Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.094
Filtrar
1.
Nat Commun ; 15(1): 3897, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719841

RESUMEN

Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat ( Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity ( Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.


Asunto(s)
Dominio Catalítico , Termodinámica , Cinética , Conformación Proteica , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/genética , Biocatálisis , Catálisis , Modelos Moleculares
2.
Int J Biol Macromol ; 269(Pt 1): 131986, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697423

RESUMEN

D-allulose, a highly desirable sugar substitute, is primarily produced using the D-allulose 3-epimerase (DAE). However, the availability of usable DAE enzymes is limited. In this study, we discovered and engineered a novel DAE Rum55, derived from a human gut bacterium Ruminococcus sp. CAG55. The activity of Rum55 was strictly dependent on the presence of Co2+, and it exhibited an equilibrium conversion rate of 30.6 % and a half-life of 4.5 h at 50 °C. To enhance its performance, we engineered the interface interaction of Rum55 to stabilize its tetramer structure, and the best variant E268R was then attached with a self-assembling peptide to form active enzyme aggregates as carrier-free immobilization. The half-life of the best variant E268R-EKL16 at 50 °C was dramatically increased 30-fold to 135.3 h, and it maintained 90 % of its activity after 13 consecutive reaction cycles. Additionally, we identified that metal ions played a key role in stabilizing the tetramer structure of Rum55, and the dependence on metal ions for E268R-EKL16 was significantly reduced. This study provides a useful route for improving the thermostability of DAEs, opening up new possibilities for the industrial production of D-allulose.


Asunto(s)
Estabilidad de Enzimas , Ingeniería de Proteínas , Ruminococcus , Ruminococcus/enzimología , Ruminococcus/genética , Ingeniería de Proteínas/métodos , Péptidos/química , Péptidos/metabolismo , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Cinética , Modelos Moleculares , Fructosa/metabolismo , Fructosa/química
3.
Glycobiology ; 34(6)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38760939

RESUMEN

Genetic deficiency of alpha-L-iduronidase causes mucopolysaccharidosis type I (MPS-I) disease, due to accumulation of glycosaminoglycans (GAGs) including chondroitin/dermatan sulfate (CS/DS) and heparan sulfate (HS) in cells. Currently, patients are treated by infusion of recombinant iduronidase or by hematopoietic stem cell transplantation. An alternative approach is to reduce the L-iduronidase substrate, through limiting the biosynthesis of iduronic acid. Our earlier study demonstrated that ebselen attenuated GAGs accumulation in MPS-I cells, through inhibiting iduronic acid producing enzymes. However, ebselen has multiple pharmacological effects, which prevents its application for MPS-I. Thus, we continued the study by looking for novel inhibitors of dermatan sulfate epimerase 1 (DS-epi1), the main responsible enzyme for production of iduronic acid in CS/DS chains. Based on virtual screening of chemicals towards chondroitinase AC, we constructed a library with 1,064 compounds that were tested for DS-epi1 inhibition. Seventeen compounds were identified to be able to inhibit 27%-86% of DS-epi1 activity at 10 µM. Two compounds were selected for further investigation based on the structure properties. The results show that both inhibitors had a comparable level in inhibition of DS-epi1while they had negligible effect on HS epimerase. The two inhibitors were able to reduce iduronic acid biosynthesis in CS/DS and GAG accumulation in WT and MPS-I fibroblasts. Docking of the inhibitors into DS-epi1 structure shows high affinity binding of both compounds to the active site. The collected data indicate that these hit compounds may be further elaborated to a potential lead drug used for attenuation of GAGs accumulation in MPS-I patients.


Asunto(s)
Inhibidores Enzimáticos , Fibroblastos , Glicosaminoglicanos , Mucopolisacaridosis I , Mucopolisacaridosis I/tratamiento farmacológico , Mucopolisacaridosis I/metabolismo , Mucopolisacaridosis I/patología , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/genética , Simulación del Acoplamiento Molecular , Antígenos de Neoplasias , Proteínas de Unión al ADN , Proteínas de Neoplasias
4.
Theor Appl Genet ; 137(5): 114, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678513

RESUMEN

KEY MESSAGE: Map-based cloning revealed that a mutation in a highly conserved amino acid of the CsGME gene encoding GDP-mannose 3,5-epimerase, causes the phenotype of little and wrinkled leaves in cucumbers. Leaf size is a critical determinant of plant architecture in cucumbers, yet only a few genes associated with this trait have been mapped or cloned. Here, we identified and characterized a mutant with little and wrinkled leaves, named lwl-1. Genetic analysis revealed that the phenotype of the lwl-1 was controlled by a single recessive gene. Through map-based cloning, the lwl-1 locus was narrowed down to a 12.22-kb region exclusively containing one fully annotated gene CsGME (CsaV3_2G004170). CsGME encodes GDP-mannose 3,5-epimerase, which is involved in the synthesis of ascorbic acid (ASA) and one of the components of pectin, RG-II. Whole-length sequencing of the 12.22 kb DNA fragment revealed the presence of only a non-synonymous mutation located in the sixth exon of CsGME in lwl-1, resulting in an amino acid alteration from Pro363 to Leu363. This mutation was unique among 118 inbred lines from cucumber natural populations. CsGME expression significantly reduced in various organs of lwl-1, accompanied by a significant decrease in ASA and pectin content in leaves. Both CsGME and Csgme proteins were localized to the cytoplasm. The mutant phenotype exhibited partial recovery after the application of exogenous boric acid. Silencing CsGME in cucumber through VIGS confirmed its role as the causal gene for lwl-1. Transcriptome profiling revealed that CsGME greatly affected the expression of genes related to the cell division process and cell plate formation. This study represents the first report to characterize and clone the CsGME in cucumber, indicating its crucial role in regulating leaf size and development.


Asunto(s)
Carbohidrato Epimerasas , Mapeo Cromosómico , Cucumis sativus , Hojas de la Planta , Ácido Ascórbico/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Clonación Molecular , Cucumis sativus/genética , Cucumis sativus/crecimiento & desarrollo , Cucumis sativus/enzimología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Recesivos , Mutación , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Enzyme Microb Technol ; 178: 110448, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38657401

RESUMEN

D-allulose is a naturally occurring rare sugar and beneficial to human health. However, the efficient biosynthesis of D-allulose remains a challenge. Here, we mined a new D-tagatose 3-epimerase from Kroppenstedtia eburnean (KeDt3e) with high catalytic efficiency. Initially, crucial factors contributing to the low conversion of KeDt3e were identified through crystal structure analysis, density functional theory calculations (DFT), and molecular dynamics (MD) simulations. Subsequently, based on the mechanism, combining restructuring the flexible region, proline substitution based onconsensus sequence analysis, introducing disulfide bonds, and grafting properties, and reshaping the active center, the optimal mutant M5 of KeDt3e was obtained with enhanced thermostability and activity. The optimal mutant M5 exhibited an enzyme activity of 130.8 U/mg, representing a 1.2-fold increase; Tm value increased from 52.7 °C to 71.2 °C; and half-life at 55 °C extended to 273.7 min, representing a 58.2-fold improvement, and the detailed mechanism of performance improvement was analyzed. Finally, by screening the ribosome-binding site (RBS) of the optimal mutant M5 recombinant bacterium (G01), the engineered strain G08 with higher expression levels was obtained. The engineered strain G08 catalyzed 500 g/L D-fructose to produce 172.4 g/L D-allulose, with a conversion of 34.4% in 0.5 h and productivity of 344.8 g/L/h on a 1 L scale. This study presents a promising approach for industrial-scale production of D-allulose.


Asunto(s)
Carbohidrato Epimerasas , Estabilidad de Enzimas , Hexosas , Hexosas/metabolismo , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/química , Simulación de Dinámica Molecular , Fructosa/metabolismo , Cinética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Especificidad por Sustrato , Ingeniería de Proteínas , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/química
6.
Bioprocess Biosyst Eng ; 47(6): 841-850, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38676737

RESUMEN

D-Allulose 3-epimerase (DAE) is a vital biocatalyst for the industrial synthesis of D-allulose, an ultra-low calorie rare sugar. However, limited thermostability of DAEs hinders their use at high-temperature production. In this research, hyperthermophilic TI-DAE (Tm = 98.4 ± 0.7 ℃) from Thermotoga sp. was identified via in silico screening. A comparative study of the structure and function of site-directed saturation mutagenesis mutants pinpointed the residue I100 as pivotal in maintaining the high-temperature activity and thermostability of TI-DAE. Employing TI-DAE as a biocatalyst, D-allulose was produced from D-fructose with a conversion rate of 32.5%. Moreover, TI-DAE demonstrated excellent catalytic synergy with glucose isomerase CAGI, enabling the one-step conversion of D-glucose to D-allulose with a conversion rate of 21.6%. This study offers a promising resource for the enzyme engineering of DAEs and a high-performance biocatalyst for industrial D-allulose production.


Asunto(s)
Thermotoga , Thermotoga/enzimología , Thermotoga/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Carbohidrato Epimerasas/biosíntesis , Racemasas y Epimerasas/genética , Racemasas y Epimerasas/metabolismo , Racemasas y Epimerasas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/biosíntesis , Fructosa/metabolismo , Fructosa/biosíntesis , Fructosa/química , Estabilidad de Enzimas , Biocatálisis , Mutagénesis Sitio-Dirigida , Calor
7.
Chembiochem ; 24(24): e202300555, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37769151

RESUMEN

Uridine diphosphate N-acetylglucosamine 2-epimerase (GNE) is a key enzyme in the sialic acid biosynthesis pathway. Sialic acids are primarily terminal carbohydrates on glycans and play fundamental roles in health and disease. In search of effective GNE inhibitors not based on a carbohydrate scaffold, we performed a high-throughput screening campaign of 68,640 drug-like small molecules against recombinant GNE using a UDP detection assay. We validated nine of the primary actives with an orthogonal real-time NMR assay and verified their IC50 values in the low micromolar to nanomolar range manually. Stability and solubility studies revealed three compounds for further evaluation. Thermal shift assays, analytical size exclusion, and interferometric scattering microscopy demonstrated that the GNE inhibitors acted on the oligomeric state of the protein. Finally, hydrogen-deuterium exchange mass spectrometry (HDX-MS) revealed which sections of GNE were shifted upon the addition of the inhibitors. In summary, we have identified three small molecules as GNE inhibitors with high potency in vitro, which serve as promising candidates to modulate sialic acid biosynthesis in more complex systems.


Asunto(s)
Carbohidrato Epimerasas , Ácido N-Acetilneuramínico , Humanos , Carbohidrato Epimerasas/química , Carbohidrato Epimerasas/metabolismo , Ácidos Siálicos/química , Carbohidratos , Polisacáridos
8.
Glycobiology ; 33(5): 432-440, 2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-36912112

RESUMEN

Heparin, a highly sulfated and epimerized form of heparan sulfate, is a linear polysaccharide with anticoagulant activity widely used in the clinic to prevent and treat thrombotic diseases. However, there are several noteworthy drawbacks associated with animal-sourced heparin during the preparation process. The in vitro enzymatic synthesis of heparin has become a promising substitute for animal-derived heparin. The synthesis of bioengineered heparin involves recombinant expression and preparation of polymerases, sulfotransferases, and an epimerase. D-glucuronyl C5-epimerase (HSepi) catalyzes D-glucuronic acids immediately adjacent to N-sulfo-glucosamine units to L-iduronic acid. Preparation of recombinant HSepi with high activity and production yield for in vitro heparin synthesis has not been resolved as of now. The findings of this study indicate that the catalytic activity of HSepi is regulated using post-translational modifications, including N-linked glycosylation and disulfide bond formation. Further mutation studies suggest that tyrosine residues, such as Tyr168, Tyr222, Tyr500, Tyr560, and Tyr578, are crucial in maintaining HSepi activity. A high-yield expression strategy was established using the lentiviral-based transduction system to produce recombinant HSepi (HSepi589) with a specific activity of up to 1.6 IU/mg. Together, this study contributes to the preparation of highly active HSepi for the enzymatic synthesis of heparins by providing additional insights into the catalytic activity of HSepi.


Asunto(s)
Carbohidrato Epimerasas , Heparitina Sulfato , Animales , Humanos , Carbohidrato Epimerasas/metabolismo , Heparitina Sulfato/química , Heparina , Racemasas y Epimerasas/genética , Mutación , Mamíferos/metabolismo
9.
Folia Histochem Cytobiol ; 60(4): 335-343, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36583336

RESUMEN

INTRODUCTION: Aberrant fucosylation is closely related to malignant transformation, cancer detection, and evaluation of treatment efficacy. The fucosylation process requires GDP-L-fucose, fucosyltransferases, and fucosidases. In gastric cancer (GC), fucosylation alterations were associated with tumor formation, metastasis inhibition, and multi-drug resistance. It is not clear whether tissue-specific transplantation antigen P35B (TSTA3) and alpha-L-fucosidase 2 (FUCA2) have any effect on the development of GC. MATERIALS AND METHODS: We used immunohistochemistry to assess the expression of TSTA3 and FUCA2 in 71 gastric adenocarcinoma samples and their relationship with clinicopathological parameters. RESULTS: TSTA3 expression was associated with lower histological grade I and II (P = 0.0120) and intestinal type Lauren classification (P = 0.0120). TSTA3 immunopositivity could predict Lauren's classification. Analysis of mRNA expression in GC validation cohorts corroborates the significant TSTA3 association with histological grade observed in our study. However, no associations were found between TSTA3 staining and overall survival. FUCA2 expression was markedly increased in GC tissues compared with non-tumoral tissues (P < 0.0001) and was associated with surgical staging III and IV (P = 0.0417) and advanced histological grade tumor states (P = 0.0125). CONCLUSIONS: Alterations of FUCA2 and TSAT3 immunoexpression could lay the basis for future studies using cell glycosylation as a biomarker for the planning of therapeutic strategy in primary gastric cancer.


Asunto(s)
Adenocarcinoma , Cetona Oxidorreductasas , Neoplasias Gástricas , Humanos , alfa-L-Fucosidasa/metabolismo , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/patología , Adenocarcinoma/patología , Biomarcadores , Biomarcadores de Tumor , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , Cetona Oxidorreductasas/genética , Cetona Oxidorreductasas/metabolismo
10.
Med Eng Phys ; 110: 103883, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36075788

RESUMEN

Ovarian cancer (OC) is one of the most lethal malignancies in the female reproductive system. To find genes related to cancer progression targeting specific biological factors for targeted therapy, bioinformatics technology has been widely used. To screen the prognostic gene markers of OC by bioinformatics and explore their potential molecular biological mechanisms. Two data sets related to OC, GSE54388, and GSE119056, were rooted in the open comprehensive gene expression database (GEO). To correct the background of the data, standardize and screen differentially expressed genes (DEGs) using the R software limma package. The selected DEGs were enriched by Gene Ontology (GO) and through DAVID online database. Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway analysis and protein-protein interaction network (PPI-network) map were constructed by STRING online database and Cytoscape software. Combined with the TCGA database, univariate and multivariate COX regression were used to screen prognostic genes. QRT-PCR was used to verify DEGs in clinical tissue samples. Eventually, the function of RBMS3 on the viability, migration, invasion, and apoptosis of OC cells was tested through functional experiments in vitro. 352 common DEGs were screened from GSE54388 and GSE119056 data sets. Survival analysis showed that MEIS2, TSTA3, CNTN1, RBMS3, and TRA2A were considered to be connected with the prognosis of OC. We discover that the expression level of RBMS3 was positively connected with the overall survival (OS) rate of sufferers with OC. The level of RBMS3 in OC tissues was markedly lower than that in neighboring structures and the outcomes of the GEPIA database were consistent with those of the qRT-PCR experiment. Through gene transfection technology it was found that overexpression of RBMS3 in OC cells substantially suppressed the vitality, migration, and invasion of OC cells and raised the rates of apoptosis in the OC cells. In this experiment, we distinguish 5 genes that may participate in the prognosis of OC and showed the key genes and pathways related to OC. It is speculated that RBMS3, a tumor suppressor gene, can be applied as a potential biological marker for the treatment of OC, gene expression summary, and prognosis.


Asunto(s)
Cetona Oxidorreductasas , Neoplasias Ováricas , Humanos , Femenino , Perfilación de la Expresión Génica , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Biología Computacional , Transducción de Señal , Bases de Datos Factuales , Transactivadores/genética , Transactivadores/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Carbohidrato Epimerasas/metabolismo , Cetona Oxidorreductasas/metabolismo
11.
J Agric Food Chem ; 70(32): 9961-9968, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35938974

RESUMEN

Recently, the biosynthesis of human milk oligosaccharides (HMOs) has been attracting increasing attention. Lacto-N-neotetraose (LNnT) is one of the most important neutral-core HMOs with promising health effects for infants. It has received Generally Recognized as Safe (GRAS) status and is the second HMO commercially added in infant formula after 2'-fucosyllactose. In previous studies, a series of engineered Escherichia coli strains have been constructed and optimized to produce high titers of precursor lacto-N-triose II. On the basis of these strains, LNnT-producing strains were constructed by overexpressing the ß1,4-galactosyltransferase-encoding gene from Aggregatibacter actinomycetemcomitans NUM4039 (Aa-ß1,4-GalT). Interestingly, an appreciable LNnT titer was obtained by weakening the metabolic flux of the UDP-GlcNAc pathway and simply overexpressing the essential genes lgtA, galE, and Aa-ß1,4-GalT in lacZ-, wecB-, and nagB-deleted E. coli. Subsequently, LNnT synthesis was optimized through balancing the expression of these three biosynthetic enzymes. The optimized strain produced LNnT with an extracellular titer of 12.1 g/L in fed-batch cultivation, with the productivity and specific yield of 0.25 g/L·h and 0.27 g/g dry cell weight, respectively.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Oligosacáridos , Carbohidrato Epimerasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Fórmulas Infantiles , Microorganismos Modificados Genéticamente , Leche Humana/química , Oligosacáridos/biosíntesis
12.
Bioengineered ; 13(3): 5551-5563, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35184647

RESUMEN

Eriodictyol is a natural flavonoid with many pharmacological effects, such as anti-oxidation, anti-inflammation, anti-tumor, and neuroprotection. Besides, it has been reported that flavonoids play an important role in protein glycosylation. The fucosylation structure is closely associated with processes of various tumor metastases. TSTA3 is involved in the de novo synthesis and can convert cellular GDP-D-mannose into GDP-L-fucose. It was predicted on the STITCH database that eriodictyol interacted with TSTA3. In addition, literature has confirmed that TSTA3 is upregulated in CRC and can regulate the proliferation and migration of breast cancer cells. Herein, the precise effects of eriodictyol on the clone-forming, proliferative, migratory and invasive abilities of CRC cells as well as EMT process were assessed. Moreover, the correlation among eriodictyol, TSTA3, and fucosylation in these malignant behaviors of CRC cells was evaluated, in order to elucidate the underlying mechanism. The current work discovered that eriodictyol inhibited the viability, clone-formation, proliferation, migration, invasion, and EMT of CRC cells, and that these inhibitory effects of eriodictyol on the malignant behavior of CRC cells were reversed by TSTA3 overexpression. Additionally, eriodictyol suppresses fucosylation by downregulating the TSTA3 expression. Results confirmed that fucosylation inhibitor (2-F-Fuc) inhibited clone formation, proliferation, migration, invasion, as well as EMT of CRC cells and eriodictyol treatment further reinforced the suppressing effects of 2-F-Fuc on the malignant behavior of CRC cells. We conclude that eriodictyol suppresses the clone-forming, proliferative, migrative and invasive abilities of CRC cells as well as represses the EMT process by downregulating TSTA3 expression to restrain fucosylation.


Asunto(s)
Carbohidrato Epimerasas , Neoplasias Colorrectales , Cetona Oxidorreductasas , Carbohidrato Epimerasas/antagonistas & inhibidores , Carbohidrato Epimerasas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Transición Epitelial-Mesenquimal , Flavanonas , Glicosilación , Guanosina Difosfato Fucosa/metabolismo , Guanosina Difosfato Fucosa/farmacología , Humanos , Cetona Oxidorreductasas/antagonistas & inhibidores , Cetona Oxidorreductasas/metabolismo
13.
Biochimie ; 197: 1-8, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35093453

RESUMEN

Infectious diseases account for 25% of the causes of death worldwide and this rate is expected to increase due to antibiotic resistance. Among the bacteria associated with healthcare infections, Staphylococcus aureus is a prevalent pathogen and about 50% of the isolates are found to be methicillin-resistant. Here we describe the identification of ticarcillin as a weak binder of the S. aureus UDP-N-acetylglucosamine 2-epimerase. After a docking screening, ticarcillin was identified as a ligand in using the recently proposed isothermal analysis of differential scanning fluorimetry data. Finally, an equilibrium MD simulation confirmed the docking binding mode as a stable pose, with large contributions to the binding energy coming from interactions between Arg206 and Arg207 and the carboxylate groups in ticarcillin.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus , Antibacterianos/farmacología , Carbohidrato Epimerasas/metabolismo , Staphylococcus aureus/metabolismo , Ticarcilina , beta-Lactamas
15.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35055169

RESUMEN

The aim of this study was to characterize the distribution of the thrombin receptor, protease activated receptor 1 (PAR1), in the neuroretina. Neuroretina samples of wild-type C57BL/6J and PAR1-/- mice were processed for indirect immunofluorescence and Western blot analysis. Reverse transcription quantitative real-time PCR (RT-qPCR) was used to determine mRNA expression of coagulation Factor X (FX), prothrombin (PT), and PAR1 in the isolated neuroretina. Thrombin activity following KCl depolarization was assessed in mouse neuroretinas ex vivo. PAR1 staining was observed in the retinal ganglion cells, inner nuclear layer cells, and photoreceptors in mouse retinal cross sections by indirect immunofluorescence. PAR1 co-localized with rhodopsin in rod outer segments but was not expressed in cone outer segments. Western blot analysis confirmed PAR1 expression in the neuroretina. Factor X, prothrombin, and PAR1 mRNA expression was detected in isolated neuroretinas. Thrombin activity was elevated by nearly four-fold in mouse neuroretinas following KCl depolarization (0.012 vs. 0.044 mu/mL, p = 0.0497). The intrinsic expression of coagulation factors in the isolated neuroretina together with a functional increase in thrombin activity following KCl depolarization may suggest a role for the PAR1/thrombin pathway in retinal function.


Asunto(s)
Carbohidrato Epimerasas/metabolismo , Cetona Oxidorreductasas/metabolismo , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Neuronas Retinianas/metabolismo , Animales , Técnicas de Inactivación de Genes , Masculino , Ratones , Ratones Endogámicos C57BL , Cloruro de Potasio/farmacología , Protrombina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Ganglionares de la Retina/metabolismo , Segmento Interno de las Células Fotorreceptoras Retinianas/metabolismo , Rodopsina/metabolismo
16.
mBio ; 12(6): e0324621, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903045

RESUMEN

Bacteriophages are ubiquitous parasites of bacteria and major drivers of bacterial ecology and evolution. Despite an ever-growing interest in their biotechnological and therapeutic applications, detailed knowledge of the molecular mechanisms underlying phage-host interactions remains scarce. Here, we show that bacteriophage N4 exploits a novel surface glycan (NGR) as a receptor to infect its host Escherichia coli. We demonstrate that this process is regulated by the second messenger c-di-GMP and that N4 infection is specifically stimulated by the diguanylate cyclase DgcJ, while the phosphodiesterase PdeL effectively protects E. coli from N4-mediated killing. PdeL-mediated protection requires its catalytic activity to reduce c-di-GMP and includes a secondary role as a transcriptional repressor. We demonstrate that PdeL binds to and represses the promoter of the wec operon, which encodes components of the enterobacterial common antigen (ECA) exopolysaccharide pathway. However, only the acetylglucosamine epimerase WecB but none of the other ECA components is required for N4 infection. Based on this, we postulate that NGR is an N-acetylmannosamine-based carbohydrate polymer that is produced and exported to the cell surface of E. coli in a c-di-GMP-dependent manner, where it serves as a receptor for N4. This novel carbohydrate pathway is conserved in E. coli and other bacterial pathogens, serves as the primary receptor for various bacteriophages, and is induced at elevated temperature and by specific amino acid-based nutrients. These studies provide an entry point into understanding how bacteria use specific regulatory mechanisms to balance costs and benefits of highly conserved surface structures. IMPORTANCE Because bacterial surface glycans are in direct contact with the environment they can provide essential protective functions during infections or against competing bacteria. But such structures are also "Achilles' heels" since they can serve as primary receptors for bacteriophages. Bacteria thus need to carefully control the exposure of conserved surface glycans to balance costs and benefits. Here, we identify a novel exopolysaccharide that is widely conserved in E. coli and is used by N4 and related bacteriophages as primary receptor. We demonstrate that the synthesis of NGR (N4 glycan receptor) is tightly controlled by the second messenger c-di-GMP in a highly specific manner and by a single diguanylate cyclase. These studies provide an example of how bacteria can alleviate the strong selective pressure imposed on them by bacteriophages entering through conserved surface structures by carefully regulating their synthesis and secretion.


Asunto(s)
Bacteriófago N4/fisiología , GMP Cíclico/análogos & derivados , Escherichia coli/metabolismo , Escherichia coli/virología , Polisacáridos Bacterianos/metabolismo , Bacteriófago N4/genética , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo , GMP Cíclico/metabolismo , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucanos/química , Glucanos/metabolismo , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismo , Operón , Polisacáridos Bacterianos/química
17.
Plant Physiol ; 187(1): 321-335, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34618132

RESUMEN

Diseases caused by Phytophthora pathogens devastate many crops worldwide. During infection, Phytophthora pathogens secrete effectors, which are central molecules for understanding the complex plant-Phytophthora interactions. In this study, we profiled the effector repertoire secreted by Phytophthora sojae into the soybean (Glycine max) apoplast during infection using liquid chromatography-mass spectrometry. A secreted aldose 1-epimerase (AEP1) was shown to induce cell death in Nicotiana benthamiana, as did the other two AEP1s from different Phytophthora species. AEP1 could also trigger immune responses in N. benthamiana, other Solanaceae plants, and Arabidopsis (Arabidopsis thaliana). A glucose dehydrogenase assay revealed AEP1 encodes an active AEP1. The enzyme activity of AEP1 is dispensable for AEP1-triggered cell death and immune responses, while AEP-triggered immune signaling in N. benthamiana requires the central immune regulator BRASSINOSTEROID INSENSITIVE 1-associated receptor kinase 1. In addition, AEP1 acts as a virulence factor that mediates P. sojae extracellular sugar uptake by mutarotation of extracellular aldose from the α-anomer to the ß-anomer. Taken together, these results revealed the function of a microbial apoplastic effector, highlighting the importance of extracellular sugar uptake for Phytophthora infection. To counteract, the key effector for sugar conversion can be recognized by the plant membrane receptor complex to activate plant immunity.


Asunto(s)
Carbohidrato Epimerasas/genética , Proteínas Fúngicas/genética , Phytophthora/fisiología , Azúcares/metabolismo , Transporte Biológico , Carbohidrato Epimerasas/metabolismo , Proteínas Fúngicas/metabolismo , Mutación , Phytophthora/enzimología , Phytophthora/genética
19.
Carbohydr Res ; 510: 108445, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34607125

RESUMEN

The synthesis of analogues of natural enzyme substrates can be used to help deduce enzymatic mechanisms. N-Acetylmannosamine-6-phosphate 2-epimerase is an enzyme in the bacterial sialic acid catabolic pathway. To investigate whether the mechanism of this enzyme involves a re-protonation mechanism by the same neighbouring lysine that performed the deprotonation or a unique substrate-assisted proton displacement mechanism involving the substrate C5 hydroxyl, the syntheses of two analogues of the natural substrate, N-acetylmannosamine-6-phosphate, are described. In these novel analogues, the C5 hydroxyl has been replaced with a proton and a methyl ether respectively. As recently reported, Staphylococcus aureus N-acetylmannosamine-6-phosphate 2-epimerase was co-crystallized with these two compounds. The 5-deoxy variant bound to the enzyme active site in a different orientation to the natural substrate, while the 5-methoxy variant did not bind, adding to the evidence that this enzyme uses a substrate-assisted proton displacement mechanism. This mechanistic information may help in the design of potential antibacterial drug candidates.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbohidrato Epimerasas/metabolismo , Hexosaminas/biosíntesis , Fosfatos de Azúcar/biosíntesis , Proteínas Bacterianas/química , Conformación de Carbohidratos , Carbohidrato Epimerasas/química , Hexosaminas/química , Staphylococcus aureus/enzimología , Fosfatos de Azúcar/química
20.
Int J Mol Sci ; 22(19)2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34639151

RESUMEN

Thermal stability is a limiting factor for effective application of D-psicose 3-epimerase (DPEase) enzyme. Recently, it was reported that the thermal stability of DPEase was improved by immobilizing enzymes on graphene oxide (GO) nanoparticles. However, the detailed mechanism is not known. In this study, we investigated interaction details between GO and DPEase by performing molecular dynamics (MD) simulations. The results indicated that the domain (K248 to D268) of DPEase was an important anchor for immobilizing DPEase on GO surface. Moreover, the strong interactions between DPEase and GO can prevent loop α1'-α1 and ß4-α4 of DPEase from the drastic fluctuation. Since these two loops contained active site residues, the geometry of the active pocket of the enzyme remained stable at high temperature after the DPEase was immobilized by GO, which facilitated efficient catalytic activity of the enzyme. Our research provided a detailed mechanism for the interaction between GO and DPEase at the nano-biology interface.


Asunto(s)
Agrobacterium tumefaciens/enzimología , Carbohidrato Epimerasas/química , Enzimas Inmovilizadas/química , Grafito/química , Calor , Carbohidrato Epimerasas/metabolismo , Dominio Catalítico , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Simulación de Dinámica Molecular , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA