Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 297(1): 100857, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34097877

RESUMEN

The hexameric low-pH stress response enzyme oxalate decarboxylase catalyzes the decarboxylation of the oxalate mono-anion in the soil bacterium Bacillus subtilis. A single protein subunit contains two Mn-binding cupin domains, and catalysis depends on Mn(III) at the N-terminal site. The present study suggests a mechanistic function for the C-terminal Mn as an electron hole donor for the N-terminal Mn. The resulting spatial separation of the radical intermediates directs the chemistry toward decarboxylation of the substrate. A π-stacked tryptophan pair (W96/W274) links two neighboring protein subunits together, thus reducing the Mn-to-Mn distance from 25.9 Å (intrasubunit) to 21.5 Å (intersubunit). Here, we used theoretical analysis of electron hole-hopping paths through redox-active sites in the enzyme combined with site-directed mutagenesis and X-ray crystallography to demonstrate that this tryptophan pair supports effective electron hole hopping between the C-terminal Mn of one subunit and the N-terminal Mn of the other subunit through two short hops of ∼8.5 Å. Replacement of W96, W274, or both with phenylalanine led to a large reduction in catalytic efficiency, whereas replacement with tyrosine led to recovery of most of this activity. W96F and W96Y mutants share the wildtype tertiary structure. Two additional hole-hopping networks were identified leading from the Mn ions to the protein surface, potentially protecting the enzyme from high Mn oxidation states during turnover. Our findings strongly suggest that multistep hole-hopping transport between the two Mn ions is required for enzymatic function, adding to the growing examples of proteins that employ aromatic residues as hopping stations.


Asunto(s)
Bacillus subtilis/ultraestructura , Carboxiliasas/química , Electrones , Oxígeno/metabolismo , Bacillus subtilis/química , Bacillus subtilis/genética , Sitios de Unión/genética , Carboxiliasas/genética , Carboxiliasas/ultraestructura , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Cinética , Manganeso/química , Oxígeno/química , Triptófano/química , Triptófano/genética
2.
Molecules ; 26(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572696

RESUMEN

Inducible lysine decarboxylases (LDCs) are essential in various cellular processes of microorganisms and plants, especially under acid stress, which induces the expression of genes encoding LDCs. In this study, a novel Serratia marcesenes LDC (SmcadA) was successfully expressed in E. coli, purified and characterized. The protein had an optimal pH of 6 and a temperature of 40 °C and phylogenetic analysis to determine the evolution of SmcadA, which revealed a close relation to Enterobacteriaceae, Klebsiella sp., among others. The molecular weight of SmcadA was approximately 75 kDa after observation on SDS-PAGE and structural modeling showed the protein as a decamer, comprised of five interlinked dimers. The biocatalytic activity of the purified wild-type SmcadA (WT) was improved through site directed mutations and the results showed that the Arg595Lys mutant had the highest specific activity of 286.55 U/mg, while the Ser512Ala variant and wild-type SmcadA had 215.72 and 179.01 U/mg, respectively. Furthermore, molecular dynamics simulations revealed that interactions through hydrogen bonds between the protein residues and cofactor pyridoxal-5-phosphate (PLP) are vital for biocatalysis. Molecular Dynamics (MD) simulations also indicated that mutations conferred structural changes on protein residues and PLP hence altered the interacting residues with the cofactor, subsequently influencing substrate bioconversion. Moreover, the temperature also induced changes in orientation of cofactor PLP and amino acid residues. This work therefore demonstrates the successful expression and characterization of the purified novel lysine decarboxylase from Serratia marcesenes and provided insight into the mechanism of protein-cofactor interactions, highlighting the role of protein-ligand interactions in altering cofactor and binding site residue conformations, thus contributing to improved biocatalysis.


Asunto(s)
Carboxiliasas/química , Conformación Proteica , Serratia marcescens/enzimología , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Biocatálisis , Carboxiliasas/genética , Carboxiliasas/ultraestructura , Dominio Catalítico/genética , Escherichia coli/genética , Simulación de Dinámica Molecular , Serratia marcescens/química , Serratia marcescens/ultraestructura , Especificidad por Sustrato
3.
Nat Commun ; 12(1): 143, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33420031

RESUMEN

Coenzyme A (CoA) is a fundamental co-factor for all life, involved in numerous metabolic pathways and cellular processes, and its biosynthetic pathway has raised substantial interest as a drug target against multiple pathogens including Mycobacterium tuberculosis. The biosynthesis of CoA is performed in five steps, with the second and third steps being catalysed in the vast majority of prokaryotes, including M. tuberculosis, by a single bifunctional protein, CoaBC. Depletion of CoaBC was found to be bactericidal in M. tuberculosis. Here we report the first structure of a full-length CoaBC, from the model organism Mycobacterium smegmatis, describe how it is organised as a dodecamer and regulated by CoA thioesters. A high-throughput biochemical screen focusing on CoaB identified two inhibitors with different chemical scaffolds. Hit expansion led to the discovery of potent and selective inhibitors of M. tuberculosis CoaB, which we show to bind to a cryptic allosteric site within CoaB.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Carboxiliasas/antagonistas & inhibidores , Mycobacterium smegmatis/enzimología , Mycobacterium tuberculosis/efectos de los fármacos , Péptido Sintasas/antagonistas & inhibidores , Regulación Alostérica/efectos de los fármacos , Sitio Alostérico/efectos de los fármacos , Antituberculosos/uso terapéutico , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Carboxiliasas/genética , Carboxiliasas/metabolismo , Carboxiliasas/ultraestructura , Coenzima A/biosíntesis , Cristalografía por Rayos X , Pruebas de Enzimas , Técnicas de Silenciamiento del Gen , Ensayos Analíticos de Alto Rendimiento , Humanos , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/enzimología , Mycobacterium tuberculosis/genética , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Péptido Sintasas/ultraestructura , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
5.
J Mol Biol ; 426(19): 3272-3286, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25083922

RESUMEN

The isobacteriochlorin heme d1 serves as an essential cofactor in the cytochrome cd1 nitrite reductase NirS that plays an important role for denitrification. During the biosynthesis of heme d1, the enzyme siroheme decarboxylase catalyzes the conversion of siroheme to 12,18-didecarboxysiroheme. This enzyme was discovered recently (Bali S, Lawrence AD, Lobo SA, Saraiva LM, Golding BT, Palmer DJ et al. Molecular hijacking of siroheme for the synthesis of heme and d1 heme. Proc Natl Acad Sci USA 2011;108:18260-5) and is only scarcely characterized. Here, we present the crystal structure of the siroheme decarboxylase from Hydrogenobacter thermophilus representing the first three-dimensional structure for this type of enzyme. The overall structure strikingly resembles those of transcriptional regulators of the Lrp/AsnC family. Moreover, the structure of the enzyme in complex with a substrate analog reveals first insights into its active-site architecture. Through site-directed mutagenesis and subsequent biochemical characterization of the enzyme variants, two conserved histidine residues within the active site are identified to be involved in substrate binding and catalysis. Based on our results, we propose a potential catalytic mechanism for the enzymatic reaction catalyzed by the siroheme decarboxylase.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Carboxiliasas/química , Histidina/química , Hierro/química , Uroporfirinas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Sitios de Unión , Carboxiliasas/ultraestructura , Dominio Catalítico , Descarboxilación , Hemo/análogos & derivados , Hemo/biosíntesis , Hemo/química , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Unión Proteica , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...