Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 947
Filtrar
1.
J Am Heart Assoc ; 11(11): e024854, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35656980

RESUMEN

Background Heart failure, caused by sustained pressure overload, remains a major public health problem. PKM (pyruvate kinase M) acts as a rate-limiting enzyme of glycolysis. PKM2 (pyruvate kinase M2), an alternative splicing product of PKM, plays complex roles in various biological processes and diseases. However, the role of PKM2 in the development of heart failure remains unknown. Methods and Results Cardiomyocyte-specific Pkm2 knockout mice were generated by crossing the floxed Pkm2 mice with α-MHC (myosin heavy chain)-Cre transgenic mice, and cardiac specific Pkm2 overexpression mice were established by injecting adeno-associated virus serotype 9 system. The results showed that cardiomyocyte-specific Pkm2 deletion resulted in significant deterioration of cardiac functions under pressure overload, whereas Pkm2 overexpression mitigated transverse aortic constriction-induced cardiac hypertrophy and improved heart functions. Mechanistically, we demonstrated that PKM2 acted as a protein kinase rather than a pyruvate kinase, which inhibited the activation of RAC1 (rho family, small GTP binding protein)-MAPK (mitogen-activated protein kinase) signaling pathway by phosphorylating RAC1 in the progress of heart failure. In addition, blockade of RAC1 through NSC23766, a specific RAC1 inhibitor, attenuated pathological cardiac remodeling in Pkm2 deficiency mice subjected to transverse aortic constriction. Conclusions This study revealed that PKM2 attenuated overload-induced pathological cardiac hypertrophy and heart failure, which provides an attractive target for the prevention and treatment of cardiomyopathies.


Asunto(s)
Insuficiencia Cardíaca , Neuropéptidos , Piruvato Quinasa , Proteína de Unión al GTP rac1 , Animales , Cardiomegalia/enzimología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/prevención & control , Ratones , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Neuropéptidos/metabolismo , Piruvato Quinasa/metabolismo , Proteína de Unión al GTP rac1/metabolismo
2.
Mol Cell Biochem ; 477(4): 1309-1320, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35138512

RESUMEN

The prevalence of the metabolic syndrome (MetS) and its cardiac comorbidities as cardiac hypertrophy (CH) have increased considerably due to the high consumption of carbohydrates, such as sucrose and/or fructose. We compared the effects of sucrose (S), fructose (F) and their combination (S + F) on the development of MetS in weaned male Wistar rats and established the relationship between the consumption of these sugars and the degree of cardiac CH development, oxidative stress (OS) and Calcium/calmodulin-dependent protein kinase type II subunit delta oxidation (ox-CaMKIIδ). 12 weeks after the beginning of treatments with S, F or S + F, arterial pressure was measured and 8 weeks later (to complete 20 weeks) the animals were sacrificed and blood samples, visceral adipose tissue and hearts were obtained. Biochemical parameters were determined in serum and cardiac tissue to evaluate the development of MetS and OS. To evaluate CH, atrial natriuretic peptide (ANP), CaMKIIδ and ox-CaMKIIδ were determined by western blot and histological studies were performed in cardiac tissue. Our data showed that chronic consumption of S + F exacerbates MetS-induced CH which is related with a higher OS and ox-CaMKIIδ.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/enzimología , Carbohidratos de la Dieta/efectos adversos , Fructosa/efectos adversos , Síndrome Metabólico/enzimología , Miocardio/enzimología , Estrés Oxidativo/efectos de los fármacos , Sacarosa/efectos adversos , Animales , Carbohidratos de la Dieta/farmacología , Fructosa/farmacología , Masculino , Oxidación-Reducción/efectos de los fármacos , Ratas , Ratas Wistar , Sacarosa/farmacología
3.
FASEB J ; 36(1): e22069, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34859913

RESUMEN

Atrial natriuretic peptide (NP) and BNP increase cGMP, which reduces blood pressure and cardiac hypertrophy by activating guanylyl cyclase (GC)-A, also known as NPR-A or Npr1. Although GC-A is highly phosphorylated, and dephosphorylation inactivates the enzyme, the significance of GC-A phosphorylation to heart structure and function remains unknown. To identify in vivo processes that are regulated by GC-A phosphorylation, we substituted glutamates for known phosphorylation sites to make GC-A8E/8E mice that express an enzyme that cannot be inactivated by dephosphorylation. GC-A activity, but not protein, was increased in heart and kidney membranes from GC-A8E/8E mice. Activities were threefold higher in female compared to male cardiac ventricles. Plasma cGMP and testosterone were elevated in male and female GC-A8E/8E mice, but aldosterone was only increased in mutant male mice. Plasma and urinary creatinine concentrations were decreased and increased, respectively, but blood pressure and heart rate were unchanged in male GC-A8E/8E mice. Heart weight to body weight ratios for GC-A8E/8E male, but not female, mice were 12% lower with a 14% reduction in cardiomyocyte cross-sectional area. Subcutaneous injection of fsANP, a long-lived ANP analog, increased plasma cGMP and decreased aldosterone in male GC-AWT/WT and GC-A8E/8E mice at 15 min, but only GC-A8E/8E mice had elevated levels of plasma cGMP and aldosterone at 60 min. fsANP reduced ventricular ERK1/2 phosphorylation to a greater extent and for a longer time in the male mutant compared to WT mice. Finally, ejection fractions were increased in male but not female hearts from GC-A8E/8E mice. We conclude that increased phosphorylation-dependent GC-A activity decreases cardiac ERK activity, which results in smaller male hearts with improved systolic function.


Asunto(s)
Cardiomegalia , Sistema de Señalización de MAP Quinasas , Fosforilación , Receptores del Factor Natriurético Atrial , Caracteres Sexuales , Animales , Cardiomegalia/enzimología , Cardiomegalia/genética , Femenino , Masculino , Ratones , Ratones Transgénicos , Receptores del Factor Natriurético Atrial/genética , Receptores del Factor Natriurético Atrial/metabolismo
4.
Biochemistry (Mosc) ; 86(11): 1395-1406, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34906040

RESUMEN

Cardiovascular diseases (CVD) are among the leading causes of death and disability worldwide. Pregnancy-associated plasma protein-A (PAPP-A) is a matrix metalloprotease localized on the cell surface. One of the substrates that PAPP-A cleaves is the insulin-like growth factor binding protein-4 (IGFBP-4), a member of the family of proteins that bind insulin-like growth factor (IGF). Proteolysis of IGFBP-4 by PAPP-A occurs at a specific site resulting in formation of two proteolytic fragments - N-terminal IGFBP-4 (NT-IGFBP-4) and C-terminal IGFBP-4 (CT-IGFBP-4), and leads to the release of IGF activating various cellular processes including migration, proliferation, and cell growth. Increased levels of the proteolytic IGFBP-4 fragments correlate with the development of CVD complications and increased risk of death in patients with the coronary heart disease, acute coronary syndrome, and heart failure. However, there is no direct evidence that PAPP-A specifically cleaves IGFBP-4 in the cardiac tissue under normal and pathological conditions. In the present study, using a primary culture of rat neonatal cardiomyocytes as a model, we have demonstrated that: 1) proteolysis of IGFBP-4 by PAPP-A occurs in the conditioned medium of cardiomyocytes, 2) PAPP-A-specific IGFBP-4 proteolysis is increased when cardiomyocytes are transformed to a hypertrophic state. Thus, it can be assumed that the enhancement of IGFBP-4 cleavage by PAPP-A and hypertrophic changes in cardiomyocytes accompanying CVD are interrelated, and PAPP-A appears to be one of the activators of the IGF-dependent processes in normal and hypertrophic-state cardiomyocytes.


Asunto(s)
Cardiomegalia/enzimología , Proteína 4 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/enzimología , Proteína Plasmática A Asociada al Embarazo/metabolismo , Proteolisis , Animales , Animales Recién Nacidos , Cardiomegalia/patología , Células Cultivadas , Miocitos Cardíacos/patología , Ratas
5.
PLoS Biol ; 19(11): e3001447, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34758018

RESUMEN

During the first weeks of postnatal heart development, cardiomyocytes undergo a major adaptive metabolic shift from glycolytic energy production to fatty acid oxidation. This metabolic change is contemporaneous to the up-regulation and activation of the p38γ and p38δ stress-activated protein kinases in the heart. We demonstrate that p38γ/δ contribute to the early postnatal cardiac metabolic switch through inhibitory phosphorylation of glycogen synthase 1 (GYS1) and glycogen metabolism inactivation. Premature induction of p38γ/δ activation in cardiomyocytes of newborn mice results in an early GYS1 phosphorylation and inhibition of cardiac glycogen production, triggering an early metabolic shift that induces a deficit in cardiomyocyte fuel supply, leading to whole-body metabolic deregulation and maladaptive cardiac pathogenesis. Notably, the adverse effects of forced premature cardiac p38γ/δ activation in neonate mice are prevented by maternal diet supplementation of fatty acids during pregnancy and lactation. These results suggest that diet interventions have a potential for treating human cardiac genetic diseases that affect heart metabolism.


Asunto(s)
Glucógeno Sintasa/metabolismo , Proteína Quinasa 12 Activada por Mitógenos/metabolismo , Proteína Quinasa 13 Activada por Mitógenos/metabolismo , Miocardio/enzimología , Animales , Animales Recién Nacidos , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Dieta Alta en Grasa , Activación Enzimática , Conducta Alimentaria , Femenino , Eliminación de Gen , Intolerancia a la Glucosa/enzimología , Glucógeno/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Sistema de Señalización de MAP Quinasas , Ratones Endogámicos C57BL , Miocitos Cardíacos/enzimología , Especificidad de Órganos , Fosforilación
6.
Biomed Pharmacother ; 143: 112178, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649308

RESUMEN

Modified citrus pectin (MCP) is a specific inhibitor of galectin-3 (Gal-3) that is regarded as a new biomarker of cardiac hypertrophy, but its effect is unclear. The aim of this study is to investigate the role and mechanism of MCP in isoproterenol (ISO)-induced cardiac hypertrophy. Rats were injected with ISO to induce cardiac hypertrophy and treated with MCP. Cardiac function was detected by ECG and echocardiography. Pathomorphological changes were evaluated by the haematoxylin eosin (H&E) and wheat germ agglutinin (WGA) staining. The hypertrophy-related genes for atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC), and the associated signal molecules were analysed by qRT-PCR and western blotting. The results show that MCP prevented cardiac hypertrophy and ameliorated cardiac dysfunction and structural disorder. MCP also decreased the levels of ANP, BNP, and ß-MHC and inhibited the expression of Gal-3 and Toll-like receptor 4 (TLR4). Additionally, MCP blocked the phosphorylation of Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), but it promoted the phosphorylation of p38. Thus, MCP prevented ISO-induced cardiac hypertrophy by activating p38 signalling and inhibiting the Gal-3/TLR4/JAK2/STAT3 pathway.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Fármacos Cardiovasculares/farmacología , Janus Quinasa 2/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Pectinas/farmacología , Factor de Transcripción STAT3/metabolismo , Receptor Toll-Like 4/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Galectina 3/metabolismo , Isoproterenol , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Péptido Natriurético Encefálico/genética , Péptido Natriurético Encefálico/metabolismo , Fosforilación , Ratas Wistar , Transducción de Señal , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
7.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360761

RESUMEN

Regulated/activated protein kinase (PRAK) plays a crucial role in modulating biological function. However, the role of PRAK in mediating cardiac dysfunction and metabolic disorders remains unclear. We examined the effects of deletion of PRAK on modulating cardiac function and insulin resistance in mice exposed to a high-fat diet (HFD). Wild-type and PRAK-/- mice at 8 weeks old were exposed to either chow food or HFD for a consecutive 16 weeks. Glucose tolerance tests and insulin tolerance tests were employed to assess insulin resistance. Echocardiography was employed to assess myocardial function. Western blot was used to determine the molecular signaling involved in phosphorylation of IRS-1, AMPKα, ERK-44/42, and irisin. Real time-PCR was used to assess the hypertrophic genes of the myocardium. Histological analysis was employed to assess the hypertrophic response, interstitial myocardial fibrosis, and apoptosis in the heart. Western blot was employed to determine cellular signaling pathway. HFD-induced metabolic stress is indicated by glucose intolerance and insulin intolerance. PRAK knockout aggravated insulin resistance, as indicated by glucose intolerance and insulin intolerance testing as compared with wild-type littermates. As compared with wild-type mice, hyperglycemia and hypercholesterolemia were manifested in PRAK-knockout mice following high-fat diet intervention. High-fat diet intervention displayed a decline in fractional shortening and ejection fraction. However, deletion of PRAK exacerbated the decline in cardiac function as compared with wild-type mice following HFD treatment. In addition, PRAK knockout mice enhanced the expression of myocardial hypertrophic genes including ANP, BNP, and ßMHC in HFD treatment, which was also associated with an increase in cardiomyocyte size and interstitial fibrosis. Western blot indicated that deletion of PRAK induces decreases in phosphorylation of IRS-1, AMPKα, and ERK44/42 as compared with wild-type controls. Our finding indicates that deletion of PRAK promoted myocardial dysfunction, cardiac remodeling, and metabolic disorders in response to HFD.


Asunto(s)
Cardiomegalia/enzimología , Diabetes Mellitus Experimental/enzimología , Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Miocardio/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Volumen Sistólico , Remodelación Ventricular
8.
BMC Cardiovasc Disord ; 21(1): 266, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34059001

RESUMEN

BACKGROUND: Cardiovascular diseases have become the leading cause of death worldwide, and cardiac hypertrophy is the core mechanism underlying cardiac defect and heart failure. However, the underlying mechanisms of cardiac hypertrophy are not fully understood. Here we investigated the roles of Kallikrein 11 (KLK11) in cardiac hypertrophy. METHODS: Human and mouse hypertrophic heart tissues were used to determine the expression of KLK11 with quantitative real-time PCR and western blot. Mouse cardiac hypertrophy was induced by transverse aortic constriction (TAC), and cardiomyocyte hypertrophy was induced by angiotensin II. Cardiac function was analyzed by echocardiography. The signaling pathway was analyzed by western blot. Protein synthesis was monitored by the incorporation of [3H]-leucine. Gene expression was analyzed by quantitative real-time PCR. RESULTS: The mRNA and protein levels of KLK11 were upregulated in human hypertrophic hearts. We also induced cardiac hypertrophy in mice and observed the upregulation of KLK11 in hypertrophic hearts. Our in vitro experiments demonstrated that KLK11 overexpression promoted whereas KLK11 knockdown repressed cardiomyocytes hypertrophy induced by angiotensin II, as evidenced by cardiomyocyte size and the expression of hypertrophy-related fetal genes. Besides, we knocked down KLK11 expression in mouse hearts with adeno-associated virus 9. Knockdown of KLK11 in mouse hearts inhibited TAC-induced decline in fraction shortening and ejection fraction, reduced the increase in heart weight, cardiomyocyte size, and expression of hypertrophic fetal genes. We also observed that KLK11 promoted protein synthesis, the key feature of cardiomyocyte hypertrophy, by regulating the pivotal machines S6K1 and 4EBP1. Mechanism study demonstrated that KLK11 promoted the activation of AKT-mTOR signaling to promote S6K1 and 4EBP1 pathway and protein synthesis. Repression of mTOR with rapamycin blocked the effects of KLK11 on S6K1 and 4EBP1 as well as protein synthesis. Besides, rapamycin treatment blocked the roles of KLK11 in the regulation of cardiomyocyte hypertrophy. CONCLUSIONS: Our findings demonstrated that KLK11 promoted cardiomyocyte hypertrophy by activating AKT-mTOR signaling to promote protein synthesis.


Asunto(s)
Cardiomegalia/enzimología , Miocitos Cardíacos/enzimología , Biosíntesis de Proteínas , Serina Endopeptidasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Anciano , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/patología , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inhibidores mTOR/farmacología , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Biosíntesis de Proteínas/efectos de los fármacos , Serina Endopeptidasas/genética , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Regulación hacia Arriba
9.
Cardiovasc Toxicol ; 21(9): 721-736, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34076830

RESUMEN

Apigenin, identified as 4', 5, 7-trihydroxyflavone, is a natural flavonoid compound that has many interesting pharmacological activities and nutraceutical potential including anti-inflammatory and antioxidant functions. Chronic, low-grade inflammation and oxidative stress are involved in both the initiation and progression of hypertension and hypertension-induced cardiac hypertrophy. However, whether or not apigenin improves hypertension and cardiac hypertrophy through modulating NADPH oxidase-dependent reactive oxygen species (ROS) generation and inflammation in hypothalamic paraventricular nucleus (PVN) has not been reported. This study aimed to investigate the effects of apigenin on hypertension in spontaneously hypertensive rats (SHRs) and its possible central mechanism of action. SHRs and Wistar-Kyoto (WKY) rats were randomly assigned and treated with bilateral PVN infusion of apigenin or vehicle (artificial cerebrospinal fluid) via osmotic minipumps (20 µg/h) for 4 weeks. The results showed that after PVN infusion of apigenin, the mean arterial pressure (MAP), heart rate, plasma norepinephrine (NE), Beta 1 receptor in kidneys, level of phosphorylation of PKA in the ventricular tissue and cardiac hypertrophy, perivascular fibrosis, heart level of oxidative stress, PVN levels of oxidative stress, interleukin 1ß (IL-1ß), interleukin 6 (IL-6), iNOS, monocyte chemotactic protein 1 (MCP-1), tyrosine hydroxylase (TH), NOX2 and NOX4 were attenuated and PVN levels of interleukin 10 (IL-10), superoxide dismutase 1 (Cu/Zn-SOD) and the 67-kDa isoform of glutamate decarboxylase (GAD67) were increased. These results revealed that apigenin improves hypertension and cardiac hypertrophy in SHRs which are associated with the down-regulation of NADPH oxidase-dependent ROS generation and inflammation in the PVN.


Asunto(s)
Antiinflamatorios/farmacología , Antihipertensivos/farmacología , Antioxidantes/farmacología , Apigenina/farmacología , Cardiomegalia/tratamiento farmacológico , Citocinas/metabolismo , Hipertensión/tratamiento farmacológico , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Núcleo Hipotalámico Paraventricular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Cardiomegalia/enzimología , Cardiomegalia/fisiopatología , Modelos Animales de Enfermedad , Fibrosis , Hipertensión/enzimología , Hipertensión/fisiopatología , Masculino , Miocardio/metabolismo , Miocardio/patología , NADPH Oxidasas/genética , Núcleo Hipotalámico Paraventricular/enzimología , Núcleo Hipotalámico Paraventricular/fisiopatología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
10.
Cardiovasc Toxicol ; 21(8): 655-668, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34021461

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) is an enzyme for tryptophan metabolism, involved in immune cell differentiation/maturation and cancer biology. IDO1 is also expressed in cardiomyocytes, but its roles in the cardiovascular system are not fully understood. Here, we reported the functions of IDO1 during cardiac hypertrophy. Quantitative real-time PCR and Western blot experiments demonstrated the upregulation of IDO1 mRNA and protein levels in human and hypertrophic mouse hearts, as well as in angiotensin II (Ang II)-induced hypertrophic rat cardiomyocytes. IDO1 activity and metabolite product kynurenine were upregulated in rodent hypertrophic hearts and cardiomyocytes. Inhibition of IDO1 activity with PF-06840003 reduced Ang II-induced cardiac hypertrophy and rescued cardiac function in mice. siRNA-mediated knockdown of Ido1 repressed Ang II-induced growth in cardiomyocyte size and overexpression of hypertrophy-associated genes atrial natriuretic peptide (Anp or Nppa), brain natriuretic peptide (Bnp or Nppb), ß-myosin heavy chain (ß-Mhc or Myh7). By contrast, adenovirus-mediated rat Ido1 overexpression in cardiomyocytes promoted hypertrophic growth induced by Ang II. Mechanism analysis showed that IDO1 overexpression was associated with PI3K-AKT-mTOR signaling to activate the ribosomal protein S6 kinase 1 (S6K1), which promoted protein synthesis in Ang II-induced hypertrophy of rat cardiomyocytes. Finally, we provided evidence that inhibition of PI3K with pictilisib, AKT with perifosine, or mTOR with rapamycin, blocked the effects of IDO1 on protein synthesis and cardiomyocyte hypertrophy in Ang II-treated cells. Collectively, our findings identify that IDO1 promotes cardiomyocyte hypertrophy partially via PI3K-AKT-mTOR-S6K1 signaling.


Asunto(s)
Cardiomegalia/enzimología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Miocitos Cardíacos/enzimología , Fosfatidilinositol 3-Quinasa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Adulto , Anciano , Animales , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Estudios de Casos y Controles , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Quinurenina/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Ratas Sprague-Dawley , Transducción de Señal , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
11.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805800

RESUMEN

Cyclin-dependent kinases (CDKs) are involved in many crucial processes, such as cell cycle and transcription, as well as communication, metabolism, and apoptosis. The kinases are organized in a pathway to ensure that, during cell division, each cell accurately replicates its DNA, and ensure its segregation equally between the two daughter cells. Deregulation of any of the stages of the cell cycle or transcription leads to apoptosis but, if uncorrected, can result in a series of diseases, such as cancer, neurodegenerative diseases (Alzheimer's or Parkinson's disease), and stroke. This review presents the current state of knowledge about the characteristics of cyclin-dependent kinases as potential pharmacological targets.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ciclo Celular/genética , Quinasas Ciclina-Dependientes/genética , Neoplasias/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/enzimología , Cardiomegalia/genética , Cardiomegalia/patología , Fármacos Cardiovasculares/uso terapéutico , Ciclo Celular/efectos de los fármacos , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Regulación de la Expresión Génica , Humanos , Neoplasias/enzimología , Neoplasias/genética , Neoplasias/patología , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular/enzimología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/patología
12.
Oxid Med Cell Longev ; 2021: 6429197, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33628362

RESUMEN

I-κB kinase-ε (IKKε) is a member of the IKK complex and a proinflammatory regulator that is active in many diseases. Angiotensin II (Ang II) is a vasoconstricting peptide hormone, and Ang II-induced myocardial hypertrophy is a common cardiovascular disease that can result in heart failure. In this study, we sought to determine the role of IKKε in the development of Ang II-induced myocardial hypertrophy in mice. Wild-type (WT) and IKKε-knockout (IKKε-KO) mice were generated and infused with saline or Ang II for 8 weeks. We found that WT mouse hearts have increased IKKε expression after 8 weeks of Ang II infusion. Our results further indicated that IKKε-KO mice have attenuated myocardial hypertrophy and alleviated heart failure compared with WT mice. Additionally, Ang II-induced expression of proinflammatory and collagen factors was much lower in the IKKε-KO mice than in the WT mice. Apoptosis and pyroptosis were also ameliorated in IKKε-KO mice. Mechanistically, IKKε bound to extracellular signal-regulated kinase (ERK) and the mitogen-activated protein kinase p38, resulting in MAPK/ERK kinase (MEK) phosphorylation, and IKKε deficiency inhibited the phosphorylation of MEK-ERK1/2 and p38 in mouse heart tissues after 8 weeks of Ang II infusion. The findings of our study reveal that IKKε plays an important role in the development of Ang II-induced myocardial hypertrophy and may represent a potential therapeutic target for the management of myocardial hypertrophy.


Asunto(s)
Cardiomegalia/enzimología , Cardiomegalia/patología , Quinasa I-kappa B/deficiencia , Miocardio/patología , Angiotensina II , Animales , Colágeno/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibrosis , Insuficiencia Cardíaca/complicaciones , Quinasa I-kappa B/metabolismo , Inflamación/complicaciones , Inflamación/patología , Sistema de Señalización de MAP Quinasas , Ratones Noqueados , Piroptosis , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
13.
Biosci Biotechnol Biochem ; 85(3): 643-655, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33589894

RESUMEN

The long-term imposition of pressure overload on the cardiac tissue causes left ventricular hypertrophy (LVH) and cardiac fibrosis. Pinitol has been reported to possess antioxidant potential. The aim was to evaluate the efficacy of pinitol against pressure overload-induced cardiac hypertrophy and fibrosis in the aortic stenosis (AS) rat model. Cardiac hypertrophy was produced in Sprague-Dawley rats by abdominal aortic constriction and treated with lisinopril (15 mg/kg) or pinitol (5, 10, and 20 mg/kg). Pressure overload-induced alterations in hemodynamic and left ventricular function tests, cardiac SOD, GSH, MDA, NO, Na-K-ATPase, and mitochondrial complex enzyme levels were significantly attenuated by pinitol. The upregulated mRNA expressions of cardiac ANP, BNP, cTn-I, TNF-α, IL-1ß, IL-6, Bax, Caspase-3, collagen-I, and cardiac apoptosis were markedly downregulated by pinitol. In conclusion, pinitol ameliorated pressure overload-induced LVH and fibrosis via its anti-inflammatory, antioxidant, antifibrotic, and antiapoptotic potential in experimental AS.


Asunto(s)
Cardiomegalia/prevención & control , Inositol/análogos & derivados , Animales , Cardiomegalia/enzimología , Cardiomegalia/etiología , Cardiomegalia/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Pruebas de Función Cardíaca , Inositol/farmacología , Inositol/uso terapéutico , Lisinopril/farmacología , Lisinopril/uso terapéutico , Mitocondrias Cardíacas/enzimología , Mitocondrias Cardíacas/metabolismo , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
14.
Basic Res Cardiol ; 116(1): 11, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33590335

RESUMEN

Nuclear histone deacetylase 4 (HDAC4) represses MEF2-mediated transcription, implicated in the development of heart failure. CaMKII-dependent phosphorylation drives nucleus-to-cytoplasm HDAC4 shuttling, but protein kinase A (PKA) is also linked to HDAC4 translocation. However, the interplay of CaMKII and PKA in regulating adult cardiomyocyte HDAC4 translocation is unclear. Here we sought to determine the interplay of PKA- and CaMKII-dependent HDAC4 phosphorylation and translocation in adult mouse, rabbit and human ventricular myocytes. Confocal imaging and protein analyses revealed that inhibition of CaMKII-but not PKA, PKC or PKD-raised nucleo-to-cytoplasmic HDAC4 fluorescence ratio (FNuc/FCyto) by ~ 50%, indicating baseline CaMKII activity that limits HDAC4 nuclear localization. Further CaMKII activation (via increased extracellular [Ca2+], high pacing frequencies, angiotensin II or overexpression of CaM or CaMKIIδC) led to significant HDAC4 nuclear export. In contrast, PKA activation by isoproterenol or forskolin drove HDAC4 into the nucleus (raising FNuc/FCyto by > 60%). These PKA-mediated effects were abolished in cells pretreated with PKA inhibitors and in cells expressing mutant HDAC4 in S265/266A mutant. In physiological conditions where both kinases are active, PKA-dependent nuclear accumulation of HDAC4 was predominant in the very early response, while CaMKII-dependent HDAC4 export prevailed upon prolonged stimuli. This orchestrated co-regulation was shifted in failing cardiomyocytes, where CaMKII-dependent effects predominated over PKA-dependent response. Importantly, human cardiomyocytes showed similar CaMKII- and PKA-dependent HDAC4 shifts. Collectively, CaMKII limits nuclear localization of HDAC4, while PKA favors HDAC4 nuclear retention and S265/266 is essential for PKA-mediated regulation. These pathways thus compete in HDAC4 nuclear localization and transcriptional regulation in cardiac signaling.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/enzimología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Insuficiencia Cardíaca/enzimología , Histona Desacetilasas/metabolismo , Miocitos Cardíacos/enzimología , Transporte Activo de Núcleo Celular , Agonistas Adrenérgicos beta/farmacología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Modelos Animales de Enfermedad , Femenino , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/fisiopatología , Histona Desacetilasas/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Proteínas Represoras , Transducción de Señal , Remodelación Ventricular
15.
Cardiovasc Toxicol ; 21(6): 451-461, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33611744

RESUMEN

Epigenetic regulations essentially participate in the development of cardiomyocyte hypertrophy. PHD finger protein 19 (PHF19) is a polycomb protein that controls H3K36me3 and H3K27me3. However, the roles of PHF19 in cardiac hypertrophy remain unknown. Here in this work, we observed that PHF19 promoted cardiac hypertrophy via epigenetically targeting SIRT2. In angiotensin II (Ang II)-induced cardiomyocyte hypertrophy, adenovirus-mediated knockdown of Phf19 reduced the increase in cardiomyocyte size, repressed the expression of hypertrophic marker genes Anp and Bnp, as well as inhibited protein synthesis. By contrast, Phf19 overexpression promoted Ang II-induced cardiomyocyte hypertrophy in vitro. We also knocked down Phf19 expression in mouse hearts in vivo. The results demonstrated that Phf19 knockdown reduced Ang II-induced decline in cardiac fraction shortening and ejection fraction. Phf19 knockdown also inhibited Ang II-mediated increase in heart weight, reduced cardiomyocyte size, and repressed the expression of hypertrophic marker genes in mouse hearts. Further mechanism studies showed that PHF19 suppressed the expression of SIRT2, which contributed to the function of PHF19 during cardiomyocyte hypertrophy. PHF19 bound the promoter of SIRT2 and regulated the balance between H3K27me3 and H3K36me3 to repress the expression of SIRT2 in vitro and in vivo. In human hypertrophic hearts, the overexpression of PHF19 and downregulation of SIRT2 were observed. Of importance, PHF19 expression was positively correlated with hypertrophic marker genes ANP and BNP but negatively correlated with SIRT2 in human hypertrophic hearts. Therefore, our findings demonstrated that PHF19 promoted the development of cardiac hypertrophy via epigenetically regulating SIRT2.


Asunto(s)
Cardiomegalia/enzimología , Proteínas de Unión al ADN/fisiología , Epigénesis Genética , Miocitos Cardíacos/enzimología , Sirtuina 2/metabolismo , Factores de Transcripción/metabolismo , Angiotensina II , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Células Cultivadas , Metilación de ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Regulación Enzimológica de la Expresión Génica , Humanos , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Sirtuina 2/genética , Factores de Transcripción/genética , Remodelación Ventricular
16.
Am J Physiol Heart Circ Physiol ; 320(4): H1470-H1485, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33577435

RESUMEN

The insulin-like growth factor 1 receptor (IGF1R) and phosphoinositide 3-kinase p110α (PI3K) are critical regulators of exercise-induced physiological cardiac hypertrophy and provide protection in experimental models of pathological remodeling and heart failure. Forkhead box class O1 (FoxO1) is a transcription factor that regulates cardiomyocyte hypertrophy downstream of IGF1R/PI3K activation in vitro, but its role in physiological hypertrophy in vivo was unknown. We generated cardiomyocyte-specific FoxO1 knockout (cKO) mice and assessed the phenotype under basal conditions and settings of physiological hypertrophy induced by 1) swim training or 2) cardiac-specific transgenic expression of constitutively active PI3K (caPI3KTg+). Under basal conditions, male and female cKO mice displayed mild interstitial fibrosis compared with control (CON) littermates, but no other signs of cardiac pathology were present. In response to exercise training, female CON mice displayed an increase (∼21%) in heart weight normalized to tibia length vs. untrained mice. Exercise-induced hypertrophy was blunted in cKO mice. Exercise increased cardiac Akt phosphorylation and IGF1R expression but was comparable between genotypes. However, differences in Foxo3a, Hsp70, and autophagy markers were identified in hearts of exercised cKO mice. Deletion of FoxO1 did not reduce cardiac hypertrophy in male or female caPI3KTg+ mice. Cardiac Akt and FoxO1 protein expressions were significantly reduced in hearts of caPI3KTg+ mice, which may represent a negative feedback mechanism from chronic caPI3K, and negate any further effect of reducing FoxO1 in the cKO. In summary, FoxO1 contributes to exercise-induced hypertrophy. This has important implications when one is considering FoxO1 as a target for treating the diseased heart.NEW & NOTEWORTHY Regulators of exercise-induced physiological cardiac hypertrophy and protection are considered promising targets for the treatment of heart failure. Unlike pathological hypertrophy, the transcriptional regulation of physiological hypertrophy has remained largely elusive. To our knowledge, this is the first study to show that the transcription factor FoxO1 is a critical mediator of exercise-induced cardiac hypertrophy. Given that exercise-induced hypertrophy is protective, this finding has important implications when one is considering FoxO1 as a target for treating the diseased heart.


Asunto(s)
Cardiomegalia Inducida por el Ejercicio , Cardiomegalia/enzimología , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Proteína Forkhead Box O1/metabolismo , Miocitos Cardíacos/enzimología , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Fosfatidilinositol 3-Quinasa Clase I/genética , Activación Enzimática , Femenino , Fibrosis , Proteína Forkhead Box O1/deficiencia , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Regulación de la Expresión Génica , Proteínas HSP70 de Choque Térmico/metabolismo , Masculino , Ratones Noqueados , Miocitos Cardíacos/patología , Fenotipo , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Transducción de Señal , Natación
17.
Eur J Pharmacol ; 891: 173724, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33152335

RESUMEN

Previously, we have shown that an increased cGMP-activated protein Kinase (PKG) activity after phosphodiesterase 5 (PDE5) inhibition by Sildenafil (SIL), leads to myocardial Na+/H+ exchanger (NHE1) inhibition preserving its basal homeostatic function. Since NHE1 is hyperactive in the hypertrophied myocardium of spontaneous hypertensive rats (SHR), while its inhibition was shown to prevent and revert this pathology, the current study was aimed to evaluate the potential antihypertrophic effect of SIL on adult SHR myocardium. We initially tested the inhibitory capability of SIL on NHE1 in isolated cardiomyocytes of SHR by comparing H+ efflux during the recovery from an acid load. After confirmed that effect, eight-month-old SHR were chronically treated for one month with SIL through drinking water. Compared to their littermate controls, SIL-treated rats presented a decreased NHE1 activity, which correlated with a reduction in its phosphorylation level assigned to activation of a PKG-p38 MAP kinase-PP2A signaling pathway. Moreover, treated animals showed a decreased oxidative stress that appears to be a consequence of a decreased mitochondrial NHE1 phosphorylation. Treated SHR showed a significant reduction in the pro-hypertrophic phosphatase calcineurin, despite slight tendency to decrease hypertrophy was detected. When SIL treatment was prolonged to three months, a significant decrease in myocardial hypertrophy and interstitial fibrosis that correlated with a lower myocardial stiffness was observed. In conclusion, the current study provides evidence concerning the ability of SIL to revert established cardiac hypertrophy in SHR, a clinically relevant animal model that resembles human essential hypertension.


Asunto(s)
Cardiomegalia/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Músculos Papilares/efectos de los fármacos , Inhibidores de Fosfodiesterasa 5/farmacología , Citrato de Sildenafil/farmacología , Intercambiador 1 de Sodio-Hidrógeno/metabolismo , Animales , Cardiomegalia/enzimología , Cardiomegalia/etiología , Cardiomegalia/fisiopatología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo , Fibrosis , Hipertensión/complicaciones , Masculino , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Músculos Papilares/enzimología , Músculos Papilares/fisiopatología , Fosforilación , Proteína Fosfatasa 2/metabolismo , Ratas Endogámicas SHR , Transducción de Señal , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
18.
Am J Physiol Heart Circ Physiol ; 320(1): H364-H380, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275526

RESUMEN

Pathological cardiac remodeling is a leading cause of mortality in patients with diabetes. Given the glucose and lipid metabolism disorders (GLDs) in patients with diabetes, it is urgent to conduct a comprehensive study of the myocardial damage under GLDs and find key mechanisms. Apolipoprotein E knockout (ApoE-/-) mice, low-density lipoprotein receptor heterozygote (Ldlr+/-) Syrian golden hamsters, or H9C2 cells were used to construct GLDs models. GLDs significantly promoted cardiomyocyte fibrosis, apoptosis, and hypertrophy in vivo and in vitro, but inhibition of galectin-3 (Gal-3) could significantly reverse this process. Then, the signal transmission pathways were determined. It was found that GLDs considerably inhibited the phosphorylation of Akt at Thr308/Ser473, whereas the silencing of Gal-3 could reverse the inhibition of Akt activity through phosphoinositide 3-kinase-AktThr308 (PI3K-AktThr308) and AMP-activated protein kinase-mammalian target of rapamycin complex 2-AktSer473 (AMPK-mTOR2-AktSer473) pathways. Finally, the PI3K, mTOR, AMPK inhibitor, and Akt activator were used to investigate the role of pathways in regulating cardiac remodeling. Phospho-AktThr308 could mediate myocardial fibrosis, whereas myocardial apoptosis and hypertrophy were regulated by both phospho-AktThr308 and phospho-AktSer473. In conclusion, Gal-3 was an important regulatory factor in GLDs-induced cardiac remodeling, and Gal-3 could suppress the phosphorylation of Akt at different sites in mediating cardiomyocyte fibrosis, apoptosis, and hypertrophy.NEW & NOTEWORTHY Studies on the pathogenesis of diabetic cardiac remodeling are highly desired. Glucose and lipid metabolism are both disordered in diabetes. Glucose and lipid metabolism disturbances promote myocardial fibrosis, apoptosis, and hypertrophy through galectin-3. Galectin-3 promotes cardiac remodeling by inhibiting phosphorylation of AktThr308 or AktSer473. The present study finds that glucose and lipid metabolism disorders are important causes for myocardial damage and provides novel ideas for the prevention and treatment of diabetic cardiac remodeling.


Asunto(s)
Cardiomegalia/enzimología , Galectina 3/metabolismo , Glucosa/metabolismo , Metabolismo de los Lípidos , Miocitos Cardíacos/enzimología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Remodelación Ventricular , Amino Azúcares/farmacología , Animales , Apoptosis , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomegalia/prevención & control , Línea Celular , Modelos Animales de Enfermedad , Activación Enzimática , Fibrosis , Galectina 3/antagonistas & inhibidores , Galectina 3/genética , Metabolismo de los Lípidos/efectos de los fármacos , Mesocricetus/genética , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fosforilación , Ratas , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal , Remodelación Ventricular/efectos de los fármacos
19.
J Mol Cell Cardiol ; 150: 109-121, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33184031

RESUMEN

Background In cardiomyocytes, phosphodiesterases (PDEs) type 3 and 4 are the predominant enzymes that degrade cAMP generated by ß-adrenergic receptors (ß-ARs), impacting notably the regulation of the L-type Ca2+ current (ICa,L). Cardiac hypertrophy (CH) is accompanied by a reduction in PDE3 and PDE4, however, whether this affects the dynamic regulation of cytosolic cAMP and ICa,L is not known. Methods and Results CH was induced in rats by thoracic aortic banding over a time period of five weeks and was confirmed by anatomical measurements. Left ventricular myocytes (LVMs) were isolated from CH and sham-operated (SHAM) rats and transduced with an adenovirus encoding a Förster resonance energy transfer (FRET)-based cAMP biosensor or subjected to the whole-cell configuration of the patch-clamp technique to measure ICa,L. Aortic stenosis resulted in a 46% increase in heart weight to body weight ratio in CH compared to SHAM. In SHAM and CH LVMs, a short isoprenaline stimulation (Iso, 100 nM, 15 s) elicited a similar transient increase in cAMP with a half decay time (t1/2off) of ~50 s. In both groups, PDE4 inhibition with Ro 20-1724 (10 µM) markedly potentiated the amplitude and slowed the decline of the cAMP transient, this latter effect being more pronounced in SHAM (t1/2off ~ 250 s) than in CH (t1/2off ~ 150 s, P < 0.01). In contrast, PDE3 inhibition with cilostamide (1 µM) had no effect on the amplitude of the cAMP transient and a minimal effect on its recovery in SHAM, whereas it potentiated the amplitude and slowed the decay in CH (t1/2off ~ 80 s). Iso pulse stimulation also elicited a similar transient increase in ICa,L in SHAM and CH, although the duration of the rising phase was delayed in CH. Inhibition of PDE3 or PDE4 potentiated ICa,L amplitude in SHAM but not in CH. Besides, while only PDE4 inhibition slowed down the decline of ICa,L in SHAM, both PDE3 and PDE4 contributed in CH. Conclusion These results identify selective alterations in cytosolic cAMP and ICa,L regulation by PDE3 and PDE4 in CH, and show that the balance between PDE3 and PDE4 for the regulation of ß-AR responses is shifted toward PDE3 during CH.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Cardiomegalia/enzimología , AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Citosol/metabolismo , Receptores Adrenérgicos beta/metabolismo , Animales , Ventrículos Cardíacos/patología , Cinética , Masculino , Modelos Biológicos , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Fenotipo , Inhibidores de Fosfodiesterasa 4/farmacología , Ratas Wistar
20.
Arch Pharm Res ; 43(12): 1276-1296, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33245518

RESUMEN

A wide range of histone deacetylase (HDAC) inhibitors have been studied for their therapeutic potential because the excessive activity and expression of HDACs have been implicated in the pathogenesis of cardiac diseases. An increasing number of preclinical studies have demonstrated the cardioprotective effects of numerous HDAC inhibitors, suggesting a wide variety of mechanisms by which the inhibitors protect against cardiac stress, such as the suppression of cardiac fibrosis and fetal gene expression, enhancement of angiogenesis and mitochondrial biogenesis, prevention of electrical remodeling, and regulation of apoptosis, autophagy, and cell cycle arrest. For the development of isoform-selective HDAC inhibitors with high efficacy and low toxicity, it is important to identify and understand the mechanisms responsible for the effects of the inhibitors. This review highlights the preclinical effects of HDAC inhibitors that act against Zn2+-dependent HDACs and the underlying mechanisms of their protective effects against cardiac hypertrophy, hypertension, myocardial infarction, heart failure, and atrial fibrillation.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Cardiomegalia/tratamiento farmacológico , Fármacos Cardiovasculares/uso terapéutico , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Hipertensión/tratamiento farmacológico , Infarto del Miocardio/tratamiento farmacológico , Miocardio/enzimología , Animales , Antihipertensivos/uso terapéutico , Fibrilación Atrial/enzimología , Fibrilación Atrial/fisiopatología , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/enzimología , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Fármacos Cardiovasculares/efectos adversos , Fibrosis , Frecuencia Cardíaca/efectos de los fármacos , Inhibidores de Histona Desacetilasas/efectos adversos , Humanos , Hipertensión/enzimología , Hipertensión/fisiopatología , Infarto del Miocardio/enzimología , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Miocardio/patología , Transducción de Señal , Remodelación Ventricular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA