Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.498
Filtrar
1.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38744811

RESUMEN

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Asunto(s)
Cardiomegalia , Fibrosis , Sirtuina 3 , Animales , Sirtuina 3/genética , Sirtuina 3/metabolismo , Cardiomegalia/genética , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/patología , Cardiomegalia/inducido químicamente , Cardiomegalia/metabolismo , Fibrosis/genética , Ratas , Ratones , Isoproterenol , Humanos , Ratones Noqueados , Homeostasis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/genética , Mitocondrias/patología , Mitocondrias/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Miocardio/patología , Miocardio/metabolismo , Masculino
2.
Zhongguo Zhong Yao Za Zhi ; 49(3): 754-762, 2024 Feb.
Artículo en Chino | MEDLINE | ID: mdl-38621879

RESUMEN

This study aims to explore the mechanism of Linggui Zhugan Decoction(LGZGD) in inhibiting Angiotensin Ⅱ(AngⅡ)-induced cardiomyocyte hypertrophy by regulating sigma-1 receptor(Sig1R). The model of H9c2 cardiomyocyte hypertrophy induced by AngⅡ in vitro was established by preparing LGZGD-containing serum and blank serum. H9c2 cells were divided into normal group, AngⅡ model group, 20% normal rat serum group(20% NSC), and 20% LGZGD-containing serum group. After the cells were incubated with AngⅡ(1 µmol·L~(-1)) or AngⅡ with serum for 72 h, the surface area of cardiomyocytes was detected by phalloidine staining, and the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase were detected by micromethod. The mitochondrial Ca~(2+) levels were detected by flow cytometry, and the expression levels of atrial natriuretic peptide(ANP), brain natriuretic peptide(BNP), Sig1R, and inositol 1,4,5-triphosphate receptor type 2(IP_3R_2) were detected by Western blot. The expression of Sig1R was down-regulated by transfecting specific siRNA for investigating the efficacy of LGZGD-containing serum on cardiomyocyte surface area, Na~+-K~+-ATPase activity, Ca~(2+)-Mg~(2+)-ATPase activity, mitochondrial Ca~(2+), as well as ANP, BNP, and IP_3R_2 protein expressions. The results showed that compared with the normal group, AngⅡ could significantly increase the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.01), and it could decrease the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+), and the expression of Sig1R(P<0.01). In addition, IP_3R_2 protein expression was significantly increased(P<0.01). LGZGD-containing serum could significantly decrease the surface area of cardiomyocytes and the expression of ANP and BNP(P<0.05, P<0.01), and it could increase the activities of Na~+-K~+-ATPase and Ca~(2+)-Mg~(2+)-ATPase, the concentration of mitochondrial Ca~(2+ )(P<0.01), and the expression of Sig1R(P<0.05). In addition, IP_3R_2 protein expression was significantly decreased(P<0.05). However, after Sig1R was down-regulated, the effects of LGZGD-containing serum were reversed(P<0.01). These results indicated that the LGZGD-containing serum could inhibit cardiomyocyte hypertrophy induced by AngⅡ, and its pharmacological effect was related to regulating Sig1R, promoting mitochondrial Ca~(2+ )inflow, restoring ATP synthesis, and protecting mitochondrial function.


Asunto(s)
Miocitos Cardíacos , ATPasa Intercambiadora de Sodio-Potasio , Ratas , Animales , Células Cultivadas , ATPasa Intercambiadora de Sodio-Potasio/genética , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Angiotensina II/efectos adversos , Angiotensina II/metabolismo , Péptido Natriurético Encefálico/metabolismo , Hipertrofia/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética
3.
Mol Med Rep ; 29(5)2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38456539

RESUMEN

Cardiac hypertrophy is one of the key processes in the development of heart failure. Notably, small GTPases and GTPase­activating proteins (GAPs) serve essential roles in cardiac hypertrophy. RhoGAP interacting with CIP4 homologs protein 1 (RICH1) is a RhoGAP that can regulate Cdc42/Rac1 and F­actin dynamics. RICH1 is involved in cell proliferation and adhesion; however, to the best of our knowledge, its role in cardiac hypertrophy remains unknown. In the present study, the role of RICH1 in cardiomyocyte hypertrophy was assessed. Cell viability was analyzed using the Cell Counting Kit­8 assay and cells surface area (CSA) was determined by cell fluorescence staining. Reverse transcription­quantitative PCR and western blotting were used to assess the mRNA expression levels of hypertrophic marker genes, such as Nppa, Nppb and Myh7, and the protein expression levels of RICH1, respectively. RICH1 was shown to be downregulated in isoproterenol (ISO)­ or angiotensin II (Ang II)­treated H9c2 cells. Notably, overexpression of RICH1 attenuated the upregulation of hypertrophy­related markers, such as Nppa, Nppb and Myh7, and the enlargement of CSA induced by ISO and Ang II. By contrast, the knockdown of RICH1 exacerbated these effects. These findings suggested that RICH1 may be a novel suppressor of ISO­ or Ang II­induced cardiomyocyte hypertrophy. The results of the present study will be beneficial to further studies assessing the role of RICH1 and its downstream molecules in inhibiting cardiac hypertrophy.


Asunto(s)
Cardiopatías Congénitas , Miocitos Cardíacos , Nitrobenzoatos , Procainamida/análogos & derivados , Humanos , Miocitos Cardíacos/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Isoproterenol/farmacología , Isoproterenol/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiopatías Congénitas/metabolismo
4.
Life Sci ; 341: 122482, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38309577

RESUMEN

AIMS: RBM10 is a well-known RNA binding protein that regulates alternative splicing in various disease states. We have shown a splicing-independent function of RBM10 that regulates heart failure. This study aims to unravel a new biological function of RBM10 phosphorylation by proto-oncogene cSrc that enables anti-hypertrophy gene program and controls cardiac hypertrophy. MATERIALS AND METHODS: We employ in vitro and in vivo approaches to characterise RBM10 phosphorylation at three-tyrosine residues (Y81, Y500, and Y971) by cSrc and target mRNA regulation. We also use isoproterenol induced rat heart and cellular hypertrophy model to determine role of cSrc-mediated RBM10 phosphorylation. KEY FINDINGS: We show that RBM10 phosphorylation is induced in cellular and animal heart model of cardiac hypertrophy and regulates target mRNA expression and 3'-end formation. Inhibition of cSrc kinase or mutation of the three-tyrosine phosphorylation sites to phenylalanine accentuates myocyte hypertrophy, and results in advancement and an early attainment of hypertrophy in the heart. RBM10 is down regulated in the hypertrophic myocyte and that its re-expression reverses cellular and molecular changes in the myocyte. However, in the absence of phosphorylation (cSrc inhibition or phospho-deficient mutation), restoration of endogenous RBM10 level in the hypertrophic heart or ectopic re-expression in vitro failed to reverse cardiomyocyte hypertrophy. Mechanistically, loss of RBM10 phosphorylation inhibits nuclear localisation and interaction with Star-PAP compromising anti-hypertrophy gene expression. SIGNIFICANCE: Our study establishes that cSrc-mediated RBM10 phosphorylation arbitrates anti-hypertrophy gene program. We also report a new functional regulation of RBM10 by phosphorylation that is poised to control heart failure.


Asunto(s)
Cardiomegalia , Insuficiencia Cardíaca , Ratas , Animales , Fosforilación , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Proto-Oncogenes , ARN Mensajero/genética , Tirosina/metabolismo , Miocitos Cardíacos/metabolismo
5.
Int J Mol Sci ; 25(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38397106

RESUMEN

Hypertension is the key contributor to pathological cardiac hypertrophy. Growing evidence indicates that glucose metabolism plays an essential role in cardiac hypertrophy. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism in pressure overload-induced cardiac remodeling. In the present study, we investigated the role of TIGAR in cardiac remodeling during Angiotensin II (Ang-II)-induced hypertension. Wild-type (WT) and TIGAR knockout (KO) mice were infused with Angiotensin-II (Ang-II, 1 µg/kg/min) via mini-pump for four weeks. The blood pressure was similar between the WT and TIGAR KO mice. The Ang-II infusion resulted in a similar reduction of systolic function in both groups, as evidenced by the comparable decrease in LV ejection fraction and fractional shortening. The Ang-II infusion also increased the isovolumic relaxation time and myocardial performance index to the same extent in WT and TIGAR KO mice, suggesting the development of similar diastolic dysfunction. However, the knockout of TIGAR significantly attenuated hypertension-induced cardiac hypertrophy. This was associated with higher levels of fructose 2,6-bisphosphate, PFK-1, and Glut-4 in the TIGAR KO mice. Our present study suggests that TIGAR is involved in the control of glucose metabolism and glucose transporters by Ang-II and that knockout of TIGAR attenuates the development of maladaptive cardiac hypertrophy.


Asunto(s)
Angiotensina II , Proteínas Reguladoras de la Apoptosis , Cardiomegalia , Hipertensión , Animales , Ratones , Angiotensina II/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomegalia/genética , Cardiomegalia/inducido químicamente , Fibrosis , Glucosa/metabolismo , Glucólisis , Hipertensión/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Remodelación Ventricular/fisiología
6.
Biomed Pharmacother ; 172: 116241, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38330711

RESUMEN

OBJECTIVE: Pathologic cardiac hypertrophy (PCH) is a precursor to heart failure. Amydrium sinense (Engl.) H. Li (AS), a traditional Chinese medicinal plant, has been extensively utilized to treat chronic inflammatory diseases. However, the therapeutic effect of ASWE on PCH and its underlying mechanisms are still not fully understood. METHODS: A cardiac hypertrophy model was established by treating C57BL/6 J mice and neonatal rat cardiomyocytes (NRCMs) in vitro with isoprenaline (ISO) in this study. The antihypertrophic effects of AS water extract (ASWE) on cardiac function, histopathologic manifestations, cell surface area and expression levels of hypertrophic biomarkers were examined. Subsequently, the impact of ASWE on inflammatory factors, p65 nuclear translocation and NF-κB activation was investigated to elucidate the underlying mechanisms. RESULTS: In the present study, we observed that oral administration of ASWE effectively improved ISO-induced cardiac hypertrophy in mice, as evidenced by histopathological manifestations and the expression levels of hypertrophic markers. Furthermore, the in vitro experiments demonstrated that ASWE treatment inhibited cardiac hypertrophy and suppressed inflammation response in ISO-treated NRCMs. Mechanically, our findings provided evidence that ASWE suppressed inflammation response by repressing p65 nuclear translocation and NF-κB activation. ASWE was found to possess the capability of inhibiting inflammation response and cardiac hypertrophy induced by ISO. CONCLUSION: To sum up, ASWE treatment was shown to attenuate ISO-induced cardiac hypertrophy by inhibiting cardiac inflammation via preventing the activation of the NF-kB signaling pathway. These findings provided scientific evidence for the development of ASWE as a novel therapeutic drug for PCH treatment.


Asunto(s)
Araceae , FN-kappa B , Animales , Ratones , Ratas , Ratones Endogámicos C57BL , Isoproterenol/toxicidad , Transducción de Señal , Iones , Litio , Artesunato , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico
7.
Molecules ; 29(4)2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38398512

RESUMEN

Cardiac hypertrophy (CH) is an important characteristic in heart failure development. Chlorogenic acid (CGA), a crucial bioactive compound from honeysuckle, is reported to protect against CH. However, its underlying mechanism of action remains incompletely elucidated. Therefore, this study aimed to explore the mechanism underlying the protective effect of CGA on CH. This study established a CH model by stimulating AC16 cells with isoproterenol (Iso). The observed significant decrease in cell surface area, evaluated through fluorescence staining, along with the downregulation of CH-related markers, including atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and ß-myosin heavy chain (ß-MHC) at both mRNA and protein levels, provide compelling evidence of the protective effect of CGA against isoproterenol-induced CH. Mechanistically, CGA induced the expression of glycogen synthase kinase 3ß (GSK-3ß) while concurrently attenuating the expression of the core protein ß-catenin in the Wnt/ß-catenin signaling pathway. Furthermore, the experiment utilized the Wnt signaling activator IM-12 to observe its ability to modulate the impact of CGA pretreatment on the development of CH. Using the Gene Expression Omnibus (GEO) database combined with online platforms and tools, this study identified Wnt-related genes influenced by CGA in hypertrophic cardiomyopathy (HCM) and further validated the correlation between CGA and the Wnt/ß-catenin signaling pathway in CH. This result provides new insights into the molecular mechanisms underlying the protective effect of CGA against CH, indicating CGA as a promising candidate for the prevention and treatment of heart diseases.


Asunto(s)
Ácido Clorogénico , Vía de Señalización Wnt , Humanos , Isoproterenol/toxicidad , Ácido Clorogénico/farmacología , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , beta Catenina/metabolismo
8.
Eur J Med Res ; 29(1): 109, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336819

RESUMEN

INTRODUCTION: Salusins, which are translated from the alternatively spliced mRNA of torsin family 2 member A (TOR2A), play a vital role in regulation of various cardiovascular diseases. However, it remains unclear precisely regarding their roles in hypertrophic cardiomyopathy (HCM). Therefore, this study was conducted to explore therapeutic effect and the underlying mechanisms of salusins on HCM. MATERIAL AND METHODS: In vivo experiments, Sprague-Dawley rats were used to induce HCM model by angiotensin (Ang) II infusion for 4 weeks. The rats were randomly divided into four groups, namely, Saline + Control shRNA (n = 7), Ang II + Control shRNA (n = 8), Saline + TOR2A shRNA (n = 7), and Ang II + TOR2A shRNA groups (n = 8). After HCM induction, doppler echocardiography is recommended to evaluate heart function. In vitro experiments, primary neonatal rat cardiomyocytes (NRCMs) and cardiac fibroblasts (NRCFs) were obtained from newborn rats, and were treated with Ang II (10-6 M) for 24 h. RESULTS: After treatment with Ang II, levels of salusin-α and salusin-ß were elevated in serum and cardiac tissues of rats and in the neonatal rat cardiomyocytes and cardiac fibroblasts. Downregulation of salusins alleviated the Ang II-induced cardiac hypertrophy by suppressing the increased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and beta-myosin heavy chain (ß-MHC) and cardiac fibrosis by blocking collagen I, collagen III and transforming growth factor-beta (TGF-ß), and it also attenuated oxidative stress by suppressing the increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels and reversing the decreased superoxide dismutase (SOD) activity and autophagy by inhibiting the increased microtubule-associated protein light chain 3B (LC3B), Beclin1, autophagy related gene (Atg) 3 and Atg5 in the cardiac tissues of Ang II-infused rats and in the Ang II-treated NRCMs. CONCLUSIONS: All these findings suggest that the levels of salusins were elevated in the HCM, and targeting of salusins contributes to alleviation of cardiac hypertrophy and fibrosis probably via attenuating oxidative stress and autophagy. Accordingly, targeting of salusins may be a strategy for HCM therapy.


Asunto(s)
Cardiomiopatía Hipertrófica , Ratas , Animales , Ratas Sprague-Dawley , Regulación hacia Abajo , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miocitos Cardíacos , Angiotensina II/genética , Angiotensina II/metabolismo , Angiotensina II/farmacología , Estrés Oxidativo , ARN Interferente Pequeño/efectos adversos , ARN Interferente Pequeño/metabolismo , Autofagia/genética , Colágeno/genética
9.
Free Radic Biol Med ; 212: 477-492, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38190924

RESUMEN

Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overload-induced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.


Asunto(s)
Flavonoides , Insuficiencia Cardíaca , Dinámicas Mitocondriales , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/patología
10.
Kidney Blood Press Res ; 49(1): 114-123, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38246148

RESUMEN

INTRODUCTION: A comprehensive pathophysiological mechanism to explain the relationship between high-salt intake and hypertension remains undefined. Evidence suggests that chloride, as the accompanying anion of sodium in dietary salt, is necessary to develop hypertension. We evaluated whether reducing dietary Cl- while keeping a standard Na+ intake modified blood pressure, cardiac hypertrophy, renal function, and vascular contractility after angiotensin II (AngII) infusion. METHODS: C56BL/6J mice fed with standard Cl- diet or a low-Cl- diet (equimolar substitution of Cl- by a mixture of Na+ salts, both diets with standard Na+ content) received AngII (infusion of 1.5 mg/kg/day) or vehicle for 14 days. We measured systolic blood pressure (SBP), glomerular filtration rate (GFR), natriuretic response to acute saline load, and contractility of aortic rings from mice infused with vehicle and AngII, in standard and low-Cl- diet. RESULTS: The mice fed the standard diet presented increased SBP and cardiac hypertrophy after AngII infusion. In contrast, low-Cl- diet prevented the increase of SBP and cardiac hypertrophy. AngII-infused mice fed a standard diet presented hampered natriuretic response to saline load, meanwhile the low-Cl- diet preserved natriuretic response in AngII-infused mice, without change in GFR. Aortic rings from mice fed with standard diet or low-Cl- diet and infused with AngII presented a similar contractile response. CONCLUSION: We conclude that the reduction in dietary Cl- as the accompanying anion of sodium in salt is protective from AngII pro-hypertensive actions due to a beneficial effect on kidney function and preserved natriuresis.


Asunto(s)
Angiotensina II , Presión Sanguínea , Hipertensión , Riñón , Animales , Ratones , Angiotensina II/farmacología , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/prevención & control , Cardiomegalia/inducido químicamente , Cloruros/administración & dosificación , Cloruros/farmacología , Tasa de Filtración Glomerular/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/administración & dosificación
11.
Cell Mol Life Sci ; 81(1): 18, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38195959

RESUMEN

Prolonged stimulation of ß-adrenergic receptor (ß-AR) can lead to sympathetic overactivity that causes pathologic cardiac hypertrophy and fibrosis, ultimately resulting in heart failure. Recent studies suggest that abnormal protein ubiquitylation may contribute to the pathogenesis of cardiac hypertrophy and remodeling. In this study, we demonstrated that deficiency of a deubiquitinase, Josephin domain-containing protein 2 (JOSD2), ameliorated isoprenaline (ISO)- and myocardial infarction (MI)-induced cardiac hypertrophy, fibrosis, and dysfunction both in vitro and in vivo. Conversely, JOSD2 overexpression aggravated ISO-induced cardiac pathology. Through comprehensive mass spectrometry analysis, we identified that JOSD2 interacts with Calcium-calmodulin-dependent protein kinase II (CaMKIIδ). JOSD2 directly hydrolyzes the K63-linked polyubiquitin chains on CaMKIIδ, thereby increasing the phosphorylation of CaMKIIδ and resulting in calcium mishandling, hypertrophy, and fibrosis in cardiomyocytes. In vivo experiments showed that the cardiac remodeling induced by JOSD2 overexpression could be reversed by the CaMKIIδ inhibitor KN-93. In conclusion, our study highlights the role of JOSD2 in mediating ISO-induced cardiac remodeling through the regulation of CaMKIIδ ubiquitination, and suggests its potential as a therapeutic target for combating the disease. Please check and confirm that the authors and their respective affiliations have been correctly identified and amend if necessary. All have been checked.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Cardiomegalia/inducido químicamente , Fibrosis , Insuficiencia Cardíaca/inducido químicamente , Isoproterenol/farmacología , Remodelación Ventricular
12.
Phytomedicine ; 125: 155250, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295664

RESUMEN

BACKGROUND: Astragaloside IV (AsIV), a key functioning element of Astragalus membranaceus, has been recognized for its potential cardiovascular protective properties. However, there is a need to elucidate the impacts of AsIV on myocardial hypertrophy under hypoxia conditions and its root mechanisms. PURPOSE: This study scrutinized the influence of AsIV on cardiac injury under hypoxia, with particular emphasis on the role of calpain-1 (CAPN1) in mediating mTOR pathways. METHODS: Hypoxia-triggered cardiac hypertrophy was examined in vivo with CAPN1 knockout and wild-type C57BL/6 mice and in vitro with H9C2 cells. The impacts of AsIV, 3-methyladenine, and CAPN1 inhibition on hypertrophy, autophagy, apoptosis, [Ca2+]i, and CAPN1 and mTOR levels in cardiac tissues and H9C2 cells were investigated. RESULTS: Both AsIV treatment and CAPN1 knockout mitigated hypoxia-induced cardiac hypertrophy, autophagy, and apoptosis in mice and H9C2 cells. Moreover, AsIV, 3-methyladenine, and CAPN1 inhibition augmented p-mTOR level but reduced [Ca2+]i and CAPN1 level. Additionally, lentivirus-mediated CAPN1 overexpression in H9C2 cells exacerbated myocardial hypertrophy, apoptosis, and p-mTOR inhibition under hypoxia. Specifically, AsIV treatment reversed the impacts of increased CAPN1 expression on cardiac injury and the inhibition of p-mTOR. CONCLUSION: These findings suggest that AsIV may alleviate cardiac hypertrophy under hypoxia by attenuating apoptosis and autophagy through CAPN1-mediated mTOR activation.


Asunto(s)
Saponinas , Triterpenos , Ratones , Animales , Calpaína/efectos adversos , Calpaína/metabolismo , Ratones Endogámicos C57BL , Cardiomegalia/inducido químicamente , Saponinas/metabolismo , Triterpenos/farmacología , Triterpenos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hipoxia/tratamiento farmacológico , Apoptosis , Miocitos Cardíacos
13.
Biochem Biophys Res Commun ; 693: 149367, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38091841

RESUMEN

Cardiac remodeling (CR), characterized by cardiac hypertrophy and fibrosis, leads to the development and progression of heart failure (HF). Nowadays, emerging evidence implicated that inflammation plays a vital role in the pathogenesis of CR and HF. Astragaloside IV (AS-IV), an effective component of Astragalus membranaceus, exerts cardio-protective and anti-inflammatory effects, but the underlying mechanism remains not fully elucidated. This present study aimed to investigate the effects of AS-IV on cardiac hypertrophy and fibrosis in cultured H9C2 cells stimulated with LPS, as well as explore its underlying mechanisms. As a result, we found AS-IV could reduce the cell surface size, ameliorate cardiac hypertrophy and fibrosis in LPS-induced H9C2 cells. To specify which molecules or signaling pathways play key roles in the process, RNA-seq analysis was performed. After analyzing the transcriptome data, CCL2 has captured our attention, of which expression was sharply increased in model group and reversed by AS-IV treatment. The results also indicated that AS-IV could ameliorate the inflammatory response by down-regulating NF-κB signaling pathway. Additionally, a classical inhibitor of CCL2 (bindarit) were used to further explore whether the anti-inflammatory effect of AS-IV was dependent on this chemokine. Our results indicated that AS-IV could exert a potent inhibitory effect on CCL2 expression and down-regulated NF-κB signaling pathway in a CCL2-dependent manner. These findings provided a scientific basis for promoting the treatment of HF with AS-IV.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Humanos , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Miocitos Cardíacos/metabolismo , Transducción de Señal , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Antiinflamatorios/farmacología , Colágeno/metabolismo , Fibrosis , Quimiocina CCL2/metabolismo
14.
Clin Sci (Lond) ; 138(1): 23-42, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38060817

RESUMEN

Reductions in Na+-K+-ATPase (NKA) activity and expression are often observed in the progress of various reason-induced heart failure (HF). However, NKA α1 mutation or knockdown cannot cause spontaneous heart disease. Whether the abnormal NKA α1 directly contributes to HF pathogenesis remains unknown. Here, we challenge NKA α1+/- mice with isoproterenol to evaluate the role of NKA α1 haploinsufficiency in isoproterenol (ISO)-induced cardiac dysfunction. Genetic knockdown of NKA α1 accelerated ISO-induced cardiac cell hypertrophy, heart fibrosis, and dysfunction. Further studies revealed decreased Krebs cycle, fatty acid oxidation, and mitochondrial OXPHOS in the hearts of NKA α1+/- mice challenged with ISO. In ISO-treated conditions, inhibition of NKA elevated cytosolic Na+, further reduced mitochondrial Ca2+ via mNCE, and then finally down-regulated cardiac cell energy metabolism. In addition, a supplement of DRm217 alleviated ISO-induced heart dysfunction, mitigated cardiac remodeling, and improved cytosolic Na+ and Ca2+ elevation and mitochondrial Ca2+ depression in the NKA α1+/- mouse model. The findings suggest that targeting NKA and mitochondria Ca2+ could be a promising strategy in the treatment of heart disease.


Asunto(s)
Insuficiencia Cardíaca , Miocitos Cardíacos , Ratones , Animales , Isoproterenol/metabolismo , Isoproterenol/farmacología , Miocitos Cardíacos/metabolismo , Calcio/metabolismo , Insuficiencia Cardíaca/inducido químicamente , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Adenosina Trifosfatasas/metabolismo
15.
J Endocrinol Invest ; 47(3): 603-617, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37642904

RESUMEN

PURPOSE: Maternal hyperandrogenism during pregnancy is associated with adverse gestational outcomes and chronic non-communicable diseases in offspring. However, few studies are reported to demonstrate the association between maternal androgen excess and cardiac health in offspring. This study aimed to explore the relation between androgen exposure in utero and cardiac health of offspring in fetal and adult period. Its underlying mechanism is also illustrated in this research. METHODS: Pregnant mice were injected with dihydrotestosterone (DHT) from gestational day (GD) 16.5 to GD18.5. On GD18.5, fetal heart tissue was collected for metabolite and morphological analysis. The hearts from adult offspring were also collected for morphological and qPCR analysis. H9c2 cells were treated with 75 µM androsterone. Immunofluorescence, flow cytometry, qPCR, and western blot were performed to observe cell proliferation and explore the underlying mechanism. RESULTS: Intrauterine exposure to excessive androgen led to thinner ventricular wall, decreased number of cardiomyocytes in fetal offspring and caused cardiac hypertrophy, compromised cardiac function in adult offspring. The analysis of steroid hormone metabolites in fetal heart tissue by ultra performance liquid chromatography and tandem mass spectrometry showed that the content of androgen metabolite androsterone was significantly increased. Mechanistically, H9c2 cells treated with androsterone led to a significant decrease in phosphorylated retinoblastoma protein (pRB) and cell cycle-related protein including cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin D1 (CCND1) in cardiomyocytes. This resulted in cell cycle arrest at G1-S phase, which in turn inhibited cardiomyocyte proliferation. CONCLUSION: Taken together, our results indicate that in utero exposure to DHT, its metabolite androsterone could directly decrease cardiomyocytes proliferation through cell cycle arrest, which has a life-long-lasting effect on cardiac health. Our study highlights the importance of monitoring sex hormones in women during pregnancy and the follow-up of cardiac function in offspring with high risk of intrauterine androgen exposure.


Asunto(s)
Andrógenos , Miocitos Cardíacos , Humanos , Adulto , Embarazo , Femenino , Animales , Ratones , Andrógenos/efectos adversos , Androsterona , Puntos de Control del Ciclo Celular , Proliferación Celular , Proteínas de Ciclo Celular , Dihidrotestosterona , Cardiomegalia/inducido químicamente
16.
Mol Biol Rep ; 51(1): 39, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38158445

RESUMEN

BACKGROUND: Muscone is a chemical monomer derived from musk. Although many studies have confirmed the cardioprotective effects of muscone, the effects of muscone on cardiac hypertrophy and its potential mechanisms are unclear.The aim of the present study was to investigate the effect of muscone on angiotensin (Ang) II-induced cardiac hypertrophy. METHODS AND RESULTS: In the present study, we found for the first time that muscone exerted inhibitory effects on Ang II-induced cardiac hypertrophy and cardiac injury in mice. Cardiac function was analyzed by echocardiography measurement, and the degree of cardiac fibrosis was determined by the quantitative real-time polymerase chain reaction (qRT-PCR), Masson trichrome staining and western blot assay. Secondly, qRT-PCR experiment showed that muscone attenuated cardiac injury by reducing the secretion of pro-inflammatory cytokines and promoting the secretion of anti-inflammatory cytokines. Moreover, western blot analysis found that muscone exerted cardio-protective effects by inhibiting phosphorylation of key proteins in the STAT3, MAPK and TGF-ß/SMAD pathways. In addition, CCK-8 and determination of serum biochemical indexes showed that no significant toxicity or side effects of muscone on normal cells and organs. CONCLUSIONS: Muscone could attenuate Ang II-induced cardiac hypertrophy, in part, by inhibiting the STAT3, MAPK, and TGF-ß/SMAD signaling pathways.


Asunto(s)
Lesiones Cardíacas , Transducción de Señal , Ratones , Animales , Angiotensina II , Factor de Crecimiento Transformador beta/metabolismo , Citocinas/metabolismo , Fibrosis , Cardiomegalia/inducido químicamente
17.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139099

RESUMEN

Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-ß1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.


Asunto(s)
Insuficiencia Cardíaca , FN-kappa B , Ratas , Animales , FN-kappa B/metabolismo , Paroxetina/farmacología , Paroxetina/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Isoproterenol/toxicidad , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Remodelación Ventricular , Miocitos Cardíacos/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Insuficiencia Cardíaca/metabolismo , Ratas Wistar , Expresión Génica
18.
Mol Biol Rep ; 50(12): 10147-10155, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37921981

RESUMEN

BACKGROUND: Cardiac apoptosis plays a key role in increased morbidity associated with aging-induced-cardiac disorder. Mitochondria play an important role in cardiac apoptosis, and dynamin-related protein 1 (Drp1), as a main mediator of mitochondrial fission, can trigger the mitophagy process to sustain the mitochondrial quality. The present study was done to determine the effect of vitamin D (VitD) treatment on cardiac hypertrophy through mitophagy regulation in aged animals induced by D-galactose (D-GAL). METHODS AND RESULTS: Male Wistar rats were randomly divided into four groups: control, D-GAL (aging group), D-GAL co-injected with VitD (D-GAL ± VitD), and D-GAL plus ethanol (D-GAL ± Ethanol). Aging was induced by an intraperitoneal (i.p.) administration of D-GAL at 150 mg/kg daily for eight weeks and also VitD (400 IU/kg) or ethanol was injected (i.p.) into aging rats. Then, the levels of cardiac mitophagy and cardiac apoptosis were determined by measuring the expression of tensin homologue (PTEN)-induced putative kinase 1 (PINK1), Drp1, Bcl2-Associated X (Bax), and B-cell lymphoma 2 (Bcl2) genes. Aging in rats was associated with a reduction in mitophagy and also an increase in apoptosis of the heart through down-regulation of Drp1, PINK1, and Bcl2 genes and also up-regulation of Bax. However, VitD improved cardiac hypertrophy through cardiac mitophagy in D-GAL-induced aging rats. CONCLUSION: VitD can inhibit cardiac hypertrophy by an increase in mitophagy and a decrease in apoptosis in the aging heart. The illustration of the suggested mechanism underlying of Vitamin D in cardiac hypertrophy induced by aging.


Asunto(s)
Mitofagia , Vitamina D , Ratas , Masculino , Animales , Vitamina D/farmacología , Galactosa/farmacología , Proteína X Asociada a bcl-2 , Ratas Wistar , Envejecimiento , Vitaminas/farmacología , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Proteínas Quinasas/genética , Etanol/farmacología
19.
Chin J Physiol ; 66(5): 306-312, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37929341

RESUMEN

Acute cardiomyopathy is a significant global health concern and one of the leading causes of death in developed countries. Prior studies have shown an association between acute cardiomyopathy and low vitamin D levels. Although paricalcitol, a vitamin D receptor (VDR) activator, has demonstrated clinical benefits in patients with advanced kidney disease, its effect on cardiac remodeling in cardiomyopathy is unknown. This study aimed to investigate the relative effects of paricalcitol on cardiomyopathy in rats. Wistar-Kyoto rats were administered vehicle (sham control group) or isoproterenol to induce cardiomyopathy. Rats administered isoproterenol were subsequently treated with paricalcitol (experimental group) or vehicle (isoproterenol group). Picrosirius red and immunofluorescence staining were used to analyze cardiac fibrosis and hypertrophy. Immunohistochemistry staining was used to confirm the molecular mechanisms involved in isoproterenol-induced cardiomyopathy in rats. Injection of paricalcitol could reduce collagen and transforming growth factor-beta 1 (TGF-ß1) levels while activating fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-23 (FGF23) without the help of Klotho, thereby reducing myocardial hypertrophy and fibrosis. As a VDR activator, paricalcitol reduces isoproterenol-induced cardiac fibrosis and hypertrophy by reducing the expression of TGF-ß1 and enhancing the expression of VDR, FGFR1, and FGF23.


Asunto(s)
Cardiomiopatías , Factor de Crecimiento Transformador beta1 , Humanos , Ratas , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba , Isoproterenol/toxicidad , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Abajo , Factor-23 de Crecimiento de Fibroblastos , Ratas Endogámicas WKY , Cardiomiopatías/inducido químicamente , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Fibrosis , Factores de Crecimiento Transformadores/metabolismo
20.
Biomolecules ; 13(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759673

RESUMEN

OBJECTIVE: Evidence suggests that food bioactives affect the epigenome to prevent pathological cardiac hypertrophy. Recently, we showed that emodin, an anthraquinone, attenuated pathological cardiac hypertrophy and histone deacetylase (HDAC) activity. However, we only examined the cardioprotective effects of emodin's parent compound and not those of emodin metabolites or of emodin-gut microbiome interactions. The microbiome has emerged as a key player in chronic diseases such as metabolic and cardiac disease. Thus, we hypothesized that emodin could reverse hypertension-induced changes in microbial communities. METHODS: Normo- and hypertensive (angiotensin II) C57/BL6 female mice were randomly assigned to receive a vehicle (Veh; DMSO:PEG 1:1) or emodin (Emod; 30 mg/kg) for 14 days. Body weights were collected pre- and post-treatment, and blood pressure was assessed via tail cuff. At the study's end, the mice were euthanized and assessed for their heart weights. In addition, stool samples and cecal contents were collected to elucidate changes in the microbial populations using 16S rRNA sequencing. Lastly, the tissue was lysed, and RNA was isolated for qPCR. One-way ANOVA with Tukey's post hoc test was performed unless otherwise specified, and p < 0.05 was considered significant. RESULTS: Emodin significantly attenuated cardiac hypertrophy in the female mice. No significant changes were observed in body weight or systolic blood pressure in response to hypertension or emodin. Lastly, analysis suggests that hypertension altered the microbiome in the cecum and cecal content, with additional evidence to support that emodin affects gut microbiota in the feces and colon. CONCLUSIONS: Our data demonstrate that emodin attenuates pathological hypertrophy in female mice. Future research is needed to dissect if changes in the microbiome contributes to emodin-mediated attenuation in cardiac remodeling.


Asunto(s)
Emodina , Microbioma Gastrointestinal , Hipertensión , Animales , Femenino , Ratones , Angiotensinas/toxicidad , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Emodina/farmacología , Hipertensión/inducido químicamente , Hipertensión/tratamiento farmacológico , Hipertensión/patología , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA