Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.256
Filtrar
1.
JCO Precis Oncol ; 8: e2300595, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38723231

RESUMEN

PURPOSE: The highly aggressive undifferentiated sarcomatoid carcinoma (USC) subtype of pancreatic ductal adenocarcinoma (PDAC) remains poorly characterized because of its rarity. Previous case reports suggest that immune checkpoint inhibitors could be a promising treatment strategy, but the prevalence of established predictive biomarkers of response is largely unknown. The objective of this study was to leverage comprehensive genomic profiling of USC PDAC tumors to determine the prevalence of biomarkers associated with potential response to targeted therapies. METHODS: USC tumors (n = 20) underwent central pathology review by a board-certified gastrointestinal pathologist to confirm the diagnosis. These samples were compared with non-USC PDAC tumors (N = 5,562). Retrospective analysis of DNA and RNA next-generation sequencing data was performed. RESULTS: USC PDACs were more frequently PD-L1+ by immunohistochemistry than non-USC PDAC (63% v 16%, respectively, P < .001). Furthermore, USC PDAC had an increase in neutrophils (8.99% v 5.55%, P = .005) and dendritic cells (1.08% v 0.00%, q = 0.022) and an increased expression of PDCD1LG2 (4.6% v 1.3%, q = 0.001), PDCD1 (2.0% v 0.8%, q = 0.060), and HAVCR2 (45.9% v 21.7%, q = 0.107) than non-USC PDAC. Similar to non-USC PDAC, KRAS was the most commonly mutated gene (86% v 90%, respectively, P = 1). CONCLUSION: To our knowledge, this work represents the largest molecular analysis of USC tumors to date and showed an increased expression of immune checkpoint genes in USC tumors. These findings provide evidence for further investigation into immune checkpoint inhibitors in USC tumors.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Anciano de 80 o más Años , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis
2.
Sci Rep ; 14(1): 10529, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719893

RESUMEN

Liver metastases from pancreatic ductal adenocarcinoma (PDAC) are highly fatal. A rat-based patient-derived tumor xenograft (PDX) model is available for transcatheter therapy. This study aimed to create an immunodeficient rat model with liver xenografts of patient-derived primary PDAC and evaluate efficacy of hepatic arterial infusion chemotherapy with cisplatin in this model. Three patient-derived PDACs were transplanted into the livers of 21 rats each (totally, 63 rats), randomly assigned into hepatic arterial infusion, systemic venous infusion, and control groups (n = 7 each) four weeks post-implantation. Computed tomography evaluated tumor volumes before and four weeks after treatment. Post-euthanasia, resected tumor specimens underwent histopathological examination. A liver-implanted PDAC PDX rat model was established in all 63 rats, with first CT identifying all tumors. Four weeks post-treatment, arterial infusion groups exhibited significantly smaller tumor volumes than controls for all three tumors on second CT. Xenograft tumors histologically maintained adenocarcinoma features compared to original patient tumors. Ki67 expression was significantly lower in arterial infusion groups than in the other two for the three tumors, indicating reduced tumor growth in PDX rats. A liver-implanted PDAC PDX rat model was established as a rat-based preclinical platform. Arterial cisplatin infusion chemotherapy represents a potential therapy for PDAC liver metastasis.


Asunto(s)
Carcinoma Ductal Pancreático , Arteria Hepática , Infusiones Intraarteriales , Neoplasias Hepáticas , Neoplasias Pancreáticas , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Humanos , Ratas , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/diagnóstico por imagen , Cisplatino/administración & dosificación , Cisplatino/farmacología , Masculino , Modelos Animales de Enfermedad , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología
3.
Nanomedicine ; 55: 102714, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38738528

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease with poor survival rates. Here, we evaluated iron-doped hydroxyapatite (FeHA) as a potential nanomedicine-based approach to combat PDAC. FeHA, in combination with a sublethal dose of the glutathione peroxidase 4 (GPX4) inhibitor RSL3, was found to trigger ferroptosis in KRAS mutant PANC-1 cells, but not in BxPC3 cells, while sparing normal human cells (fibroblasts and peripheral blood mononuclear cells). These findings were recapitulated in 3D spheroids generated using PDAC cells harboring wild-type versus mutant KRAS. Moreover, ferroptosis induction by FeHA plus RSL3 was reversed by the knockdown of STEAP3, a metalloreductase responsible for converting Fe3+ to Fe2+. Taken together, our data show that FeHA is capable of triggering cancer cell death in a KRAS-selective, STEAP3-dependent manner in PDAC cells.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Hierro , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/metabolismo , Hierro/química , Hierro/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Ferroptosis/efectos de los fármacos , Línea Celular Tumoral , Nanopartículas/química , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
JCI Insight ; 9(9)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38716727

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is a lethal cancer characterized by a poor outcome and an increasing incidence. A significant majority (>80%) of newly diagnosed cases are deemed unresectable, leaving chemotherapy as the sole viable option, though with only moderate success. This necessitates the identification of improved therapeutic options for PDA. We hypothesized that there are temporal variations in cancer-relevant processes within PDA tumors, offering insights into the optimal timing of drug administration - a concept termed chronotherapy. In this study, we explored the presence of the circadian transcriptome in PDA using patient-derived organoids and validated these findings by comparing PDA data from The Cancer Genome Atlas with noncancerous healthy pancreas data from GTEx. Several PDA-associated pathways (cell cycle, stress response, Rho GTPase signaling) and cancer driver hub genes (EGFR and JUN) exhibited a cancer-specific rhythmic pattern intricately linked to the circadian clock. Through the integration of multiple functional measurements for rhythmic cancer driver genes, we identified top chronotherapy targets and validated key findings in molecularly divergent pancreatic cancer cell lines. Testing the chemotherapeutic efficacy of clinically relevant drugs further revealed temporal variations that correlated with drug-target cycling. Collectively, our study unravels the PDA circadian transcriptome and highlights a potential approach for optimizing chrono-chemotherapeutic efficacy.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Transcriptoma , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ritmo Circadiano/genética , Organoides/efectos de los fármacos , Relojes Circadianos/genética , Relojes Circadianos/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Adenocarcinoma/genética , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/patología , Cronoterapia/métodos
5.
World J Surg Oncol ; 22(1): 123, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711136

RESUMEN

BACKGROUND: Adjuvant chemotherapy (AC) improves the prognosis after pancreatic ductal adenocarcinoma (PDAC) resection. However, previous studies have shown that a large proportion of patients do not receive or complete AC. This national study examined the risk factors for the omission or interruption of AC. METHODS: Data of all patients who underwent pancreatic surgery for PDAC in France between January 2012 and December 2017 were extracted from the French National Administrative Database. We considered "omission of adjuvant chemotherapy" (OAC) all patients who failed to receive any course of gemcitabine within 12 postoperative weeks and "interruption of AC" (IAC) was defined as less than 18 courses of AC. RESULTS: A total of 11 599 patients were included in this study. Pancreaticoduodenectomy was the most common procedure (76.3%), and 31% of the patients experienced major postoperative complications. OACs and IACs affected 42% and 68% of the patients, respectively. Ultimately, only 18.6% of the cohort completed AC. Patients who underwent surgery in a high-volume centers were less affected by postoperative complications, with no impact on the likelihood of receiving AC. Multivariate analysis showed that age ≥ 80 years, Charlson comorbidity index (CCI) ≥ 4, and major complications were associated with OAC (OR = 2.19; CI95%[1.79-2.68]; OR = 1.75; CI95%[1.41-2.18] and OR = 2.37; CI95%[2.15-2.62] respectively). Moreover, age ≥ 80 years and CCI 2-3 or ≥ 4 were also independent risk factors for IAC (OR = 1.54, CI95%[1.1-2.15]; OR = 1.43, CI95%[1.21-1.68]; OR = 1.47, CI95%[1.02-2.12], respectively). CONCLUSION: Sequence surgery followed by chemotherapy is associated with a high dropout rate, especially in octogenarian and comorbid patients.


Asunto(s)
Carcinoma Ductal Pancreático , Pancreatectomía , Neoplasias Pancreáticas , Humanos , Femenino , Masculino , Neoplasias Pancreáticas/cirugía , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Anciano , Quimioterapia Adyuvante/estadística & datos numéricos , Quimioterapia Adyuvante/métodos , Francia/epidemiología , Carcinoma Ductal Pancreático/cirugía , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Persona de Mediana Edad , Anciano de 80 o más Años , Pronóstico , Pancreatectomía/estadística & datos numéricos , Estudios de Seguimiento , Pancreaticoduodenectomía/estadística & datos numéricos , Pancreaticoduodenectomía/métodos , Complicaciones Posoperatorias/epidemiología , Tasa de Supervivencia , Estudios Retrospectivos , Gemcitabina , Factores de Riesgo , Desoxicitidina/análogos & derivados , Desoxicitidina/uso terapéutico
6.
AAPS PharmSciTech ; 25(5): 97, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38710894

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the highly fatal types of cancer with high mortality/incidence. Considering the crucial role of vascular endothelial growth factor (VEGF) in PDAC progression, its inhibition can be a viable strategy for the treatment. Pazopanib, a second-generation VEGF inhibitor, is approved for the treatment of various oncological conditions. However, due to associated limitations like low oral bioavailability (14-39%), high inter/intra-subject variability, stability issues, etc., high doses (800 mg) are required, which further lead to non-specific toxicities and also contribute toward cancer resistance. Thus, to overcome these challenges, pazopanib-loaded PEGylated nanoliposomes were developed and evaluated against pancreatic cancer cell lines. The nanoliposomes were prepared by thin-film hydration method, followed by characterization and stability studies. This QbD-enabled process design successfully led to the development of a suitable pazopanib liposomal formulation with desirable properties. The % entrapment of PZP-loaded non-PEGylated and PEGylated nanoliposomes was found to be 75.2% and 84.9%, respectively, whereas their particle size was found to be 129.7 nm and 182.0 nm, respectively. The developed liposomal formulations exhibited a prolonged release and showed desirable physicochemical properties. Furthermore, these liposomal formulations were also assessed for in vitro cell lines, such as cell cytotoxicity assay and cell uptake. These studies confirm the effectiveness of developed liposomal formulations against pancreatic cancer cell lines. The outcomes of this work provide encouraging results and a way forward to thoroughly investigate its potential for PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Indazoles , Liposomas , Nanopartículas , Neoplasias Pancreáticas , Tamaño de la Partícula , Pirimidinas , Sulfonamidas , Indazoles/administración & dosificación , Indazoles/farmacología , Humanos , Sulfonamidas/administración & dosificación , Sulfonamidas/farmacología , Sulfonamidas/química , Pirimidinas/administración & dosificación , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/farmacocinética , Línea Celular Tumoral , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Nanopartículas/química , Polietilenglicoles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacología , Antineoplásicos/química , Supervivencia Celular/efectos de los fármacos , Liberación de Fármacos , Química Farmacéutica/métodos
7.
J Nanobiotechnology ; 22(1): 257, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755645

RESUMEN

Imperceptible examination and unideal treatment effect are still intractable difficulties for the clinical treatment of pancreatic ductal adenocarcinoma (PDAC). At present, despite 5-fluorouracil (5-FU), as a clinical first-line FOLFIRINOX chemo-drug, has achieved significant therapeutic effects. Nevertheless, these unavoidable factors such as low solubility, lack of biological specificity and easy to induce immunosuppressive surroundings formation, severely limit their treatment in PDAC. As an important source of energy for many tumor cells, tryptophan (Trp), is easily degraded to kynurenine (Kyn) by indolamine 2,3- dioxygenase 1 (IDO1), which activates the axis of Kyn-AHR to form special suppressive immune microenvironment that promotes tumor growth and metastasis. However, our research findings that 5-FU can induce effectively immunogenic cell death (ICD) to further treat tumor by activating immune systems, while the secretion of interferon-γ (IFN-γ) re-induce the Kyn-AHR axis activation, leading to poor treatment efficiency. Therefore, a metal matrix protease-2 (MMP-2) and endogenous GSH dual-responsive liposomal-based nanovesicle, co-loading with 5-FU (anti-cancer drug) and NLG919 (IDO1 inhibitor), was constructed (named as ENP919@5-FU). The multifunctional ENP919@5-FU can effectively reshape the tumor immunosuppression microenvironment to enhance the effect of chemoimmunotherapy, thereby effectively inhibiting cancer growth. Mechanistically, PDAC with high expression of MMP-2 will propel the as-prepared nanovesicle to dwell in tumor region via shedding PEG on the nanovesicle surface, effectively enhancing tumor uptake. Subsequently, the S-S bond containing nanovesicle was cut via high endogenous GSH, leading to the continued release of 5-FU and NLG919, thereby enabling circulating chemoimmunotherapy to effectively cause tumor ablation. Moreover, the combination of ENP919@5-FU and PD-L1 antibody (αPD-L1) showed a synergistic anti-tumor effect on the PDAC model with abdominal cavity metastasis. Collectively, ENP919@5-FU nanovesicle, as a PDAC treatment strategy, showed excellent antitumor efficacy by remodeling tumor microenvironment to circulate tumor chemoimmunotherapy amplification, which has promising potential in a precision medicine approach.


Asunto(s)
Carcinoma Ductal Pancreático , Fluorouracilo , Inmunoterapia , Microambiente Tumoral , Microambiente Tumoral/efectos de los fármacos , Animales , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Ratones , Humanos , Inmunoterapia/métodos , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/tratamiento farmacológico , Metaloproteinasa 2 de la Matriz/metabolismo , Liposomas/química , Quinurenina/metabolismo , Interferón gamma/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antineoplásicos/química , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico
8.
Cells ; 13(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727266

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a deadly disease with high mortality due to early metastatic dissemination and high chemoresistance. All these factors are favored by its extracellular matrix (ECM)-rich microenvironment, which is also highly hypoxic and acidic. Gemcitabine (GEM) is still the first-line therapy in PDAC. However, it is quickly deaminated to its inactive metabolite. Several GEM prodrugs have emerged to improve its cytotoxicity. Here, we analyzed how the acidic/hypoxic tumor microenvironment (TME) affects the response of PDAC cell death and invadopodia-mediated ECM proteolysis to both GEM and its C18 prodrug. METHODS: For this, two PDAC cell lines, PANC-1 and Mia PaCa-2 were adapted to pHe 6.6 or not for 1 month, grown as 3D organotypic cultures and exposed to either GEM or C18 in the presence and absence of acidosis and the hypoxia inducer, deferoxamine. RESULTS: We found that C18 has higher cytotoxic and anti-invadopodia activity than GEM in all culture conditions and especially in acid and hypoxic environments. CONCLUSIONS: We propose C18 as a more effective approach to conventional GEM in developing new therapeutic strategies overcoming PDAC chemoresistance.


Asunto(s)
Desoxicitidina , Gemcitabina , Neoplasias Pancreáticas , Microambiente Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Humanos , Microambiente Tumoral/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Podosomas/metabolismo , Podosomas/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Profármacos/farmacología
9.
PLoS One ; 19(4): e0298808, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38598488

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Ratones , Humanos , Gemcitabina , Vía de Señalización Wnt , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Ratones Desnudos , Proliferación Celular , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Organoides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Sci Rep ; 14(1): 8389, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600093

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gemcitabina , Proliferación Celular , Línea Celular Tumoral , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ciclo Celular , Quinasas de Proteína Quinasa Activadas por Mitógenos , Quinasa 4 Dependiente de la Ciclina
11.
Cancer Lett ; 591: 216859, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38615928

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is a solid organ malignancy with a high mortality rate. Statistics indicate that its incidence has been increasing as well as the associated deaths. Most patients with PDAC show poor response to therapies making the clinical management of this cancer difficult. Stromal cells in the tumor microenvironment (TME) contribute to the development of resistance to therapy in PDAC cancer cells. Cancer-associated fibroblasts (CAFs), the most prevalent stromal cells in the TME, promote a desmoplastic response, produce extracellular matrix proteins and cytokines, and directly influence the biological behavior of cancer cells. These multifaceted effects make it difficult to eradicate tumor cells from the body. As a result, CAF-targeting synergistic therapeutic strategies have gained increasing attention in recent years. However, due to the substantial heterogeneity in CAF origin, definition, and function, as well as high plasticity, majority of the available CAF-targeting therapeutic approaches are not effective, and in some cases, they exacerbate disease progression. This review primarily elucidates on the effect of CAFs on therapeutic efficiency of various treatment modalities, including chemotherapy, radiotherapy, immunotherapy, and targeted therapy. Strategies for CAF targeting therapies are also discussed.


Asunto(s)
Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Microambiente Tumoral , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Inmunoterapia/métodos , Animales , Terapia Molecular Dirigida
12.
Cell Metab ; 36(5): 984-999.e8, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38642552

RESUMEN

The relevance of biopterin metabolism in resistance to immune checkpoint blockade (ICB) therapy remains unknown. We demonstrate that the deficiency of quinoid dihydropteridine reductase (QDPR), a critical enzyme regulating biopterin metabolism, causes metabolite dihydrobiopterin (BH2) accumulation and decreases the ratio of tetrahydrobiopterin (BH4) to BH2 in pancreatic ductal adenocarcinomas (PDACs). The reduced BH4/BH2 ratio leads to an increase in reactive oxygen species (ROS) generation and a decrease in the distribution of H3K27me3 at CXCL1 promoter. Consequently, myeloid-derived suppressor cells are recruited to tumor microenvironment via CXCR2 causing resistance to ICB therapy. We discovered that BH4 supplementation is capable to restore the BH4/BH2 ratio, enhance anti-tumor immunity, and overcome ICB resistance in QDPR-deficient PDACs. Tumors with lower QDPR expression show decreased responsiveness to ICB therapy. These findings offer a novel strategy for selecting patient and combining therapies to improve the effectiveness of ICB therapy in PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/metabolismo , Humanos , Animales , Ratones , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Microambiente Tumoral , Línea Celular Tumoral , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Ratones Endogámicos C57BL , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Femenino , Masculino , Especies Reactivas de Oxígeno/metabolismo
13.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38612866

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.


Asunto(s)
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Resistencia a Antineoplásicos/genética , Microtúbulos , Gemcitabina , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogénicas c-akt , Proteínas Asociadas a Microtúbulos , Proteínas Serina-Treonina Quinasas
14.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663337

RESUMEN

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Asunto(s)
Carcinoma Ductal Pancreático , Irinotecán , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Minociclina/farmacología , Minociclina/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Inhibidores de Topoisomerasa I/química , Liposomas/química
15.
Front Immunol ; 15: 1378190, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38629072

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadyuvante/métodos , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Linfocitos B , Linfocitos T/patología , Microambiente Tumoral
16.
Br J Surg ; 111(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38659247

RESUMEN

BACKGROUND: The clinical impact of adjuvant chemotherapy after resection for adenocarcinoma arising from intraductal papillary mucinous neoplasia is unclear. The aim of this study was to identify factors related to receipt of adjuvant chemotherapy and its impact on recurrence and survival. METHODS: This was a multicentre retrospective study of patients undergoing pancreatic resection for adenocarcinoma arising from intraductal papillary mucinous neoplasia between January 2010 and December 2020 at 18 centres. Recurrence and survival outcomes for patients who did and did not receive adjuvant chemotherapy were compared using propensity score matching. RESULTS: Of 459 patients who underwent pancreatic resection, 275 (59.9%) received adjuvant chemotherapy (gemcitabine 51.3%, gemcitabine-capecitabine 21.8%, FOLFIRINOX 8.0%, other 18.9%). Median follow-up was 78 months. The overall recurrence rate was 45.5% and the median time to recurrence was 33 months. In univariable analysis in the matched cohort, adjuvant chemotherapy was not associated with reduced overall (P = 0.713), locoregional (P = 0.283) or systemic (P = 0.592) recurrence, disease-free survival (P = 0.284) or overall survival (P = 0.455). Adjuvant chemotherapy was not associated with reduced site-specific recurrence. In multivariable analysis, there was no association between adjuvant chemotherapy and overall recurrence (HR 0.89, 95% c.i. 0.57 to 1.40), disease-free survival (HR 0.86, 0.59 to 1.30) or overall survival (HR 0.77, 0.50 to 1.20). Adjuvant chemotherapy was not associated with reduced recurrence in any high-risk subgroup (for example, lymph node-positive, higher AJCC stage, poor differentiation). No particular chemotherapy regimen resulted in superior outcomes. CONCLUSION: Chemotherapy following resection of adenocarcinoma arising from intraductal papillary mucinous neoplasia does not appear to influence recurrence rates, recurrence patterns or survival.


Asunto(s)
Recurrencia Local de Neoplasia , Pancreatectomía , Neoplasias Pancreáticas , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adenocarcinoma/patología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/mortalidad , Adenocarcinoma/terapia , Adenocarcinoma Mucinoso/patología , Adenocarcinoma Mucinoso/tratamiento farmacológico , Adenocarcinoma Mucinoso/terapia , Adenocarcinoma Mucinoso/mortalidad , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Capecitabina/administración & dosificación , Capecitabina/uso terapéutico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/cirugía , Quimioterapia Adyuvante , Gemcitabina , Recurrencia Local de Neoplasia/epidemiología , Neoplasias Intraductales Pancreáticas/patología , Neoplasias Intraductales Pancreáticas/terapia , Neoplasias Intraductales Pancreáticas/mortalidad , Neoplasias Intraductales Pancreáticas/cirugía , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/cirugía , Puntaje de Propensión , Estudios Retrospectivos
17.
World J Gastroenterol ; 30(9): 1237-1249, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38577174

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with limited effective treatment especially after first-line chemotherapy. The human epidermal growth factor receptor 2 (HER-2) immunohistochemistry (IHC) positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC. CASE SUMMARY: We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn't have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment. A novel combination therapy PRaG 3.0 of RC48 (HER2-antibody-drug conjugate), radiotherapy, PD-1 inhibitor, granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month. She had not developed any grade 2 or above treatment-related adverse events at any point. Percentage of peripheral CD8+Temra and CD4+Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy. CONCLUSION: PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptor ErbB-2 , Humanos , Femenino , Gemcitabina , Desoxicitidina/uso terapéutico , Estudios Prospectivos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Paclitaxel/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Carcinoma Ductal Pancreático/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Albúminas/uso terapéutico
18.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38647152

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) remains a serious threat to health, with limited effective therapeutic options, especially due to advanced stage at diagnosis and its inherent resistance to chemotherapy, making it one of the leading causes of cancer-related deaths worldwide. The lack of clear treatment directions underscores the urgent need for innovative approaches to address and manage this deadly condition. In this research, we repurpose drugs with potential anti-cancer activity using machine learning (ML). METHODS: We tackle the problem by using a neural network trained on drug-target interaction information enriched with drug-drug interaction information, which has not been used for anti-cancer drug repurposing before. We focus on eravacycline, an antibacterial drug, which was selected and evaluated to assess its anti-cancer effects. RESULTS: Eravacycline significantly inhibited the proliferation and migration of BxPC-3 cells and induced apoptosis. CONCLUSION: Our study highlights the potential of drug repurposing for cancer treatment using ML. Eravacycline showed promising results in inhibiting cancer cell proliferation, migration and inducing apoptosis in PDAC. These findings demonstrate that our developed ML drug repurposing models can be applied to a wide range of new oncology therapeutics, to identify potential anti-cancer agents. This highlights the potential and presents a promising approach for identifying new therapeutic options.


Asunto(s)
Antibacterianos , Apoptosis , Proliferación Celular , Aprendizaje Profundo , Reposicionamiento de Medicamentos , Neoplasias Pancreáticas , Tetraciclinas , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Tetraciclinas/farmacología , Tetraciclinas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Línea Celular Tumoral , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Movimiento Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
19.
Sci Rep ; 14(1): 9259, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649719

RESUMEN

Chemotherapy resistance poses clinical challenges in pancreatic cancer treatment. Developing cell lines resistant to chemotherapy is crucial for investigating drug resistance mechanisms and identifying alternative treatment pathways. The genetic and biological attributes of pancreatic cancer depend on its aetiology, racial demographics and anatomical origin, underscoring the need for models that comprehensively represent these characteristics. Here, we introduce PDAC-X2, a pancreatic cancer cell line derived from Chinese patients. We conducted a comprehensive analysis encompassing the immune phenotype, biology, genetics, molecular characteristics and tumorigenicity of the cell line. PDAC-X2 cells displayed epithelial morphology and expressed cell markers (CK7 and CK19) alongside other markers (E-cadherin, Vimentin, Ki-67, CEA and CA19-9). The population doubling time averaged around 69 h. In vivo, PDAC-X2 cells consistently maintained their tumorigenicity, achieving a 100% tumour formation rate. Characterised by a predominantly tetraploid karyotype, this cell line exhibited a complex genetic markup. Notably, PDAC-X2 cells demonstrated resistance to multiple drugs, including gemcitabine, paclitaxel, 5-fluorouracil and oxaliplatin. In conclusion, PDAC-X2 presents an invaluable preclinical model. Its utility lies in facilitating the study of drug resistance mechanisms and the exploration of alternative therapeutic approaches aimed at enhancing the prognosis of this tumour type.


Asunto(s)
Carcinoma Ductal Pancreático , Resistencia a Antineoplásicos , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Animales , Ratones , Resistencia a Múltiples Medicamentos/genética , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Femenino , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Gemcitabina , Pueblo Asiatico , Pueblos del Este de Asia
20.
Sci Rep ; 14(1): 8998, 2024 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637546

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transducción de Señal , Proliferación Celular , Línea Celular Tumoral , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA