornamental crops in Yunnan province, China, and the surrounding areas. The pepper (Capsicum chinensePI152225)can develop hypersensitive resistance following infection with TZSV, through an as yet unknown mechanism. The transcriptome dataset showed a total of 45.81 GB of clean data were obtained from six libraries, and the average percentage of the reads mapped to the pepper genome was over 90.00 %. A total of 1403 differentially expressed genes (DEGs) were obtained after TZSV infection, including 825significantly up-regulated genes and 578 down-regulated genes. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that most up-regulated DEGs were involved in basal defenses. RT-qPCR, and virus induced gene silencing (VIGS) were used preliminarily to identifyBBC_22506 and BBC_18917, among total of 71 differentially expressed genes (DEGs), that play a key role in mediating the auxin-induced signaling pathway that might take part in hypersensitive response (HR) conferred resistance to viral infection in pepper (PI152225) byTZSV. This is the first study on the mechanism of auxin resistance, involved in defense responses of pepper against viral diseases, which lay the foundation for further study on the pathogenic mechanism of TZSV, as well as the mechanism of resistance to TZSV, in peppers.


Asunto(s)
Capsicum/crecimiento & desarrollo , Resistencia a la Enfermedad , Perfilación de la Expresión Génica/métodos , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Tospovirus/patogenicidad , Capsicum/genética , Capsicum/metabolismo , Capsicum/virología , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/virología , RNA-Seq , Transducción de Señal
9.
PLoS One ; 17(2): e0264026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35176091

RESUMEN

Disease caused by Pepper yellow leaf curl virus (PepYLCV) is one of the greatest threats to pepper (Capsicum spp.) cultivation in the tropics and subtropics. Resistance to PepYLCV was previously identified in a few Capsicum accessions, but no resistance QTLs have been mapped. This study aimed to elucidate the genetics of PepYLCV resistance in C. annuum L. Augmented inoculation by the viruliferous whitefly Bemisia tabaci was used to evaluate parental lines and an F2 segregating population derived from a cross between resistant C. annuum line LP97 and susceptible C. annuum line ECW30R. Final evaluation was performed six weeks after inoculation using a standardized 5-point scale (0 = no symptoms to 4 = very severe symptoms). A high-density linkage map was constructed using genotyping-by-sequencing (GBS) to identify single-nucleotide polymorphism (SNP) markers associated with PepYLCV resistance in the F2 population. QTL analysis revealed three QTLs, peplcv-1, peplcv-7, and peplcv-12, on chromosomes P1, P7, and P12, respectively. Candidate genes associated with PepYLCV resistance in the QTL regions were inferred. In addition, single markers Chr7-LCV-7 and Chr12-LCV-12 derived from the QTLs were developed and validated in another F2 population and in commercial varieties. This work thus provides not only information for mapping PepYLCV resistance loci in pepper but also forms the basis for future molecular analysis of genes involved in PepYLCV resistance.


Asunto(s)
Begomovirus/fisiología , Capsicum/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Capsicum/inmunología , Capsicum/virología , Mapeo Cromosómico , Resistencia a la Enfermedad/inmunología , Genotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología
10.
Braz. j. biol ; 82: 1-11, 2022. tab, ilus, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468549

RESUMEN

Vegetables are an important source of income and high-value crops for small farmers. Chilli (Capsicum spp.) is one of the most economically important vegetables of Pakistan and it is grown throughout the country. It is a rich source of nutrition especially vitamins A, B, C and E along with minerals as folic acid, manganese (Mn), potassium (K) and molybdenum (Mo). Chilli possesses seven times more amount of vitamin C than an orange. Vitamin A, C and beta carotenoids are strong antioxidants to scavenge the free radicals. Chilli production is restricted due to various biotic factors. Among these viruses, Chilli veinal mottle virus (ChiVMV) is one of the most destructive and menacing agents that inflicts heavy and colossal losses that accounted for 50% yield loss both in quality and quantity. Pathogen-Derived Resistance (PDR) approach is considered one of the effective approaches to manage plant viruses. In this study, ChiVMV was characterized on a molecular level, the coat protein (CP) gene of the virus was stably transformed into Nicotiana benthamiana plants using Agrobacterium tumefaciens. The transgenic plants were challenged with the virus to evaluate the level of resistance of plants against the virus. It was observed that the plants expressing CP gene have partial resistance against the virus in terms of symptoms' development and virus accumulation. Translation of this technique into elite chilli varieties will be resulted to mitigate the ChiVMV in the crop as well as an economic benefit to the farmers.


Vegetais são uma importante fonte de renda e culturas de alto valor para os pequenos agricultores. A pimenta-malagueta (Capsicum spp.) é uma das hortaliças mais importantes economicamente do Paquistão e é cultivada em todo o país. É uma rica fonte de nutrição, especialmente vitaminas A, B, C e E com minerais como ácido fólico, manganês (Mn), potássio (K) e molibdênio (Mo). O pimentão possui sete vezes mais vitamina C do que a laranja. Vitaminas A e C e betacarotenoides são antioxidantes fortes para eliminar os radicais livres. A produção de pimenta é restrita devido a vários fatores bióticos. Entre esses vírus, o ChiVMV é o agente mais destrutivo e ameaçador que inflige perdas pesadas e colossais que representam 50% da perda de rendimento, tanto em qualidade quanto em quantidade. A abordagem de resistência derivada de patógenos (PDR) é considerada uma das abordagens eficazes para gerenciar os vírus de plantas. Neste estudo, ChiVMV foi caracterizado em nível molecular e o gene CP do vírus foi transformado de forma estável em plantas Nicotiana benthamiana usando Agrobacterium tumefaciens. As plantas transgênicas foram desafiadas com o vírus para avaliar seu nível de resistência contra o vírus. Observou-se que as plantas que expressam o gene CP apresentam resistência parcial ao vírus em termos de desenvolvimento de sintomas e acúmulo de vírus. A tradução dessa técnica em variedades de pimenta de elite resultará na mitigação do ChiVMV na safra, bem como em benefícios econômicos para os agricultores em termos de melhor rendimento e baixo custo de produção.


Asunto(s)
Capsicum/virología , Farmacorresistencia Viral , Plantas Modificadas Genéticamente , Nicotiana/genética
11.
J Plant Physiol ; 267: 153542, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34638005

RESUMEN

Photosynthesis in host plants is significantly reduced by many virus families. The early detection of viral infection before the onset of visual symptoms in both directly and systemically infected leaves is critical in crop protection. Viral pathogens cause a variety of symptoms through modifications of chloroplast structure and function and the response of the photochemistry process is immediate. Therefore, chlorophyll fluorescence monitoring has been extensively investigated the last two decades as a tool for timely assessment of pathogenic threats. Alternatively, the analysis of Chla fluorescence transients offers several interlinked parameters which describe the fate of excitation energy round and through the photosystems. Additionally, OJIP fluorescence transients and leaf reflectance spectra methodologies serve for rapid screening of large number of samples. The objective of the present study was to achieve early detection of viral infection, integrating the multiparametric information of the Chla fluorescence transients and of the leaf reflectance spectra into one photochemical performance index. Infection decreased the maximum quantum yield of PSII (FV/FM), the effective quantum yield of PSII (ΦPSII), the CO2 assimilation rate (A) and the stomatal conductance (gs) in the studied TMV-pepper plant pathosystem, while non-photochemical quenching (NPQ) increased. Some parameters from the OJIP transients and the leaf reflectance spectra were significantly affected 24 h after infection, while others modified three to five days later. Similar results were obtained from systemically infected leaves but with one to three days hysteresis compared to inoculated leaves. Differences between healthy and infected leaves were marginal during the first 24 h post infection. The Integrated Biomarker Response tool was used to create a photochemical infection index (PINFI) which integrates the partial effects of infection on each fluorescence and reflectance index. The PINFI, which to the best of our knowledge is the first photochemical infection index created by the IBR method, discriminated reliably between the infected and healthy leaves of pepper plants from the first 24 h after infection with the TMV.


Asunto(s)
Capsicum/virología , Clorofila A , Fotosíntesis , Enfermedades de las Plantas/virología , Virus del Mosaico del Tabaco , Cloroplastos , Fluorescencia , Hojas de la Planta , Virus del Mosaico del Tabaco/aislamiento & purificación
12.
Sci Rep ; 11(1): 14203, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-34244585

RESUMEN

Begomoviruses are a major class of Geminiviruses that affects most dicotyledonous plants and causes heavy economic losses to farmers. Early detection of begomovirus is essential to control the spread of the disease and prevent loss. Many available detection methods like ELISA, immunosorbent electron microscopy, PCR or qPCR require expertise in handling sophisticated instruments, complex data interpretation and costlier chemicals, enzymes or antibodies. Hence there is a need for a simpler detection method, here we report the development of a visual detection method based on functionalized gold nanoparticles (AuNP assay). The assay was able to detect up to 500 ag/µl of begomoviral DNA (pTZCCPp3, a clone carrying partial coat protein gene) suspended in MilliQ water. Screening of chilli plants for begomoviral infection by PCR (Deng primers) and AuNP assay showed that AuNP assay (77.7%) was better than PCR (49.4%). The AuNP assay with clccpi1 probe was able to detect begomoviral infection in chilli, tomato, common bean, green gram and black gram plants which proved the utility and versatility of the AuNP assay. The specificity of the assay was demonstrated by testing with total DNA from different plants that are not affected by begomoviruses.


Asunto(s)
Begomovirus/genética , Capsicum/virología , Oro/química , Nanopartículas del Metal/química , Solanum lycopersicum/virología , Begomovirus/aislamiento & purificación , ADN Viral/genética , Enfermedades de las Plantas/virología , Reacción en Cadena de la Polimerasa
13.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-34201359

RESUMEN

Red pepper (Capsicum annuum, L.), is one of the most important spice plants in Korea. Overwintering pepper fruits are a reservoir of various microbial pepper diseases. Here, we conducted metagenomics (DNA sequencing) and metatranscriptomics (RNA sequencing) using samples collected from three different fields. We compared two different library types and three different analytical methods for the identification of microbiomes in overwintering pepper fruits. Our results demonstrated that DNA sequencing might be useful for the identification of bacteria and DNA viruses such as bacteriophages, while mRNA sequencing might be beneficial for the identification of fungi and RNA viruses. Among three analytical methods, KRAKEN2 with raw data reads (KRAKEN2_R) might be superior for the identification of microbial species to other analytical methods. However, some microbial species with a low number of reads were wrongly assigned at the species level by KRAKEN2_R. Moreover, we found that the databases for bacteria and viruses were better established as compared to the fungal database with limited genome data. In summary, we carefully suggest that different library types and analytical methods with proper databases should be applied for the purpose of microbiome study.


Asunto(s)
Bacterias/genética , Capsicum/genética , Virus ADN/genética , Frutas/crecimiento & desarrollo , Metagenoma , Virus ARN/genética , Transcriptoma , Bacterias/clasificación , Capsicum/microbiología , Capsicum/virología , Virus ADN/clasificación , Frutas/microbiología , Frutas/virología , Virus ARN/clasificación , Estaciones del Año
14.
Theor Appl Genet ; 134(9): 2947-2964, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34081151

RESUMEN

KEY MESSAGE: A begomovirus resistance gene pepy-1, which encodes the messenger RNA surveillance factor Pelota, was identified in pepper (C. annuum) through map-based cloning and functional characterization. Pepper yellow leaf curl disease caused by begomoviruses seriously affects pepper (Capsicum spp.) production in a number of regions around the world. Ty genes of tomato, which confer resistance to the tomato yellow leaf curl virus, are the only begomovirus resistance genes cloned to date. In this study, we focused on the identification of begomovirus resistance genes in Capsicum annuum. BaPep-5 was identified as a novel source of resistance against pepper yellow leaf curl Indonesia virus (PepYLCIV) and pepper yellow leaf curl Aceh virus (PepYLCAV). A single recessive locus, which we named as pepper yellow leaf curl disease virus resistance 1 (pepy-1), responsible for PepYLCAV resistance in BaPep-5 was identified on chromosome 5 in an F2 population derived from a cross between BaPep-5 and the begomovirus susceptible accession BaPep-4. In the target region spanning 34 kb, a single candidate gene, the messenger RNA surveillance factor Pelota, was identified. Whole-genome resequencing of BaPep-4 and BaPep-5 and comparison of their genomic DNA sequences revealed a single nucleotide polymorphism (A to G) located at the splice site of the 9th intron of CaPelota in BaPep-5, which caused the insertion of the 9th intron into the transcript, resulting in the addition of 28 amino acids to CaPelota protein without causing a frameshift. Virus-induced gene silencing of CaPelota in the begomovirus susceptible pepper No.218 resulted in the gain of resistance against PepYLCIV, a phenotype consistent with BaPep-5. The DNA marker developed in this study will greatly facilitate marker-assisted breeding of begomovirus resistance in peppers.


Asunto(s)
Begomovirus/fisiología , Capsicum/genética , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/inmunología , Genes Recesivos , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/metabolismo , Capsicum/crecimiento & desarrollo , Capsicum/virología , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Regulación de la Expresión Génica de las Plantas , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética
15.
Sci Rep ; 11(1): 8796, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33888846

RESUMEN

Cucumo- and tospoviruses are the most destructive viruses infecting hot pepper (chilli). A diagnostic survey was conducted to assess the prevalence of cucumo and tospoviruses in chilli growing tracts of Tamil Nadu. Infected plants showing mosaic with chlorotic and necrotic rings, veinal necrosis, mosaic mottling, leaf filiformity and malformation were collected. Molecular indexing carried out through reverse transcription polymerase chain reaction (RT-PCR) with coat protein gene specific primer of Cucumber mosaic virus (CMV) and tospovirus degenerate primer corresponding to the L segment (RdRp). Ostensibly, amplifications were observed for both CMV and tospoviruses as sole as well for mixed infections. The sequence analysis indicated that the Capsicum chlorosis virus (CaCV) and Groundnut bud necrosis virus (GBNV) to be involved with CMV in causing combined infections. The co-infection of CMV with CaCV was detected in 10.41% of the symptomatic plant samples and combined infection of CMV with GBNV was recorded in around 6.25% of the symptomatic plants surveyed. The amino acid substitution of Ser129 over conserved Pro129 in coat protein of CMV implies that CMV strain involved in mixed infection as chlorosis inducing strain. Further, the electron microscopy of symptomatic plant samples explicated the presence of isometric particles of CMV and quasi spherical particles of tospoviruses. This is the first molecular evidence for the natural co-existence of chlorosis inducing CMV strain with CaCV and GBNV on hot pepper in India.


Asunto(s)
Anemia Hipocrómica/virología , Capsicum/virología , Cucumovirus/aislamiento & purificación , Tospovirus/patogenicidad , Cucumovirus/patogenicidad , India , Hojas de la Planta/virología
16.
Viruses ; 13(5)2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33922755

RESUMEN

Tobacco etch virus (TEV; genus Potyvirus) is flexuous rod shaped with a single molecule of single-stranded RNA and causes serious yield losses in species in the Solanaceae. Three TEV strains (HAT, Mex21, and N) are genetically distinct and cause different disease symptoms in plants. Here, a transcriptomic RNA sequencing approach was taken for each TEV strain to evaluate gene expression of the apical stem segment of pepper plants during two stages of disease development. Distinct profiles of Differentially Expressed Genes (DEGs) were identified for each TEV strain. DEG numbers increased with degree of symptom severity: 24 from HAT, 1190 from Mex21, and 4010 from N. At 7 days post-inoculation (dpi), when systemic symptoms were similar, there were few DEGs for HAT- and Mex21-infected plants, whereas N-infected plants had 2516 DEGs. DEG patterns from 7 to 14 dpi corresponded to severity of disease symptoms: milder disease with smaller DEG changes for HAT and Mex21 and severe disease with larger DEG changes for N. Strikingly, in each of these comparisons, there are very few overlapping DEGs among the TEV strains, including no overlapping DEGs between all three strains at 7 or 14 dpi.


Asunto(s)
Capsicum/genética , Capsicum/virología , Perfilación de la Expresión Génica , Tallos de la Planta/virología , Potyvirus/patogenicidad , Transcriptoma , Capsicum/anatomía & histología , Enfermedades de las Plantas/virología , Hojas de la Planta/genética , Hojas de la Planta/virología , Tallos de la Planta/genética , Potyvirus/clasificación , Potyvirus/genética , Potyvirus/crecimiento & desarrollo
17.
Arch Virol ; 166(5): 1447-1453, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33687538

RESUMEN

Challenging wild plant accessions with pathogens is an initial approach for finding resistance genes for breeding programs. Viruses can be transmitted artificially by mechanical or arthropod-borne inoculation, but these experimental assays do not always reproduce natural conditions in the field. In this study, 56 wild Capsicum spp. accessions from Ecuador that were under natural inoculum pressure for six months were screened for virus infections by RNA sequencing. These plants exhibited low virus diversity in comparison to a commercial pepper cultivar that was used as a susceptible host. Subjecting numerous plants to natural infection prior to artificial assays may indicate promising accessions to track within virus/vector resistance breeding programs.


Asunto(s)
Capsicum/virología , Enfermedades de las Plantas/virología , Biodiversidad , Capsicum/clasificación , Capsicum/genética , Resistencia a la Enfermedad/genética , Ecuador , Fitomejoramiento , ARN Viral/genética , Virus/clasificación , Virus/genética , Virus/aislamiento & purificación
18.
Arch Virol ; 166(6): 1751-1754, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33743050

RESUMEN

Three full-length monopartite begomovirus sequences were obtained from two field-collected pepper plants exhibiting severe leaf yellowing disease symptoms in Yunnan province of China. The three full-length viral sequences contain 2,748 nucleotides (nt) and share the highest nt sequence similarity (88.2% identity) with that of malvastrum yellow vein Yunnan virus (MYVYNV). The betasatellite molecules of the two viruses share the highest sequence similarity (99.3% identity) with that of malvastrum yellow vein Yunnan betasatellite (MYVYNB). Based on the current species demarcation criteria for the genus Begomovirus, these three newly identified isolates can be considered members of a novel monopartite Begomovirus species, and we have named this virus "pepper yellow leaf curl virus" (PepYLCV). Phylogenetic analysis showed that PepYLCV clustered with pepper leaf curl Yunnan virus (PepLCYNV). Recombination analysis revealed that PepYLCV is likely to have originated through a recombination event between MYVYNV and tomato leaf curl Yunnan virus (TLCYnV).


Asunto(s)
Begomovirus/genética , Begomovirus/fisiología , Capsicum/virología , Enfermedades de las Plantas/virología , China
19.
Mol Biol Rep ; 48(3): 2143-2152, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33635470

RESUMEN

Geminiviridae comprises the largest family of plant viruses which causes severe crop losses in India. The highest pungency chilli Bhut-Jolokia or ghost pepper (Capsicum chinense Jaqc.) hails from North-East region of India and is used in many dishes to add flavors and also for its medicinal value. However, this chilli variety is also affected by viruses leading to crop and economic losses. The present study reports the identification of begomoviruses in the infected chilli Bhut-Jolokia leaf samples collected from eight different places of North-East region (Manipur) of India. The infected leaf samples were screened for the presence of viral genome by rolling circle amplification (RCA) followed by PCR using degenerate primer pairs. The subsequent analyses using restriction fragment length polymorphism and sequencing revealed the presence of Cotton leaf curl Multan virus (CLCuMuV), and Tomato leaf curl Patna betasatellite (ToLCPaB). The findings focus on the phylogenetic relatedness, probable recombinational hot-spots and evolutionary divergence of the viral DNA sequences with the current reported begomoviral genome. To the best of our knowledge, this is the first report showing the presence of CLCuMuV, and associated non-cognate ToLCPaB with leaf curl disease of Bhut-Jolokia chillies. The study reveals potential recombination sites on both viral genome and betsatellite which, during the course of evolution, may have aided the virus to progress and successfully establish infection in chilli plants. Taken together, our results suggest a possible spread of CLCuMuV to the hitherto non-host crop in the North-East region of India.


Asunto(s)
Begomovirus/fisiología , Capsicum/virología , Enfermedades de las Plantas/virología , Virus Satélites/fisiología , Composición de Base/genética , Begomovirus/genética , Begomovirus/aislamiento & purificación , ADN Satélite/genética , ADN Viral/genética , Evolución Molecular , Genoma Viral , Geografía , India , Filogenia , Recombinación Genética/genética
20.
Virol J ; 18(1): 42, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622354

RESUMEN

Pepper vein yellows viruses (PeVYV) are phloem-restricted viruses in the genus Polerovirus, family Luteoviridae. Typical viral symptoms of PeVYV including interveinal yellowing of leaves and upward leaf curling were observed in pod pepper plants (Capsicum frutescens) growing in Wenshan city, Yunnan province, China. The complete genome sequence of a virus from a sample of these plants was determined by next-generation sequencing and RT-PCR. Pod pepper vein yellows virus (PoPeVYV) (MT188667) has a genome of 6015 nucleotides, and the characteristic genome organization of a member of the genus Polerovirus. In the 5' half of its genome (encoding P0 to P4), PoPeVYV is most similar (93.1% nt identity) to PeVYV-3 (Pepper vein yellows virus 3) (KP326573) but diverges greatly in the 3'-part encoding P5, where it is most similar (91.7% nt identity) to tobacco vein distorting virus (TVDV, EF529624) suggesting a recombinant origin. Recombination analysis predicted a single recombination event affecting nucleotide positions 4126 to 5192 nt, with PeVYV-3 as the major parent but with the region 4126-5192 nt derived from TVDV as the minor parent. A full-length clone of PoPeVYV was constructed and shown to be infectious in C. frutescens by RT-PCR and the presence of icosahedral viral particles.


Asunto(s)
Capsicum/virología , Genoma Viral , Luteoviridae/clasificación , Luteoviridae/genética , Enfermedades de las Plantas/virología , Capsicum/clasificación , China , Secuenciación de Nucleótidos de Alto Rendimiento , Luteoviridae/aislamiento & purificación , Filogenia , ARN Viral/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...