Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.459
Filtrar
1.
Mol Med ; 30(1): 79, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38844847

RESUMEN

BACKGROUND: Increased level of serum cholic acid (CA) is often accompanied with decreased CYP2E1 expression in hepatocellular carcinoma (HCC) patients. However, the roles of CA and CYP2E1 in hepatocarcinogenesis have not been elucidated. This study aimed to investigate the roles and the underlying mechanisms of CYP2E1 and CA in HCC cell growth. METHODS: The proteomic analysis of liver tumors from DEN-induced male SD rats with CA administration was used to reveal the changes of protein expression in the CA treated group. The growth of CA-treated HCC cells was examined by colony formation assays. Autophagic flux was assessed with immunofluorescence and confocal microscopy. Western blot analysis was used to examine the expression of CYP2E1, mTOR, AKT, p62, and LC3II/I. A xenograft tumor model in nude mice was used to examine the role of CYP2E1 in CA-induced hepatocellular carcinogenesis. The samples from HCC patients were used to evaluate the clinical value of CYP2E1 expression. RESULTS: CA treatment significantly increased the growth of HCC cells and promoted xenograft tumors accompanied by a decrease of CYP2E1 expression. Further studies revealed that both in vitro and in vivo, upregulated CYP2E1 expression inhibited the growth of HCC cells, blocked autophagic flux, decreased AKT phosphorylation, and increased mTOR phosphorylation. CYP2E1 was involved in CA-activated autophagy through the AKT/mTOR signaling. Finally, decreased CYP2E1 expression was observed in the tumor tissues of HCC patients and its expression level in tumors was negatively correlated with the serum level of total bile acids (TBA) and gamma-glutamyltransferase (GGT). CONCLUSIONS: CYP2E1 downregulation contributes to CA-induced HCC development presumably through autophagy regulation. Thus, CYP2E1 may serve as a potential target for HCC drug development.


Asunto(s)
Autofagia , Carcinoma Hepatocelular , Proliferación Celular , Ácido Cólico , Citocromo P-450 CYP2E1 , Neoplasias Hepáticas , Animales , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/inducido químicamente , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inducido químicamente , Humanos , Citocromo P-450 CYP2E1/metabolismo , Citocromo P-450 CYP2E1/genética , Masculino , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Ratas , Proliferación Celular/efectos de los fármacos , Ratones , Ratas Sprague-Dawley , Transducción de Señal , Proteómica/métodos , Modelos Animales de Enfermedad , Ratones Desnudos
2.
Drug Dev Res ; 85(4): e22198, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38764200

RESUMEN

Hepatocellular carcinoma (HCC) is one of the deadliest cancers. The prevention and therapy for this deadly disease remain a global medical challenge. In this study, we investigated the effect of pantoprazole (PPZ) on the carcinogenesis and growth of HCC. Both diethylnitrosamine (DEN) plus CCl4-induced and DEN plus high fat diet (HFD)-induced HCC models in mice were established. Cytokines and cell proliferation-associated gene in the liver tissues of mice and HCC cells were analyzed. Cellular glycolysis and Na+/H+ exchange activity were measured. The preventive administration of pantoprazole (PPZ) at a clinically relevant low dose markedly suppressed HCC carcinogenesis in both DEN plus CCl4-induced and HFD-induced murine HCC models, whereas the therapeutic administration of PPZ at the dose suppressed the growth of HCC. In the liver tissues of PPZ-treated mice, inflammatory cytokines, IL1, CXCL1, CXCL5, CXCL9, CXCL10, CCL2, CCL5, CCL6, CCL7, CCL20, and CCL22, were reduced. The administration of CXCL1, CXCL5, CCL2, or CCL20 all reversed PPZ-suppressed DEN plus CCL4-induced HCC carcinogenesis in mice. PPZ inhibited the expressions of CCNA2, CCNB2, CCNE2, CDC25C, CDCA5, CDK1, CDK2, TOP2A, TTK, AURKA, and BIRC5 in HCC cells. Further results showed that PPZ reduced the production of these inflammatory cytokines and the expression of these cell proliferation-associated genes through the inhibition of glycolysis and Na+/H+ exchange. In conclusion, PPZ suppresses the carcinogenesis and growth of HCC, which is related to inhibiting the production of inflammatory cytokines and the expression of cell proliferation-associated genes in the liver through the inhibition of glycolysis and Na+/H+ exchange.


Asunto(s)
Carcinoma Hepatocelular , Proliferación Celular , Glucólisis , Neoplasias Hepáticas , Pantoprazol , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/metabolismo , Glucólisis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/metabolismo , Ratones , Pantoprazol/farmacología , Masculino , Proliferación Celular/efectos de los fármacos , Humanos , Ratones Endogámicos C57BL , Carcinogénesis/efectos de los fármacos , Dietilnitrosamina/toxicidad , Citocinas/metabolismo , Línea Celular Tumoral , Dieta Alta en Grasa/efectos adversos
3.
Sci Rep ; 14(1): 8013, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580754

RESUMEN

Hepatocellular carcinoma (HCC) seriously threatens human health, mostly developed from liver fibrosis or cirrhosis. Since diethylnitrosamine (DEN) and carbon tetrachloride (CCl4)-induced HCC mouse model almost recapitulates the characteristic of HCC with fibrosis and inflammation, it is taken as an essential tool to investigate the pathogenesis of HCC. However, a comprehensive understanding of the protein expression profile of this model is little. In this study, we performed proteomic analysis of this model to elucidate its proteomic characteristics. Compared with normal liver tissues, 432 differentially expressed proteins (DEPs) were identified in tumor tissues, among which 365 were up-regulated and 67 were down-regulated. Through Gene Ontology (GO) analysis, Ingenuity Pathway Analysis (IPA), protein-protein interaction networks (PPI) analysis and Gene-set enrichment analysis (GSEA) analysis of DEPs, we identified two distinguishing features of DEN and CCl4-induced HCC mouse model in protein expression, the upregulation of actin cytoskeleton and branched-chain amino acids metabolic reprogramming. In addition, matching DEPs from the mouse model to homologous proteins in the human HCC cohort revealed that the DEN and CCl4-induced HCC mouse model was relatively similar to the subtype of HCC with poor prognosis. Finally, combining clinical information from the HCC cohort, we screened seven proteins with prognostic significance, SMAD2, PTPN1, PCNA, MTHFD1L, MBOAT7, FABP5, and AGRN. Overall, we provided proteomic data of the DEN and CCl4-induced HCC mouse model and highlighted the important proteins and pathways in it, contributing to the rational application of this model in HCC research.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas Experimentales , Neoplasias Hepáticas , Ratones , Animales , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteómica , Neoplasias Hepáticas Experimentales/inducido químicamente , Neoplasias Hepáticas Experimentales/genética , Neoplasias Hepáticas Experimentales/metabolismo , Dietilnitrosamina/efectos adversos , Cirrosis Hepática/patología , Modelos Animales de Enfermedad , Proteínas de Unión a Ácidos Grasos
4.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673992

RESUMEN

Lipopolysaccharides (LPSs) have been reported to be important factors in promoting the progression of hepatocellular carcinoma (HCC), but the corresponding molecular mechanisms remain to be elucidated. We hypothesize that epiregulin (EREG), an epidermal growth factor (EGF) family member derived from hepatic stellate cells (HSCs) and activated by LPS stimulation, is a crucial mediator of HCC progression with epidermal growth factor receptor (EGFR) expression in the tumor microenvironment. We used a mouse xenograft model of Huh7 cells mixed with half the number of LX-2 cells, with/without intraperitoneal LPS injection, to elucidate the role of EREG in LPS-induced HCC. In the mouse model, LPS administration significantly enlarged the size of xenografted tumors and elevated the expression of EREG in tumor tissues compared with those in negative controls. Moreover, CD34 immunostaining and the gene expressions of angiogenic markers by a reverse transcription polymerase chain reaction revealed higher vascularization, with increased interleukin-8 (IL-8) expression in the tumors of the mice group treated with LPS compared to those without LPS. Our data collectively suggested that EREG plays an important role in the cancer microenvironment under the influence of LPS to increase not only the tumor cell growth and migration/invasion of EGFR-positive HCC cells but also tumor neovascularization via IL-8 signaling.


Asunto(s)
Carcinoma Hepatocelular , Epirregulina , Receptores ErbB , Lipopolisacáridos , Neoplasias Hepáticas , Transducción de Señal , Microambiente Tumoral , Epirregulina/metabolismo , Epirregulina/genética , Animales , Receptores ErbB/metabolismo , Receptores ErbB/genética , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Ratones , Línea Celular Tumoral , Neovascularización Patológica/metabolismo , Carcinogénesis/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , Interleucina-8/metabolismo , Interleucina-8/genética , Proliferación Celular , Masculino , Células Estrelladas Hepáticas/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
5.
Environ Int ; 186: 108582, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513556

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) are synthetic chemicals, encompassing compounds like perfluorooctane sulfonate (PFOS), which have widespread applications across various industries, including food packaging and firefighting. In recent years, China has increasingly employed 6:2 Cl-PFESA as an alternative to PFOS. Although the association between PFAS exposure and hepatocellular carcinoma (HCC) has been demonstrated, the underlying mechanisms that promote HCC proliferation are uncleared. Therefore, we aimed to investigate the effects and differences of PFOS and 6:2 Cl-PFESA on HCC proliferation through in vivo and in vitro tumor models. Our results reveal that both PFOS and 6:2 Cl-PFESA significantly contribute to HCC proliferation in vitro and in vivo. Exposure led to reduced population doubling times, enlarged cell colony sizes, enhanced DNA synthesis efficiency, and a higher proportion of cells undergoing mitosis. Furthermore, both PFOS and 6:2 Cl-PFES) have been shown to activate the PI3K/AKT/mTOR signaling pathway and inhibit necroptosis. This action consequently enhances the proliferation of HCC cells. Our phenotypic assay findings suggest that the tumorigenic potential of 6:2 Cl-PFESA surpasses that of PFOS; in a subcutaneous tumor model using nude mice, the mean tumor weight for the 6:2 Cl-PFESA-treated cohort was 2.33 times that observed in the PFOS cohort (p < 0.01). Despite 6:2 Cl-PFESA being considered a safer substitute for PFOS, the pronounced effects of this chemical on HCC cell growth warrant a thorough assessment of hepatotoxicity risks linked to its usage.


Asunto(s)
Ácidos Alcanesulfónicos , Carcinoma Hepatocelular , Proliferación Celular , Fluorocarburos , Neoplasias Hepáticas , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/inducido químicamente , Proliferación Celular/efectos de los fármacos , Animales , Ratones , Línea Celular Tumoral , Transducción de Señal/efectos de los fármacos , China
6.
Sci Rep ; 14(1): 6348, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491051

RESUMEN

Hepatocellular carcinoma (HCC) progression is associated with dysfunctional mitochondria and bioenergetics impairment. However, no data about the relationship between mitochondrial supercomplexes (hmwSC) formation and ATP production rates in HCC are available. Our group has developed an adenosine derivative, IFC-305, which improves mitochondrial function, and it has been proposed as a therapeutic candidate for HCC. We aimed to determine the role of IFC-305 on both mitochondrial structure and bioenergetics in a sequential cirrhosis-HCC model in rats. Our results showed that IFC-305 administration decreased the number and size of liver tumors, reduced the expression of tumoral markers, and reestablished the typical architecture of the hepatic parenchyma. The livers of treated rats showed a reduction of mitochondria number, recovery of the mtDNA/nDNA ratio, and mitochondrial length. Also, IFC-305 increased cardiolipin and phosphatidylcholine levels and promoted hmwSC reorganization with changes in the expression levels of hmwSC assembly-related genes. IFC-305 in HCC modified the expression of several genes encoding elements of electron transport chain complexes and increased the ATP levels by recovering the complex I, III, and V activity. We propose that IFC-305 restores the mitochondrial bioenergetics in HCC by normalizing the quantity, morphology, and function of mitochondria, possibly as part of its hepatic restorative effect.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Dietilnitrosamina/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Mitocondrias/metabolismo , Adenosina/metabolismo , Metabolismo Energético , Adenosina Trifosfato/metabolismo
8.
Environ Toxicol ; 39(6): 3666-3678, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38506534

RESUMEN

Liver malignancy is well recognized as a prominent health concern, with numerous treatment options available. Natural products are considered a renewable source, providing inspiring chemical moieties that could be used for cancer treatment. Suaeda vermiculata Forssk has traditionally been employed for management of hepatic conditions, including liver inflammation, and liver cirrhosis, as well as to improve general liver function. The findings of our earlier study demonstrated encouraging in vivo hepatoprotective benefits against liver injury generated by paracetamol and carbon tetrachloride. Additionally, Suaeda vermiculata Forssk exhibited cytotoxic activities in vitro against Hep-G2 cell lines and cell lines resistant to doxorubicin. The present investigation aimed to examine the potential in vivo hepatoprotective efficacy of Suaeda vermiculata Forssk extract (SVE) against hepatocellular carcinoma induced by diethylnitrosamine (DENA) in rats. The potential involvement of the PI3K/AKT/mTOR/NF-κB pathway was addressed. Sixty adult male albino rats were allocated into five groups randomly (n = 10). First group received a buffer, whereas second group received SVE only, third group received DENA only, and fourth and fifth groups received high and low doses of SVE, respectively, in the presence of DENA. Liver toxicity and tumor markers (HGFR, p-AKT, PI3K, mTOR, NF-κB, FOXO3a), apoptosis markers, and histopathological changes were analyzed. The current results demonstrated that SVE inhibited PI3K/AKT/mTOR/NF-κB pathway as well as increased expression of apoptotic parameters and FOXO3a levels, which were deteriorated by DENA treatment. Furthermore, SVE improved liver toxicity markers and histopathological changes induced by DENA administration. This study provided evidence for the conventional hepatoprotective properties attributed to SV and investigated the underlying mechanism by which its extract, SVE, could potentially serve as a novel option for hepatocellular carcinoma (HCC) treatment derived from a natural source.


Asunto(s)
Carcinoma Hepatocelular , Proteína Forkhead Box O3 , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Serina-Treonina Quinasas TOR , Animales , Masculino , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , FN-kappa B/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Ratas , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Chenopodiaceae/química , Dietilnitrosamina/toxicidad , Extractos Vegetales/farmacología , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo
9.
Environ Pollut ; 346: 123574, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38365076

RESUMEN

Hexafluoropropylene oxide dimer acid (GenX) is an alternative to perfluorooctanoic acid (PFOA), whose environmental concentration is close to its maximum allowable value established by the US Environmental Protection Agency, so its effects on human health are of great concern. The liver is one of the most crucial target organ for GenX, but whether GenX exposure induces liver cancer still unclear. In this research project, male C57 mice were disposed to GenX in drinking water at environmental concentrations (0.1 and 10 µg/L) and higher concentrations (1 and 100 mg/L) for 14 weeks to explore its effects on liver injury and potential carcinogenicity in mice. GenX was found to cause a dose-dependent increase in the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG). As the content of GenX in drinking water increased, so did the concentrations of Glypican-3 (GPC-3) and detachment gamma-carboxyprothrombin (DCP), indicators of early hepatocellular cancer. GenX destroyed the boundaries and arrangements of hepatocytes, in which monocyte infiltration, balloon-like transformation, and obvious lipid vacuoles were observed between cells. Following exposure to GenX, Masson sections revealed a significant quantity of collagen deposition in the liver. Alpha-feto protein (AFP), vascular endothelial growth factor (VEGF), Ki67, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) gene expression increased in a dose-dependent manner in the treatment group relative to the control group. In general, drinking water GenX exposure induced liver function impairment, elevated blood lipid level, caused liver pathological structure damage and liver fibrosis lesions, changed the liver inflammatory microenvironment, and increased the concentration of liver-related tumor indicator even in the environmental concentration, suggesting GenX is a potential carcinogen.


Asunto(s)
Carcinoma Hepatocelular , Agua Potable , Fluorocarburos , Neoplasias Hepáticas , Ratones , Masculino , Humanos , Animales , Carcinoma Hepatocelular/inducido químicamente , Metaloproteinasa 2 de la Matriz , Factor A de Crecimiento Endotelial Vascular , Neoplasias Hepáticas/inducido químicamente , Fluorocarburos/análisis , Hígado/química , Microambiente Tumoral
10.
Methods Mol Biol ; 2769: 15-25, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38315386

RESUMEN

Diethylnitrosamine (DEN) is a chemical hepatocarcinogenic agent that triggers a large array of oncogenic mutations after a single injection. Initiated hepatocytes subsequently undergo clonal expansion within a proliferative environment, rendering the DEN model a comprehensive carcinogen. In rodent studies, DEN finds extensive utility in experimental liver cancer research, mimicking several aspects of human hepatocellular carcinoma (HCC), including angiogenesis, metabolic reprogramming, immune exhaustion, and the ability to metastasize. Beyond the wealth of scientific insights gleaned from this model, the objective of this chapter is to review morphological, genomic, and immunological characteristics associated to DEN-induced HCC. Furthermore, this chapter provides a detailed procedural guide to effectively induce hepatocarcinogenesis in mice through a single intraperitoneal injection of DEN.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Humanos , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Dietilnitrosamina/toxicidad , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Carcinogénesis/inducido químicamente , Carcinogénesis/genética , Hepatocitos/patología , Ratones Endogámicos C57BL
11.
BMB Rep ; 57(2): 98-103, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38303560

RESUMEN

The mammalian sirtuin family (SIRT1-SIRT7) has shown diverse biological roles in the regulation and maintenance of genome stability under genotoxic stress. SIRT7, one of the least studied sirtuin, has been demonstrated to be a key factor for DNA damage response (DDR). However, conflicting results have proposed that Sirt7 is an oncogenic factor to promote transformation in cancer cells. To address this inconsistency, we investigated properties of SIRT7 in hepatocellular carcinoma (HCC) regulation under DNA damage and found that loss of hepatic Sirt7 accelerated HCC progression. Specifically, the number, size, and volume of hepatic tumor colonies in diethylnitrosamine (DEN) injected Sirt7-deficient liver were markedly enhanced. Further, levels of HCC progression markers and pro-inflammatory cytokines were significantly elevated in the absence of hepatic Sirt7, unlike those in the control. In chromatin, SIRT7 was stabilized and colocalized to damage site by inhibiting the induction of γH2AX under DNA damage. Together, our findings suggest that SIRT7 is a crucial factor for DNA damage repair and that hepatic loss-of-Sirt7 can promote genomic instability and accelerate HCC development, unlike early studies describing that Sirt7 is an oncogenic factor [BMB Reports 2024; 57(2): 98-103].


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Sirtuinas , Animales , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Dietilnitrosamina/toxicidad , Reparación del ADN , Daño del ADN , Sirtuinas/genética , Sirtuinas/metabolismo , Mamíferos/metabolismo
12.
FASEB J ; 38(4): e23480, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38354025

RESUMEN

Accumulating evidence suggests that dysregulation of FOXO3a plays a significant role in the progression of various malignancies, including hepatocellular carcinoma (HCC). FOXO3a inactivation, driven by oncogenic stimuli, can lead to abnormal cell growth, suppression of apoptosis, and resistance to anticancer drugs. Therefore, FOXO3a emerges as a potential molecular target for the development of innovative treatments in the era of oncology. Linagliptin (LNGTN), a DPP-4 inhibitor known for its safe profile, has exhibited noteworthy anti-inflammatory and anti-oxidative properties in previous in vivo studies. Several potential molecular mechanisms have been proposed to explain these effects. However, the capacity of LNGTN to activate FOXO3a through AMPK activation has not been investigated. In our investigation, we examined the potential repurposing of LNGTN as a hepatoprotective agent against diethylnitrosamine (DENA) intoxication. Additionally, we assessed LNGTN's impact on apoptosis and autophagy. Following a 10-week administration of DENA, the liver underwent damage marked by inflammation and early neoplastic alterations. Our study presents the first experimental evidence demonstrating that LNGTN can reinstate the aberrantly regulated FOXO3a activity by elevating the nuclear fraction of FOXO3a in comparison to the cytosolic fraction, subsequent to AMPK activation. Moreover, noteworthy inactivation of NFκB induced by LNGTN was observed. These effects culminated in the initiation of apoptosis, the activation of autophagy, and the manifestation of anti-inflammatory, antiproliferative, and antiangiogenic outcomes. These effects were concomitant with improved liver function and microstructure. In conclusion, our findings open new avenues for the development of novel therapeutic strategies targeting the AMPK/FOXO3a signaling pathway in the management of chronic liver damage.


Asunto(s)
Carcinoma Hepatocelular , Inhibidores de la Dipeptidil-Peptidasa IV , Neoplasias Hepáticas , Animales , Ratas , Linagliptina/farmacología , Proteínas Quinasas Activadas por AMP , Dietilnitrosamina/toxicidad , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Hipoglucemiantes , Inhibidores de Proteasas , Antivirales , Antiinflamatorios
13.
Histochem Cell Biol ; 161(4): 337-343, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38296878

RESUMEN

The third most prevalent malignancy to cause mortality is hepatocellular carcinoma (HCC). The Hedgehog (Hh) signaling pathway is activated by binding to the transmembrane receptor Patched-1 (PTCH-1), which depresses the transmembrane G protein-coupled receptor Smoothened (SMO). This study was performed to examine the preventative and therapeutic effects of cannabidiol in adult rats exposed to diethyl nitrosamine (DENA)-induced HCC.A total of 50 male rats were divided into five groups of 10 rats each. Group I was the control group. Group II received intraperitoneal (IP) injections of DENA for 14 weeks. Group III included rats that received cannabidiol (CBD) orally (3-30 mg/kg) for 2 weeks and DENA injections for 14 weeks. Group IV rats received oral CBD for 2 weeks before 14 weeks of DENA injections. Group V included rats that received CBD orally for 2 weeks after their last injection of DENA. Measurements were made for alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma glutamyl transferase (GGT), superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and alpha fetoprotein (AFP). Following total RNA extraction, Smo, Hhip, Ptch-1, and Gli-1 expressions were measured using quantitative real-time polymerase chain reaction (qRT-PCR). A histopathological analysis of liver tissues was performed.The liver enzymes, oxidant-antioxidant state, morphological, and molecular parameters of the adult male rat model of DENA-induced HCC showed a beneficial improvement after CBD administration. In conclusion, by focusing on the Hh signaling system, administration of CBD showed a beneficial improvement in the liver enzymes, oxidant-antioxidant status, morphological, and molecular parameters in the DENA-induced HCC in adult male rats.


Asunto(s)
Cannabidiol , Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratas , Masculino , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Proteínas Hedgehog/genética , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Cannabidiol/efectos adversos , Antioxidantes , Dietilnitrosamina/efectos adversos , Transducción de Señal , Oxidantes/efectos adversos , Expresión Génica
14.
Ecotoxicol Environ Saf ; 271: 115952, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38218109

RESUMEN

Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/ß-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Nicotina/toxicidad , Línea Celular Tumoral , Vía de Señalización Wnt/genética , Regulación Neoplásica de la Expresión Génica , Proliferación Celular
15.
Biomed Res Int ; 2024: 6673550, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38204757

RESUMEN

Background: Traditional herbal medicine practitioners in the Ashanti region of Ghana use the fruit peels of Citrus limon (L.) Osbeck (C. limon) in preventive and curative treatment of many cancers including liver cancer. This ethnobotanical claim remains to be verified scientifically. Aim of the Study. This study investigated prophylactic hepatoprotective and anti-HCC effects of C. limon peel extract (LPE) in CCl4/olive oil-induced HCC-like rats. Materials and Methods: After preparation of LPE, it was subjected to phytochemical screening using standard phytochemical methods. A total of 30 healthy adult male Sprague-Dawley rats (weighing 150-200 g) were randomly assigned into six groups of 5 rats each. Rats in the control group received olive oil (5 mL/kg ip) twice weekly for 16 weeks. Rats in the model group received CCl4/olive oil (2 mL/kg, ip) twice weekly for 16 weeks. Rats in capecitabine (10 mg/kg po) and LPE (50, 100, and 200 mg/kg po) groups received CCl4/olive oil (2 mL/kg, i.p) in the morning and their respective treatments in the afternoon twice a week for 16 weeks. Rats in all groups had free access to food and water ad libitum. Body weight and survival rates were monitored. Rats were sacrificed under deep anesthesia, blood was collected, and liver and other organs were isolated. Aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase (ALP), gamma-glutamyltransferase (GGT), prothrombin time, bilirubin, C-reactive protein (CRP), alpha- (α-) fetoprotein (AFP), and liver histology were assessed. Results: Alkaloids, tannins, flavonoids, terpenoids, and saponins were detected in LPE. Model rats demonstrated increased serum levels of AFP, CRP, ALP, GGT, ALT, and AST, prothrombin time, total bilirubin, direct bilirubin, blood lymphocyte, and monocyte counts, but decreased serum albumin and total protein compared to control rats. Unlike the control, model rats demonstrated fat accumulation in periportal and centrilobular hepatocytes and neoplastic transformation. Semiquantitation of periodic acid Schiff- (PAS-) stained liver sections showed decreased glycogen storage in hepatocytes of model rats compared to control rats. Compared to the model, LPE treatment protected against CCl4-induced hepatocarcinogenesis, which was evidenced by decreased AFP, CRP, liver enzymes, total and direct bilirubin, prothrombin time, and blood lymphocyte and monocyte counts; attenuation of fat accumulation; and increased glycogen storage, albumin, and total protein. Conclusion: LPE abates CCl4-induced hepatocarcinogenesis by attenuating liver inflammation and improving metabolic, biosynthetic, and detoxification functions of the liver. The prophylactic hepatoprotective and anti-hepatocarcinogenic effects of LPE are attributable to its phytochemical composition raising hopes of finding potential anticancer bioactive compounds from C. limon fruit peels.


Asunto(s)
Carcinoma Hepatocelular , Citrus , Neoplasias Hepáticas , Masculino , Ratas , Animales , Ratas Sprague-Dawley , Tetracloruro de Carbono , alfa-Fetoproteínas , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Frutas , Aceite de Oliva , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/tratamiento farmacológico , Carcinogénesis , Alanina Transaminasa , Fosfatasa Alcalina , Aspartato Aminotransferasas , Bilirrubina , Fitoquímicos , Glucógeno , Extractos Vegetales/farmacología
16.
J Pharm Biomed Anal ; 239: 115875, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38061172

RESUMEN

Huachansu (HCS) tablets, classified as well-known traditional Chinese medicine (TCM) preparation, have been proved to be effective in the treatment of hepatocellular carcinoma (HCC) in clinical studies. However, the underlying mechanism of HCS tablets against HCC has not been comprehensively elucidated. In this study, a rat model of HCC was established with diethylnitrosamine (DEN) inducer. The efficacy of HCS tablets against HCC was assessed through liver histopathological examination and evaluation of biochemical indicators. A metabolomics method based on UPLC-Q-TOF/MS combined with multivariate data analysis was established to identify differential metabolites related to the inhibition effect of HCS tablets on HCC, and then the relevant metabolic pathway analysis was performed to investigate the anti-HCC mechanisms of HCS tablets. The results showed that compared to the control group, the HCC model group showed a significant increase in the values of HCC-related biochemical indicators and the number of tumor nodules, indicating the successful establishment of the HCC rat model. Upon treatment with HCS tablets, the values of HCC-related biochemical indicators decreased, liver fibrosis and nuclear deformation were also significantly alleviated. A total of 15 differential metabolites associated with the anti-tumor effect of HCS tablets on HCC were screened and annotated through hepatic tissue metabolomics studies. Analysis of metabolic pathways revealed that the therapeutic effects of HCS tablets on HCC mainly involved the pentose and glucuronate interconversions and arachidonic acid metabolism. Further western blotting corroborated that the alteration in arachidonic acid (AA) level after the intervention of HCS tablets was related to the inhibition of cPLA2α expression in rat liver tissues. In conclusion, HCS tablets exhibit a certain anti-tumor effect on HCC, and the metabolomics method based on UPLC-Q-TOF/MS combined with further verification at the biochemical level is a promising way to reveal its underlying mechanism.


Asunto(s)
Carcinoma Hepatocelular , Medicamentos Herbarios Chinos , Neoplasias Hepáticas , Ratas , Animales , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/tratamiento farmacológico , Cromatografía Líquida de Alta Presión/métodos , Ácido Araquidónico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Metabolómica/métodos , Comprimidos , Biomarcadores/metabolismo
17.
Environ Pollut ; 341: 122910, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967710

RESUMEN

Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/inducido químicamente , Neoplasias Hepáticas/inducido químicamente , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo , Línea Celular Tumoral , Proliferación Celular , Mamíferos/metabolismo
18.
Pharmacotherapy ; 44(3): 214-223, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009283

RESUMEN

BACKGROUND: Vascular endothelial growth factor inhibitors, including tyrosine kinase inhibitors (TKIs) and anti-angiogenics, are first-line therapies for advanced and metastatic hepatocellular carcinoma. Although TKIs have a greater potential for off-target adverse effects compared with bevacizumab (anti-angiogenics), a direct comparison of the risk of cardiovascular adverse events between these two types of therapies has not been performed. OBJECTIVE: To compare the incidence of and characterize cardiovascular adverse events in patients with hepatocellular carcinoma receiving TKIs versus bevacizumab. METHODS: This cohort study included adult patients with hepatocellular carcinoma who received first-line TKIs (sorafenib or lenvatinib) or bevacizumab at two academic medical centers and one community cancer center from September 2018 to August 2021. The primary outcome was risk of cardiovascular adverse events. Major secondary outcomes included the incidence of individual types of cardiovascular adverse events and risk factors associated with major adverse cardiovascular events (MACE). RESULTS: The study included 221 patients (159 TKI patients; 62 bevacizumab patients). At a median follow-up of 5 months, the probability of cardiovascular adverse events was not significantly different between the two groups (hazard ratio [HR]: 0.85; 95% confidence interval [95% CI]: 0.58-1.24; p = 0.390). The cumulative incidence of cardiovascular events was highest in patients receiving lenvatinib (sub-distribution hazard ratio [SHR]: 1.53; 95% CI: 1.02-2.30) compared with those receiving sorafenib (reference) or bevacizumab (SHR: 1.05; 95% CI: 0.68-1.64) after adjustment for comorbidities, liver transplant status, and presence of portal vein thrombosis at baseline. Cardiovascular adverse events were observed in 151 (68%) patients, and MACE were observed in 27 (12%) patients. Risk factors associated with MACE were hypertension (SHR: 3.5; 95% CI: 0.9087-15.83; p = 0.086), prior history of MACE (SHR: 2.01; 95% CI: 0.83-4.87; p = 0.124), and tobacco use (SHR: 2.85; 95% CI: 0.90-8.97; p = 0.074). CONCLUSIONS: Cardiovascular risk was not significantly different between TKIs and bevacizumab. Lenvatinib appears to have the highest risk of cardiovascular adverse events among these first-line VEGF inhibitors.


Asunto(s)
Carcinoma Hepatocelular , Enfermedades Cardiovasculares , Neoplasias Hepáticas , Compuestos de Fenilurea , Quinolinas , Adulto , Humanos , Bevacizumab/efectos adversos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/patología , Factor A de Crecimiento Endotelial Vascular , Sorafenib/efectos adversos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Estudios de Cohortes , Enfermedades Cardiovasculares/inducido químicamente , Enfermedades Cardiovasculares/epidemiología
19.
J Hepatol ; 80(1): 20-30, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37734683

RESUMEN

BACKGROUND & AIMS: Recent studies reported that moderate HBV DNA levels are significantly associated with hepatocellular carcinoma (HCC) risk in hepatitis B e antigen (HBeAg)-positive, non-cirrhotic patients with chronic hepatitis B (CHB). We aimed to develop and validate a new risk score to predict HCC development using baseline moderate HBV DNA levels in patients entering into HBeAg-positive CHB from chronic infection. METHODS: This multicenter cohort study recruited 3,585 HBeAg-positive, non-cirrhotic patients who started antiviral treatment with entecavir or tenofovir disoproxil fumarate at phase change into CHB from chronic infection in 23 tertiary university-affiliated hospitals of South Korea (2012-2020). A new HCC risk score (PAGED-B) was developed (training cohort, n = 2,367) based on multivariable Cox models. Internal validation using bootstrap sampling and external validation (validation cohort, n = 1,218) were performed. RESULTS: Sixty (1.7%) patients developed HCC (median follow-up, 5.4 years). In the training cohort, age, gender, platelets, diabetes and moderate HBV DNA levels (5.00-7.99 log10 IU/ml) were independently associated with HCC development; the PAGED-B score (based on these five predictors) showed a time-dependent AUROC of 0.81 for the prediction of HCC development at 5 years. In the validation cohort, the AUROC of PAGED-B was 0.85, significantly higher than for other risk scores (PAGE-B, mPAGE-B, CAMD, and REAL-B). When stratified by the PAGED-B score, the HCC risk was significantly higher in high-risk patients than in low-risk patients (sub-distribution hazard ratio = 8.43 in the training and 11.59 in the validation cohorts, all p <0.001). CONCLUSIONS: The newly established PAGED-B score may enable risk stratification for HCC at the time of transition into HBeAg-positive CHB. IMPACT AND IMPLICATIONS: In this study, we developed and validated a new risk score to predict hepatocellular carcinoma (HCC) development in patients entering into hepatitis B e antigen (HBeAg)-positive chronic hepatitis B (CHB) from chronic infection. The newly established PAGED-B score, which included baseline moderate HBV DNA levels (5-8 log10 IU/ml), improved on the predictive performance of prior risk scores. Based on a patient's age, gender, diabetic status, platelet count, and moderate DNA levels (5-8 log10 IU/ml) at the phase change into CHB from chronic infection, the PAGED-B score represents a reliable and easily available risk score to predict HCC development during the first 5 years of antiviral treatment in HBeAg-positive patients entering into CHB. With a scoring range from 0 to 12 points, the PAGED-B score significantly differentiated the 5-year HCC risk: low <7 points and high ≥7 points.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Humanos , Preescolar , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/inducido químicamente , Hepatitis B Crónica/complicaciones , Hepatitis B Crónica/tratamiento farmacológico , Antígenos e de la Hepatitis B , ADN Viral , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/inducido químicamente , Estudios de Cohortes , Infección Persistente , Antivirales/uso terapéutico , Factores de Riesgo , Virus de la Hepatitis B/genética
20.
JAMA Netw Open ; 6(12): e2346380, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38048128

RESUMEN

Importance: Hepatocellular carcinoma (HCC) and its mortality are on the rise. Viral hepatitis and alcohol are leading risk factors; however, other risk factors among veterans are less defined, including Agent Orange (AO), an herbicide linked to several cancers. Objective: To assess the association of AO exposure and HCC in a national cohort of Vietnam veterans. Design, Setting, and Participants: This retrospective cohort study included Vietnam veterans who served between 1966 and 1975, were male, were older than 18 years at the time of deployment, and had established follow-up in the Veterans Affairs (VA) between 2000 and 2019. Veterans with AO exposure were identified in the disability data via validated clinical surveys. Relevant clinical risk factors for cirrhosis and HCC were collected. Patients were stratified based on cirrhosis status, as defined by consecutive diagnosis found by documented International Classification of Diseases, Ninth Revision and International Statistical Classification of Diseases and Related Health Problems, Tenth Revision scores or calculated Fibrosis-4 scores. Data were collected from January 1, 2019, to December 31, 2020, and analyzed from December 2020 to October 2023. Main Outcome and Measures: Incident HCC was the primary outcome. AO and HCC association was estimated using a multivariable Cox regression analysis, with death and liver transplant as competing events. Results: Of the 296 505 eligible veterans (222 545 [75.1%] White individuals and 44 342 [15.0%] Black individuals), 170 090 (57%) had AO exposure (mean [SD] age, 21.62 [3.49] years; 131 552 White individuals [83.2%] and 22 767 Black individuals [14.4%]) and 35 877 (12.1%) had cirrhosis. Veterans who were not exposed to AO were more likely to smoke (109 689 of 126 413 [86.8%] vs 146 061 of 170 090 [85.9%]); use alcohol (54 147 of 126 413 [42.8%] vs 71 951 of 170 090 [42.3%]) and have viral hepatitis (47 722 of 126 413 [37.8%] vs 58 942 of 170 090 [34.7%]). In a multivariable competing risk model, AO exposure was not associated with HCC. Among veterans with cirrhosis, self-identification as Hispanic individuals (aHR, 1.51; 95% CI, 1.30-1.75; P <.001) or Black individuals (aHR, 1.18; 95% CI, 1.05-1.32; P = .004), and having a diagnosis of viral hepatitis (aHR, 3.71; 95% CI, 3.26-4.24; P <.001), alcohol-associated liver disease (aHR, 1.32; 95% CI, 1.19-1.46; P <.001), and nonalcoholic fatty liver disease (NAFLD) (aHR, 1.92; 95% CI, 1.72-2.15; P <.001) were associated with HCC. Among veterans without cirrhosis, hypertension (aHR, 1.63; 95% CI, 1.23-2.15; P <.001) and diabetes (aHR, 1.52; 95% CI, 1.13-2.05; P = .005) were also associated with HCC. Early smoking and alcohol use were significant risk factors for HCC. Conclusions and Relevance: In this large nationwide cohort study of Vietnam veterans, AO exposure was not associated with HCC. Smoking, alcohol, viral hepatitis, and NAFLD were the most important clinical risk factors for HCC.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis Viral Humana , Neoplasias Hepáticas , Personal Militar , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Adulto Joven , Adulto , Femenino , Carcinoma Hepatocelular/inducido químicamente , Carcinoma Hepatocelular/epidemiología , Agente Naranja , Estudios de Cohortes , Estudios Retrospectivos , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/epidemiología , Cirrosis Hepática/epidemiología , Etanol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA