Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Stem Cell Res ; 76: 103362, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417376

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) stands as a predominant heart condition, characterised by left ventricle hypertrophy in the absence of any associated loading conditions, with affected individuals having an increased risk of developing heart failure and sudden cardiac death (SCD). Two induced pluripotent stem cell (iPSC) lines were derived from peripheral blood mononuclear cells obtained from two unrelated individuals with previously reported nonsense mutations in the MYBPC3 gene. The first individual is a 48-year-old male (F26) with the MYBPC3 c.1731G > A HCM mutation, whereas the second individual is a 43-year-old female (F82) carrying the MYBPC3 c.2670G > A HCM mutation. The generated iPSCs exhibit appropriate expression of pluripotency markers, trilineage differentiation capacity and a normal karyotype. This resource contributes to gaining deeper insights into the pathophysiological mechanisms that underlie HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Masculino , Femenino , Humanos , Adulto , Persona de Mediana Edad , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Codón sin Sentido , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares , Mutación , Proteínas del Citoesqueleto/genética
2.
Stem Cell Res ; 74: 103282, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38104429

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) is the most common inherited heart condition. HCM patients show left ventricle hypertrophy without any associated loading conditions, being at risk for heart failure and sudden cardiac death. Two induced pluripotent stem cell (iPSC) lines were generated from peripheral blood mononuclear cells obtained from two unrelated individuals, a 54-year-old male (F81) and a 44-year-old female (F93), both carrying the MYBPC3 c.1484G>A HCM mutation. iPSCs show expression of pluripotency markers, trilineage differentiation capacity and a normal karyotype. This resource enables further assessment of the pathophysiological development of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar , Células Madre Pluripotentes Inducidas , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/metabolismo , Leucocitos Mononucleares/metabolismo , Mutación
3.
Genes (Basel) ; 11(12)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302605

RESUMEN

INTRODUCTION: Sudden cardiac death (SCD) and early onset cardiomyopathy (CM) in the young will always lead to suspicion of an underlying genetic disorder. Incited by the rapid advances in genetic testing for disease we have revisited families, which previously tested "gene-negative" for familial predominantly pediatric CM, in hopes of finding a causative gene variant. METHODS: 10 different families with non-syndromic pediatric CM or hypertrophic cardiomyopathy (HCM) with severe disease progression and/or heredity for HCM/CM related SCD with "gene-negative" results were included. The index patient underwent genetic testing with a recently updated gene panel for CM and SCD. In case of failure to detect a pathogenic variant in a relevant gene, the index patient and both parents underwent clinical (i.e., partial) exome sequencing (trio-exome) in order to catch pathogenic variants linked to the disease in genes that were not included in the CM panel. RESULTS: The mean age at clinical presentation of the 10 index cases was 12.5 years (boys 13.4 years, n = 8; girls 9 years, n = 2) and the family history burden was 33 HCM/CM cases including 9 HCM-related SCD and one heart transplantation. In 5 (50%) families we identified a genetic variant classified as pathogenic or likely pathogenic, in accordance with the American College of Medical Genetics and Genomics (ACMG) criteria, in MYH7 (n = 2), RBM20, ALPK3, and PGM1, respectively, and genetic variants of unknown significance (VUS) segregating with the disease in an additional 3 (30%) families, in MYBPC3, ABCC9, and FLNC, respectively. CONCLUSION: Our results show the importance of renewed thorough clinical assessment and the necessity to challenge previous genetic test results with more comprehensive updated gene panels or exome sequencing if the initial test failed to identify a causative gene for early onset CM or SCD in children. In pediatric cardiomyopathy cases when the gene panel still fails to detect a causative variant, a trio exome sequencing strategy might resolve some unexplained cases, especially if a multisystemic condition is clinically missed.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Secuenciación del Exoma , Pruebas Genéticas , Adolescente , Adulto , Cardiomiopatía Hipertrófica Familiar/metabolismo , Niño , Preescolar , Femenino , Humanos , Masculino , Adulto Joven
4.
Proc Natl Acad Sci U S A ; 115(37): 9276-9281, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150400

RESUMEN

This study demonstrates that significantly shortened telomeres are a hallmark of cardiomyocytes (CMs) from individuals with end-stage hypertrophic cardiomyopathy (HCM) or dilated cardiomyopathy (DCM) as a result of heritable defects in cardiac proteins critical to contractile function. Positioned at the ends of chromosomes, telomeres are DNA repeats that serve as protective caps that shorten with each cell division, a marker of aging. CMs are a known exception in which telomeres remain relatively stable throughout life in healthy individuals. We found that, relative to healthy controls, telomeres are significantly shorter in CMs of genetic HCM and DCM patient tissues harboring pathogenic mutations: TNNI3, MYBPC3, MYH7, DMD, TNNT2, and TTN Quantitative FISH (Q-FISH) of single cells revealed that telomeres were significantly reduced by 26% in HCM and 40% in DCM patient CMs in fixed tissue sections compared with CMs from age- and sex-matched healthy controls. In the cardiac tissues of the same patients, telomere shortening was not evident in vascular smooth muscle cells that do not express or require the contractile proteins, an important control. Telomere shortening was recapitulated in DCM and HCM CMs differentiated from patient-derived human-induced pluripotent stem cells (hiPSCs) measured by two independent assays. This study reveals telomere shortening as a hallmark of genetic HCM and DCM and demonstrates that this shortening can be modeled in vitro by using the hiPSC platform, enabling drug discovery.


Asunto(s)
Cardiomiopatía Dilatada , Cardiomiopatía Hipertrófica Familiar , División Celular , Células Madre Pluripotentes Inducidas , Proteínas Musculares , Mutación , Acortamiento del Telómero , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Masculino , Proteínas Musculares/genética , Proteínas Musculares/metabolismo
5.
Biochemistry ; 56(26): 3403-3413, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28603979

RESUMEN

The progression of genetically inherited cardiomyopathies from an altered protein structure to clinical presentation of disease is not well understood. One of the main roadblocks to mechanistic insight remains a lack of high-resolution structural information about multiprotein complexes within the cardiac sarcomere. One example is the tropomyosin (Tm) overlap region of the thin filament that is crucial for the function of the cardiac sarcomere. To address this central question, we devised coupled experimental and computational modalities to characterize the baseline function and structure of the Tm overlap, as well as the effects of mutations causing divergent patterns of ventricular remodeling on both structure and function. Because the Tm overlap contributes to the cooperativity of myofilament activation, we hypothesized that mutations that enhance the interactions between overlap proteins result in more cooperativity, and conversely, those that weaken interaction between these elements lower cooperativity. Our results suggest that the Tm overlap region is affected differentially by dilated cardiomyopathy-associated Tm D230N and hypertrophic cardiomyopathy-associated human cardiac troponin T (cTnT) R92L. The Tm D230N mutation compacts the Tm overlap region, increasing the cooperativity of the Tm filament, contributing to a dilated cardiomyopathy phenotype. The cTnT R92L mutation causes weakened interactions closer to the N-terminal end of the overlap, resulting in decreased cooperativity. These studies demonstrate that mutations with differential phenotypes exert opposite effects on the Tm-Tn overlap, and that these effects can be directly correlated to a molecular level understanding of the structure and dynamics of the component proteins.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Moleculares , Mutación Puntual , Sarcómeros/metabolismo , Tropomiosina/metabolismo , Troponina T/metabolismo , Adenosina Trifosfato/metabolismo , Sustitución de Aminoácidos , Animales , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Hipertrófica Familiar/metabolismo , Biología Computacional , Humanos , Simulación de Dinámica Molecular , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estabilidad Proteica , Conejos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sarcómeros/química , Tropomiosina/química , Tropomiosina/genética , Troponina/química , Troponina/genética , Troponina/metabolismo , Troponina C/química , Troponina C/genética , Troponina C/metabolismo , Troponina I/química , Troponina I/genética , Troponina I/metabolismo , Troponina T/química , Troponina T/genética
6.
J Biol Chem ; 292(28): 11915-11926, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28533433

RESUMEN

Cardiac troponin C (cTnC) is the regulatory protein that initiates cardiac contraction in response to Ca2+ TnC binding Ca2+ initiates a cascade of protein-protein interactions that begins with the opening of the N-terminal domain of cTnC, followed by cTnC binding the troponin I switch peptide (TnISW). We have evaluated, through isothermal titration calorimetry and molecular-dynamics simulation, the effect of several clinically relevant mutations (A8V, L29Q, A31S, L48Q, Q50R, and C84Y) on the Ca2+ affinity, structural dynamics, and calculated interaction strengths between cTnC and each of Ca2+ and TnISW Surprisingly the Ca2+ affinity measured by isothermal titration calorimetry was only significantly affected by half of these mutations including L48Q, which had a 10-fold higher affinity than WT, and the Q50R and C84Y mutants, each of which had affinities 3-fold higher than wild type. This suggests that Ca2+ affinity of the N-terminal domain of cTnC in isolation is insufficient to explain the pathogenicity of these mutations. Molecular-dynamics simulation was used to evaluate the effects of these mutations on Ca2+ binding, structural dynamics, and TnI interaction independently. Many of the mutations had a pronounced effect on the balance between the open and closed conformations of the TnC molecule, which provides an indirect mechanism for their pathogenic properties. Our data demonstrate that the structural dynamics of the cTnC molecule are key in determining myofilament Ca2+ sensitivity. Our data further suggest that modulation of the structural dynamics is the underlying molecular mechanism for many disease mutations that are far from the regulatory Ca2+-binding site of cTnC.


Asunto(s)
Señalización del Calcio , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica/genética , Modelos Moleculares , Mutación , Troponina C/metabolismo , Troponina I/metabolismo , Sustitución de Aminoácidos , Sitios de Unión , Calorimetría , Cardiomiopatía Hipertrófica/metabolismo , Cardiomiopatía Hipertrófica Familiar/metabolismo , Transferencia de Energía , Humanos , Cinética , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Replegamiento Proteico , Estabilidad Proteica , Desplegamiento Proteico , Proteínas Recombinantes/metabolismo , Volumetría , Troponina C/antagonistas & inhibidores , Troponina C/química , Troponina C/genética , Troponina I/química
7.
Stem Cell Res ; 20: 76-79, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28395744

RESUMEN

Induced pluripotent stem cells (iPSCs) were generated from peripheral blood mononuclear cells (PBMCs) obtained from a 62-year-old female with familial hypertrophic cardiomyopathy (HCM). PBMCs were reprogrammed to a pluripotent state following transfection with non-integrative episomal vectors carrying reprogramming factors OCT4, SOX2, LIN28, KLF4 and L-MYC. iPSCs were shown to express pluripotency markers, possess trilineage differentiation potential, carry rare variants identified in DNA isolated directly from the patient's whole blood, have a normal karyotype and no longer carry episomal vectors for reprogramming. This line is a useful resource for identifying unknown genetic causes of HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/patología , Reprogramación Celular , Células Madre Pluripotentes Inducidas/citología , Leucocitos Mononucleares/citología , Secuencia de Bases , Canales de Calcio Tipo L/genética , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Proteínas Portadoras/genética , Diferenciación Celular , Línea Celular , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Cariotipo , Factor 4 Similar a Kruppel , Leucocitos Mononucleares/metabolismo , Persona de Mediana Edad , Mutación Missense , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
J Mol Cell Cardiol ; 103: 93-101, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28089740

RESUMEN

Familial hypertrophic cardiomyopathy (HCM), linked to mutations in myosin, myosin-binding proteins and other sarcolemmal proteins, is associated with increased risk of life threatening ventricular arrhythmias, and a number of animal models have been developed to facilitate analysis of disease progression and mechanisms. In the experiments here, we use the αMHC403/+ mouse line in which one αMHC allele harbors a common HCM mutation (in ßMHC, Arg403 Gln). Here, we demonstrate marked prolongation of QT intervals in young adult (10-12week) male αMHC403/+ mice, well in advance of the onset of measurable left ventricular hypertrophy. Electrophysiological recordings from myocytes isolated from the interventricular septum of these animals revealed significantly (P<0.001) lower peak repolarizing voltage-gated K+ (Kv) current (IK,peak) amplitudes, compared with cells isolated from wild type (WT) littermate controls. Analysis of Kv current waveforms revealed that the amplitudes of the inactivating components of the total outward Kv current, Ito,f, Ito,s and IK,slow, were significantly lower in αMHC403/+, compared with WT, septum cells, whereas Iss amplitudes were similar. The amplitudes/densities of IK,peak and IK,slow were also lower in αMHC403/+, compared with WT, LV wall and LV apex myocytes, whereas Ito,f was attenuated in αMHC403/+ LV wall, but not LV apex, cells. These regional differences in the remodeling of repolarizing Kv currents in the αMHC403/+ mice would be expected to increase the dispersion of ventricular repolarization and be proarrhythmic. Quantitative RT-PCR analysis revealed reductions in the expression of transcripts encoding several K+ channel subunits in the interventricular septum, LV free wall and LV apex of (10-12week) αMHC403/+ mice, although this transcriptional remodeling was not correlated with the observed decreases in K+ current amplitudes.


Asunto(s)
Potenciales de Acción , Cardiomiopatía Hipertrófica Familiar/etiología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación , Miocardio/metabolismo , Canales de Potasio/metabolismo , Miosinas Ventriculares/genética , Animales , Biopsia , Cardiomiopatía Hipertrófica Familiar/diagnóstico , Modelos Animales de Enfermedad , Ecocardiografía , Electrocardiografía , Expresión Génica , Perfilación de la Expresión Génica , Hipertrofia Ventricular Izquierda/etiología , Hipertrofia Ventricular Izquierda/metabolismo , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Masculino , Ratones , Miocardio/patología , Miocitos Cardíacos/metabolismo , Remodelación Ventricular/genética
9.
Cardiol Young ; 27(3): 467-472, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27161882

RESUMEN

The present study was performed to identify the genotype of a hypertrophic cardiomyopathy family and investigate the clinicopathogenic characteristics and prognostic features of relevant genetic abnormalities. Target sequence capture sequencing was performed to screen for pathogenic alleles in a 32-year-old female patient (proband). Sanger sequencing was carried out to verify the results. Sanger sequencing was also performed on other family members to identify allele carriers. A survival analysis was carried out using published literature and our findings. We found that the proband and her son harboured a Gly716Arg sequence variant of the ß-myosin heavy chain. Neither the proband's father nor the mother were carriers of this sequence variant; thus, the mutation was classified as "de novo". Further survival analysis revealed that female patients appear to have a longer life expectancy compared with males. Our study may provide an effective approach for the genetic diagnosis of hypertrophic cardiomyopathy.


Asunto(s)
Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica Familiar/genética , ADN/genética , Mutación , Cadenas Pesadas de Miosina/genética , Adolescente , Adulto , Anciano , Alelos , Biomarcadores/metabolismo , Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica Familiar/diagnóstico , Cardiomiopatía Hipertrófica Familiar/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Ecocardiografía , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Cadenas Pesadas de Miosina/metabolismo , Linaje , Fenotipo , Reacción en Cadena de la Polimerasa , Adulto Joven
10.
Rev Esp Cardiol (Engl Ed) ; 70(2): 105-114, 2017 Feb.
Artículo en Inglés, Español | MEDLINE | ID: mdl-28029522

RESUMEN

INTRODUCTION AND OBJECTIVES: Mutations in MYBPC3 are the cause of hypertrophic cardiomyopathy (HCM). Although most lead to a truncating protein, the severity of the phenotype differs. We describe the clinical phenotype of a novel MYBPC3 mutation, p.Pro108Alafs*9, present in 13 families from southern Spain and compare it with the most prevalent MYBPC3 mutation in this region (c.2308+1 G>A). METHODS: We studied 107 relatives of 13 index cases diagnosed as HCM carriers of the p.Pro108Alafs*9 mutation. Pedigree analysis, clinical evaluation, and genotyping were performed. RESULTS: A total of 54 carriers of p.Pro108Alafs*9 were identified, of whom 39 had HCM. There were 5 cases of sudden death in the 13 families. Disease penetrance was greater as age increased and HCM patients were more frequently male and developed disease earlier than female patients. The phenotype was similar in p.Pro108Alafs*9 and in c.2308+1 G>A, but differences were found in several risk factors and in survival. There was a trend toward a higher left ventricular mass in p.Pro108Alafs*9 vs c.2308+1G>A. Cardiac magnetic resonance revealed a similar extent and pattern of fibrosis. CONCLUSIONS: The p.Pro108Alafs*9 mutation is associated with HCM, high penetrance, and disease onset in middle age.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Proteínas Portadoras/genética , ADN/genética , Mutación , Adulto , Edad de Inicio , Anciano , Cardiomiopatía Hipertrófica Familiar/epidemiología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Proteínas Portadoras/metabolismo , Análisis Mutacional de ADN , Ecocardiografía , Femenino , Efecto Fundador , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Miosinas , Linaje , España/epidemiología , Tasa de Supervivencia/tendencias
11.
Cell ; 165(5): 1147-1159, 2016 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-27114035

RESUMEN

The heart either hypertrophies or dilates in response to familial mutations in genes encoding sarcomeric proteins, which are responsible for contraction and pumping. These mutations typically alter calcium-dependent tension generation within the sarcomeres, but how this translates into the spectrum of hypertrophic versus dilated cardiomyopathy is unknown. By generating a series of cardiac-specific mouse models that permit the systematic tuning of sarcomeric tension generation and calcium fluxing, we identify a significant relationship between the magnitude of tension developed over time and heart growth. When formulated into a computational model, the integral of myofilament tension development predicts hypertrophic and dilated cardiomyopathies in mice associated with essentially any sarcomeric gene mutations, but also accurately predicts human cardiac phenotypes from data generated in induced-pluripotent-stem-cell-derived myocytes from familial cardiomyopathy patients. This tension-based model also has the potential to inform pharmacologic treatment options in cardiomyopathy patients.


Asunto(s)
Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Animales , Aorta/patología , Calcineurina/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Miofibrillas/metabolismo
12.
Mol Cell Proteomics ; 15(6): 1962-81, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27022107

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is associated with mild to severe cardiac problems and is the leading cause of sudden death in young people and athletes. Although the genetic basis for FHC is well-established, the molecular mechanisms that ultimately lead to cardiac dysfunction are not well understood. To obtain important insights into the molecular mechanism(s) involved in FHC, hearts from two FHC troponin T models (Ile79Asn [I79N] and Arg278Cys [R278C]) were investigated using label-free proteomics and metabolomics. Mutations in troponin T are the third most common cause of FHC, and the I79N mutation is associated with a high risk of sudden cardiac death. Most FHC-causing mutations, including I79N, increase the Ca(2+) sensitivity of the myofilament; however, the R278C mutation does not alter Ca(2+) sensitivity and is associated with a better prognosis than most FHC mutations. Out of more than 1200 identified proteins, 53 and 76 proteins were differentially expressed in I79N and R278C hearts, respectively, when compared with wild-type hearts. Interestingly, more than 400 proteins were differentially expressed when the I79N and R278C hearts were directly compared. The three major pathways affected in I79N hearts relative to R278C and wild-type hearts were the ubiquitin-proteasome system, antioxidant systems, and energy production pathways. Further investigation of the proteasome system using Western blotting and activity assays showed that proteasome dysfunction occurs in I79N hearts. Metabolomic results corroborate the proteomic data and suggest the glycolytic, citric acid, and electron transport chain pathways are important pathways that are altered in I79N hearts relative to R278C or wild-type hearts. Our findings suggest that impaired energy production and protein degradation dysfunction are important mechanisms in FHCs associated with poor prognosis and that cardiac hypertrophy is not likely needed for a switch from fatty acid to glucose metabolism.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/metabolismo , Metabolómica/métodos , Proteómica/métodos , Troponina T/genética , Animales , Cardiomiopatía Hipertrófica Familiar/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Ratones , Mutación , Transducción de Señal
13.
Circ Cardiovasc Genet ; 8(6): 765-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26553696

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most common inherited cardiovascular disease characterized by thickening of ventricular walls and decreased left ventricular chamber volume. The majority of HCM-associated mutations are found in genes encoding sarcomere proteins. Herein, we set out to functionally characterize a novel HCM-associated mutation (K206I-TNNI3) and elucidate the mechanism of dysfunction at the level of myofilament proteins. METHODS AND RESULTS: The male index case was diagnosed with HCM after an out-of-hospital cardiac arrest, which was followed by comprehensive clinical evaluation, transthoracic echocardiography, and clinical genetic testing. To determine molecular mechanism(s) of the mutant human cardiac troponin I (K206I), we tested the Ca(2+) dependence of thin filament-activated myosin-S1-ATPase activity in a reconstituted, regulated, actomyosin system comparing wild-type human troponin complex, 50% mix of K206I/wildtype, or 100% K206I. We also exchanged native troponin detergent extracted fibers with reconstituted troponin containing either wildtype or a 65% mix of K206I/wildtype and measured force generation. The Ca(2+) sensitivity of the myofilaments containing the K206I variant was significantly increased, and when treated with 20 µmol/L (-)-epigallocatechin gallate (green tea) was restored back to wild-type levels in ATPase and force measurements. The K206I mutation impairs the ability of the troponin I to inhibit ATPase activity in the absence of calcium-bound human cardiac troponin C. The ability of calcium-bound human cardiac troponin C to neutralize the inhibition of K206I was greater than with wild-type TnI. CONCLUSIONS: Compromised interactions of K206I with actin and hcTnC may lead to impaired relaxation and HCM.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación Missense , Miofibrillas/metabolismo , Troponina I/metabolismo , Adolescente , Sustitución de Aminoácidos , Animales , Cardiomiopatía Hipertrófica Familiar/genética , Humanos , Masculino , Ratones , Miofibrillas/genética , Troponina C/metabolismo , Troponina I/genética
14.
Am J Physiol Heart Circ Physiol ; 309(10): H1720-30, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26432840

RESUMEN

S-glutathionylation of cardiac myosin-binding protein C (cMyBP-C) induces Ca(2+) sensitization and a slowing of cross-bridge kinetics as a result of increased oxidative signaling. Although there is evidence for a role of oxidative stress in disorders associated with hypertrophic cardiomyopathy (HCM), this mechanism is not well understood. We investigated whether oxidative myofilament modifications may be in part responsible for diastolic dysfunction in HCM. We administered N-acetylcysteine (NAC) for 30 days to 1-mo-old wild-type mice and to transgenic mice expressing a mutant tropomyosin (Tm-E180G) and nontransgenic littermates. Tm-E180G hearts demonstrate a phenotype similar to human HCM. After NAC administration, the morphology and diastolic function of Tm-E180G mice was not significantly different from controls, indicating that NAC had reversed baseline diastolic dysfunction and hypertrophy in our model. NAC administration also increased sarco(endo)plasmic reticulum Ca(2+) ATPase protein expression, reduced extracellular signal-related kinase 1/2 phosphorylation, and normalized phosphorylation of phospholamban, as assessed by Western blot. Detergent-extracted fiber bundles from NAC-administered Tm-E180G mice showed nearly nontransgenic (NTG) myofilament Ca(2+) sensitivity. Additionally, we found that NAC increased tension cost and rate of cross-bridge reattachment. Tm-E180G myofilaments were found to have a significant increase in S-glutathionylation of cMyBP-C, which was returned to NTG levels upon NAC administration. Taken together, our results indicate that oxidative myofilament modifications are an important mediator in diastolic function, and by relieving this modification we were able to reverse established diastolic dysfunction and hypertrophy in HCM.


Asunto(s)
Acetilcisteína/farmacología , Cardiomiopatía Hipertrófica Familiar/metabolismo , Diástole/efectos de los fármacos , Depuradores de Radicales Libres/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Miofibrillas/efectos de los fármacos , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/efectos de los fármacos , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Proteínas Portadoras/efectos de los fármacos , Proteínas Portadoras/metabolismo , Modelos Animales de Enfermedad , Femenino , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Masculino , Ratones , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/efectos de los fármacos , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miofibrillas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Tropomiosina/genética
15.
J Mol Cell Cardiol ; 87: 257-69, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26341255

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is characterized by severe abnormal cardiac muscle growth. The traditional view of disease progression in FHC is that an increase in the Ca(2+)-sensitivity of cardiac muscle contraction ultimately leads to pathogenic myocardial remodeling, though recent studies suggest this may be an oversimplification. For example, FHC may be developed through altered signaling that prevents downstream regulation of contraction. The mutation L29Q, found in the Ca(2+)-binding regulatory protein in heart muscle, cardiac troponin C (cTnC), has been linked to cardiac hypertrophy. However, reports on the functional effects of this mutation are conflicting, and our goal was to combine in vitro and in situ structural and functional data to elucidate its mechanism of action. We used nuclear magnetic resonance and circular dichroism to solve the structure and characterize the backbone dynamics and stability of the regulatory domain of cTnC with the L29Q mutation. The overall structure and dynamics of cTnC were unperturbed, although a slight rearrangement of site 1, an increase in backbone flexibility, and a small decrease in protein stability were observed. The structure and function of cTnC was also assessed in demembranated ventricular trabeculae using fluorescence for in situ structure. L29Q reduced the cooperativity of the Ca(2+)-dependent structural change in cTnC in trabeculae under basal conditions and abolished the effect of force-generating myosin cross-bridges on this structural change. These effects could contribute to the pathogenesis of this mutation.


Asunto(s)
Calcio/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Miocardio/metabolismo , Troponina C/química , Troponina C/genética , Animales , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Mutación , Contracción Miocárdica/genética , Miocardio/patología , Miosinas/genética , Miosinas/metabolismo , Fosforilación , Conformación Proteica , Transducción de Señal , Relación Estructura-Actividad , Troponina C/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 308(10): H1248-57, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25770245

RESUMEN

Familial hypertrophic cardiomyopathy (FHC) is the most common cause of sudden cardiac death in young individuals. Molecular mechanisms underlying this disorder are largely unknown; this study aims at revealing how disruptions in actin-myosin interactions can play a role in this disorder. Cross-bridge (XB) kinetics and the degree of order were examined in contracting myofibrils from the ex vivo left ventricles of transgenic (Tg) mice expressing FHC regulatory light chain (RLC) mutation K104E. Because the degree of order and the kinetics are best studied when an individual XB makes a significant contribution to the overall signal, the number of observed XBs in an ex vivo ventricle was minimized to ∼20. Autofluorescence and photobleaching were minimized by labeling the myosin lever arm with a relatively long-lived red-emitting dye containing a chromophore system encapsulated in a cyclic macromolecule. Mutated XBs were significantly better ordered during steady-state contraction and during rigor, but the mutation had no effect on the degree of order in relaxed myofibrils. The K104E mutation increased the rate of XB binding to thin filaments and the rate of execution of the power stroke. The stopped-flow experiments revealed a significantly faster observed dissociation rate in Tg-K104E vs. Tg-wild-type (WT) myosin and a smaller second-order ATP-binding rate for the K104E compared with WT myosin. Collectively, our data indicate that the mutation-induced changes in the interaction of myosin with actin during the contraction-relaxation cycle may contribute to altered contractility and the development of FHC.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación Missense , Contracción Miocárdica , Cadenas Ligeras de Miosina/metabolismo , Miosinas Ventriculares/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/genética , Células Cultivadas , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Ratones , Miofibrillas/metabolismo , Miofibrillas/fisiología , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/genética , Unión Proteica , Miosinas Ventriculares/genética
17.
Proc Natl Acad Sci U S A ; 112(9): E973-81, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25691752

RESUMEN

Desmosomes are anchoring junctions that exist in cells that endure physical stress such as cardiac myocytes. The importance of desmosomes in maintaining the homeostasis of the myocardium is underscored by frequent mutations of desmosome components found in human patients and animal models. Arrhythmogenic right ventricular cardiomyopathy (ARVC) is a phenotype caused by mutations in desmosomal components in ∼ 50% of patients, however, the causes in the remaining 50% of patients still remain unknown. A deficiency of inhibitor of apoptosis-stimulating protein of p53 (iASPP), an evolutionarily conserved inhibitor of p53, caused by spontaneous mutation recently has been associated with a lethal autosomal recessive cardiomyopathy in Poll Hereford calves and Wa3 mice. However, the molecular mechanisms that mediate this putative function of iASPP are completely unknown. Here, we show that iASPP is expressed at intercalated discs in human and mouse postmitotic cardiomyocytes. iASPP interacts with desmoplakin and desmin in cardiomyocytes to maintain the integrity of desmosomes and intermediate filament networks in vitro and in vivo. iASPP deficiency specifically induces right ventricular dilatation in mouse embryos at embryonic day 16.5. iASPP-deficient mice with exon 8 deletion (Ppp1r13l(Δ8/Δ8)) die of sudden cardiac death, displaying features of ARVC. Intercalated discs in cardiomyocytes from four of six human ARVC cases show reduced or loss of iASPP. ARVC-derived desmoplakin mutants DSP-1-V30M and DSP-1-S299R exhibit weaker binding to iASPP. These data demonstrate that by interacting with desmoplakin and desmin, iASPP is an important regulator of desmosomal function both in vitro and in vivo. This newly identified property of iASPP may provide new molecular insight into the pathogenesis of ARVC.


Asunto(s)
Arritmias Cardíacas , Cardiomiopatía Hipertrófica Familiar , Muerte Súbita , Desmosomas , Péptidos y Proteínas de Señalización Intracelular , Proteínas Represoras , Sustitución de Aminoácidos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Secuencia de Bases , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Bovinos , Línea Celular Transformada , Desmina/genética , Desmina/metabolismo , Desmoplaquinas/genética , Desmoplaquinas/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Desmosomas/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Filamentos Intermedios , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Mutación Missense , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Eliminación de Secuencia
18.
Nat Commun ; 5: 5515, 2014 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-25463264

RESUMEN

Homozygous or compound heterozygous frameshift mutations in MYBPC3 encoding cardiac myosin-binding protein C (cMyBP-C) cause neonatal hypertrophic cardiomyopathy (HCM), which rapidly evolves into systolic heart failure and death within the first year of life. Here we show successful long-term Mybpc3 gene therapy in homozygous Mybpc3-targeted knock-in (KI) mice, which genetically mimic these human neonatal cardiomyopathies. A single systemic administration of adeno-associated virus (AAV9)-Mybpc3 in 1-day-old KI mice prevents the development of cardiac hypertrophy and dysfunction for the observation period of 34 weeks and increases Mybpc3 messenger RNA (mRNA) and cMyBP-C protein levels in a dose-dependent manner. Importantly, Mybpc3 gene therapy unexpectedly also suppresses accumulation of mutant mRNAs. This study reports the first successful long-term gene therapy of HCM with correction of both haploinsufficiency and production of poison peptides. In the absence of alternative treatment options except heart transplantation, gene therapy could become a realistic treatment option for severe neonatal HCM.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Proteínas Portadoras/genética , Terapia Genética/métodos , ARN Mensajero/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/terapia , Proteínas Portadoras/metabolismo , Dependovirus , Técnicas de Sustitución del Gen , Homocigoto , Ratones
19.
J Appl Physiol (1985) ; 117(12): 1471-7, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25324513

RESUMEN

Familial hypertrophic cardiomyopathy (HCM) is associated with mutations in sarcomeric proteins, including the myosin regulatory light chain (RLC). Here we studied the impact of three HCM mutations located in the NH2 terminus of the RLC on the molecular mechanism of ß-myosin heavy chain (MHC) cross-bridge mechanics using the in vitro motility assay. To generate mutant ß-myosin, native RLC was depleted from porcine cardiac MHC and reconstituted with mutant (A13T, F18L, and E22K) or wild-type (WT) human cardiac RLC. We characterized the mutant myosin force and motion generation capability in the presence of a frictional load. Compared with WT, all three mutants exhibited reductions in maximal actin filament velocity when tested under low or no frictional load. The actin-activated ATPase showed no significant difference between WT and HCM-mutant-reconstituted myosins. The decrease in velocity has been attributed to a significantly increased duty cycle, as was measured by the dependence of actin sliding velocity on myosin surface density, for all three mutant myosins. These results demonstrate a mutation-induced alteration in acto-myosin interactions that may contribute to the pathogenesis of HCM.


Asunto(s)
Miosinas Cardíacas/metabolismo , Cardiomiopatía Hipertrófica Familiar/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Mutación , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Animales , Cardiomiopatía Hipertrófica Familiar/fisiopatología , Predisposición Genética a la Enfermedad , Humanos , Cinética , Fenotipo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/metabolismo , Porcinos
20.
Cardiovasc Res ; 104(2): 258-69, 2014 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-25209314

RESUMEN

AIMS: Familial hypertrophic cardiomyopathy (HCM) is one the most common heart disorders, with gene mutations in the cardiac sarcomere. Studying HCM with patient-specific induced pluripotent stem-cell (iPSC)-derived cardiomyocytes (CMs) would benefit the understanding of HCM mechanism, as well as the development of personalized therapeutic strategies. METHODS AND RESULTS: To investigate the molecular mechanism underlying the abnormal CM functions in HCM, we derived iPSCs from an HCM patient with a single missense mutation (Arginine442Glycine) in the MYH7 gene. CMs were next enriched from HCM and healthy iPSCs, followed with whole transcriptome sequencing and pathway enrichment analysis. A widespread increase of genes responsible for 'Cell Proliferation' was observed in HCM iPSC-CMs when compared with control iPSC-CMs. Additionally, HCM iPSC-CMs exhibited disorganized sarcomeres and electrophysiological irregularities. Furthermore, disease phenotypes of HCM iPSC-CMs were attenuated with pharmaceutical treatments. CONCLUSION: Overall, this study explored the possible patient-specific and mutation-specific disease mechanism of HCM, and demonstrates the potential of using HCM iPSC-CMs for future development of therapeutic strategies. Additionally, the whole methodology established in this study could be utilized to study mechanisms of other human-inherited heart diseases.


Asunto(s)
Cardiomiopatía Hipertrófica Familiar/genética , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/metabolismo , Potenciales de Acción , Adulto , Animales , Señalización del Calcio/genética , Miosinas Cardíacas/genética , Cardiomiopatía Hipertrófica Familiar/metabolismo , Cardiomiopatía Hipertrófica Familiar/patología , Estudios de Casos y Controles , Proliferación Celular/genética , Separación Celular/métodos , Células Cultivadas , Reprogramación Celular , Técnicas de Reprogramación Celular , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/ultraestructura , Ratones Endogámicos NOD , Ratones SCID , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/ultraestructura , Cadenas Pesadas de Miosina/genética , Fenotipo , Sarcómeros/metabolismo , Sarcómeros/ultraestructura , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...