Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 347, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39342271

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) modification of messenger RNA (mRNA) is crucial for liquid-liquid phase separation in mammals. Increasing evidence indicates that liquid-liquid phase separation in proteins and RNAs affects diabetic cardiomyopathy. However, the molecular mechanism by which m6A-mediated phase separation regulates diabetic cardiac fibrosis remains elusive. METHODS: Leptin receptor-deficient mice (db/db), cardiac fibroblast-specific Notch1 conditional knockout (POSTN-Cre × Notch1flox/flox) mice, and Cre mice were used to induce diabetic cardiac fibrosis. Adeno-associated virus 9 carrying cardiac fibroblast-specific periostin (Postn) promoter-driven small hairpin RNA targeting Alkbh5, Ythdf2, or Notch1, and the phase separation inhibitor 1,6-hexanediol were administered to investigate their roles in diabetic cardiac fibrosis. Histological and biochemical analyses were performed to determine how Alkbh5 and Ythdf2 regulate Notch1 expression in diabetic cardiac fibrosis. NOTCH1 was reconstituted in ALKBH5- and YTHDF2-deficient cardiac fibroblasts and mouse hearts to study its effects on mitochondrial fission and diabetic cardiac fibrosis. Heart tissue samples from patients with diabetic cardiomyopathy were used to validate our findings. RESULTS: In mice with diabetic cardiac fibrosis, decreased Notch1 expression was accompanied by high m6A mRNA levels and mitochondrial fission. Fibroblast-specific deletion of Notch1 enhanced mitochondrial fission and cardiac fibroblast proliferation and induced diabetic cardiac fibrosis in mice. Notch1 downregulation was associated with Alkbh5-mediated m6A demethylation in the 3'UTR of Notch1 mRNA and elevated m6A mRNA levels. These elevated m6A levels in Notch1 mRNA markedly enhanced YTHDF2 phase separation, increased the recognition of m6A residues in Notch1 mRNA by YTHDF2, and induced Notch1 degradation. Conversely, epitranscriptomic downregulation rescues Notch1 expression, resulting in the opposite effects. Human heart tissues from patients with diabetic cardiomyopathy were used to validate the findings in mice with diabetic cardiac fibrosis. CONCLUSIONS: We identified a novel epitranscriptomic mechanism by which m6A-mediated phase separation suppresses Notch1 expression, thereby promoting mitochondrial fission in diabetic cardiac fibrosis. Our findings provide new insights for the development of novel treatment approaches for patients with diabetic cardiac fibrosis.


Asunto(s)
Adenosina , Desmetilasa de ARN, Homólogo 5 de AlkB , Cardiomiopatías Diabéticas , Fibrosis , Ratones Noqueados , Dinámicas Mitocondriales , Proteínas de Unión al ARN , Receptor Notch1 , Transducción de Señal , Animales , Receptor Notch1/metabolismo , Receptor Notch1/genética , Humanos , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/etiología , Adenosina/análogos & derivados , Adenosina/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Masculino , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Células Cultivadas , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Fibroblastos/metabolismo , Fibroblastos/patología , Ratones , Procesamiento Postranscripcional del ARN , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Separación de Fases , Moléculas de Adhesión Celular , Receptores de Leptina
2.
PLoS One ; 19(9): e0310136, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39250437

RESUMEN

Myocardial fibrosis can trigger heart failure in diabetic cardiomyopathy (DCM), and irisin, an exercise-induced myokine, may have a beneficial effect on cardiac function. However, the specific molecular mechanism between exercise and irisin in the diabetic heart remains not fully explored. This study aimed to investigate how miR-34a mediates exercise-induced irisin to ameliorate myocardial fibrosis and its underlying mechanisms. Type 2 diabetes mellitus (T2DM) with DCM was induced in adult male rats with high-fat diet and streptozotocin injection. The DCM rats were subjected to swimming (60 min/d) and recombinant irisin (r-irisin, 500 µg/kg/d) interventions for 8 weeks, respectively. Cardiac function, cardiomyocyte structure, myocardial fibrosis and its correlated gene and protein expression were analyzed. Swimming intervention alleviated insulin resistance, myocardial fibrosis, and myocardial hypertrophy, and promoted blood glucose homeostasis in T2DM model rats. This improvement was associated with irisin upregulation and miR-34a downregulation in the myocardium, thus enhancing cardiac function. Similar efficacy was observed via intraperitoneal injection of exogenous recombinant irisin. Inhibition of miR-34a in vivo exhibited an anti-myocardial fibrotic effect by promoting irisin secretion through activating sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) signal pathway and downregulating myocardial fibrosis markers (collagen I, collagen III, and transforming growth factor-ß1). Therefore, swimming-induced irisin has the potential therapeutic effect on diabetic myocardial fibrosis through activating the miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Fibronectinas , Fibrosis , MicroARNs , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transducción de Señal , Sirtuina 1 , Natación , Animales , Sirtuina 1/metabolismo , Sirtuina 1/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Fibronectinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Masculino , Ratas , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/etiología , Ratas Sprague-Dawley , Miocardio/metabolismo , Miocardio/patología
3.
EBioMedicine ; 106: 105268, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39098108

RESUMEN

BACKGROUND: Atrial cardiomyopathy (ACM) is responsible for atrial fibrillation (AF) and thromboembolic events. Diabetes mellitus (DM) is an important risk factor for ACM. However, the potential mechanism between ACM and DM remains elusive. METHODS: Atrial tissue samples were obtained from patients diagnosed with AF or sinus rhythm (SR) to assess alterations in NR4A3 expression, and then two distinct animal models were generated by subjecting Nr4a3-/- mice and WT mice to a high-fat diet (HFD) and Streptozotocin (STZ), while db/db mice were administered AAV9-Nr4a3 or AAV9-ctrl. Subsequently, in vivo and in vitro experiments were conducted to assess the impact of NR4A3 on diabetes-induced atrial remodeling through electrophysiological, biological, and histological analyses. RNA sequencing (RNA-seq) and metabolomics analysis were employed to unravel the downstream mechanisms. FINDINGS: The expression of NR4A3 was significantly decreased in atrial tissues of both AF patients and diabetic mice compared to their respective control groups. NR4A3 deficiency exacerbated atrial hypertrophy and atrial fibrosis, and increased susceptibility to pacing-induced AF. Conversely, overexpression of NR4A3 alleviated atrial structural remodeling and reduced AF induction rate. Mechanistically, we confirmed that NR4A3 improves mitochondrial energy metabolism and reduces oxidative stress injury by preserving the transcriptional expression of Sdha, thereby exerting a protective influence on atrial remodeling induced by diabetes. INTERPRETATION: Our data confirm that NR4A3 plays a protective role in atrial remodeling caused by diabetes, so it may be a new target for treating ACM. FUNDING: This study was supported by the major research program of National Natural Science Foundation of China (NSFC) No: 82370316 (to Q-S. W.), No. 81974041 (to Y-P. W.), and No. 82270447 (to Y-P. W.) and Fundation of Shanghai Hospital Development Center (No. SHDC2022CRD044 to Q-S. W.).


Asunto(s)
Diabetes Mellitus Experimental , Metabolismo Energético , Estrés Oxidativo , Animales , Ratones , Humanos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Masculino , Ratones Noqueados , Receptores de Hormona Tiroidea/metabolismo , Receptores de Hormona Tiroidea/genética , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Modelos Animales de Enfermedad , Mitocondrias/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías/etiología , Cardiomiopatías/metabolismo , Remodelación Atrial , Proteínas de Unión al ADN , Receptores de Esteroides
4.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39125850

RESUMEN

Diabetic cardiomyopathy (DbCM) is a common complication in individuals with type 2 diabetes mellitus (T2DM), and its exact pathogenesis is still debated. It was hypothesized that chronic hyperglycemia and insulin resistance activate critical cellular pathways that are responsible for numerous functional and anatomical perturbations in the heart. Interstitial inflammation, oxidative stress, myocardial apoptosis, mitochondria dysfunction, defective cardiac metabolism, cardiac remodeling, hypertrophy and fibrosis with consequent impaired contractility are the most common mechanisms implicated. Epigenetic changes also have an emerging role in the regulation of these crucial pathways. The aim of this review was to highlight the increasing knowledge on the molecular mechanisms of DbCM and the new therapies targeting specific pathways.


Asunto(s)
Diabetes Mellitus Tipo 2 , Cardiomiopatías Diabéticas , Estrés Oxidativo , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/etiología , Animales , Resistencia a la Insulina , Epigénesis Genética , Miocardio/metabolismo , Miocardio/patología , Apoptosis/genética
5.
PLoS One ; 19(7): e0302772, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39042659

RESUMEN

Noncoding RNAs play a part in many chronic diseases and interact with each other to regulate gene expression. MicroRNA-9-5p (miR9) has been thought to be a potential inhibitor of diabetic cardiomyopathy. Here we examined the role of miR9 in regulating cardiac fibrosis in the context of diabetic cardiomyopathy. We further expanded our studies through investigation of a regulatory circularRNA, circRNA_012164, on the action of miR9. We showed at both the in vivo and in vitro level that glucose induced downregulation of miR9 and upregulation of circRNA_012164 resulted in the subsequent upregulation of downstream fibrotic genes. Further, knockdown of circRNA_012164 shows protective effects in cardiac endothelial cells and reverses increased transcription of genes associated with fibrosis and fibroblast proliferation through a regulatory axis with miR9. This study presents a novel regulatory axis involving noncoding RNA that is evidently important in the development of cardiac fibrosis in diabetic cardiomyopathy.


Asunto(s)
Cardiomiopatías Diabéticas , Fibrosis , MicroARNs , ARN Circular , MicroARNs/genética , MicroARNs/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Animales , ARN Circular/genética , ARN Circular/metabolismo , Ratones , Masculino , Miocardio/metabolismo , Miocardio/patología , ARN/genética , ARN/metabolismo , Glucosa/metabolismo , Regulación de la Expresión Génica , Proliferación Celular/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Ratas , Ratones Endogámicos C57BL
6.
Circ Res ; 135(3): 416-433, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38946541

RESUMEN

BACKGROUND: Exercise intolerance is an independent predictor of poor prognosis in diabetes. The underlying mechanism of the association between hyperglycemia and exercise intolerance remains undefined. We recently demonstrated that the interaction between ARRDC4 (arrestin domain-containing protein 4) and GLUT1 (glucose transporter 1) regulates cardiac metabolism. METHODS: To determine whether this mechanism broadly impacts diabetic complications, we investigated the role of ARRDC4 in the pathogenesis of diabetic cardiac/skeletal myopathy using cellular and animal models. RESULTS: High glucose promoted translocation of MondoA into the nucleus, which upregulated Arrdc4 transcriptional expression, increased lysosomal GLUT1 trafficking, and blocked glucose transport in cardiomyocytes, forming a feedback mechanism. This role of ARRDC4 was confirmed in human muscular cells from type 2 diabetic patients. Prolonged hyperglycemia upregulated myocardial Arrdc4 expression in multiple types of mouse models of diabetes. We analyzed hyperglycemia-induced cardiac and skeletal muscle abnormalities in insulin-deficient mice. Hyperglycemia increased advanced glycation end-products and elicited oxidative and endoplasmic reticulum stress leading to apoptosis in the heart and peripheral muscle. Deletion of Arrdc4 augmented tissue glucose transport and mitochondrial respiration, protecting the heart and muscle from tissue damage. Stress hemodynamic analysis and treadmill exhaustion test uncovered that Arrdc4-knockout mice had greater cardiac inotropic/chronotropic reserve with higher exercise endurance than wild-type animals under diabetes. While multiple organs were involved in the mechanism, cardiac-specific overexpression using an adenoassociated virus suggests that high levels of myocardial ARRDC4 have the potential to contribute to exercise intolerance by interfering with cardiac metabolism through its interaction with GLUT1 in diabetes. Importantly, the ARRDC4 mutation mouse line exhibited greater exercise tolerance, showing the potential therapeutic impact on diabetic cardiomyopathy by disrupting the interaction between ARRDC4 and GLUT1. CONCLUSIONS: ARRDC4 regulates hyperglycemia-induced toxicities toward cardiac and skeletal muscle, revealing a new molecular framework that connects hyperglycemia to cardiac/skeletal myopathy to exercise intolerance.


Asunto(s)
Tolerancia al Ejercicio , Transportador de Glucosa de Tipo 1 , Ratones Noqueados , Animales , Humanos , Masculino , Ratones , Células Cultivadas , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Hiperglucemia/metabolismo , Hiperglucemia/genética , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Miocitos Cardíacos/metabolismo
7.
Front Biosci (Landmark Ed) ; 29(7): 274, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39082350

RESUMEN

BACKGROUND: Diabetic cardiomyopathy (DCM) is an important cause of heart failure in diabetic patients. The aim of this study was to investigate the pathogenesis of DCM and to identify potential therapeutic targets. METHODS: A mouse model of type 1 DCM was constructed by continuous intraperitoneal injection of streptozotocin (STZ). Systolic and diastolic functions were measured by ultrasound. The expression of La-related protein 7 (LARP7), the stimulator of interferon genes (STING) pathway and light chain 3 (LC3) in myocardial tissue was detected by Western blot and immunofluorescence analyses. Neonatal mouse ventricular cardiomyocytes (NMVCMs) were isolated and cultured. An in vitro type 1 diabetes mellitus (T1DM) model was established by treatment with high glucose. Knockdown/overexpression of LARP7 and STING was achieved by adenovirus transduction, C-176 (a potent covalent inhibitor of STING), and plasmid transfection. The expression, activation, and localization of STING and LARP7 in cardiomyocytes was evaluated, as well as the interaction between the two. The effect of this interaction on the STING-dependent autophagy‒lysosomal pathway was also explored. In addition, the fibrosis and apoptosis of cardiomyocytes were evaluated. RESULTS: High glucose was found to increase the expression and activation of STING and LARP7 in mouse myocardial tissue. This was accompanied by myocardial fibrosis, impaired autophagy degradation function and impaired cardiac function. These findings were further confirmed by in vitro experiments. High glucose caused LARP7 to translocate from the nucleus to the cytoplasm, where it interacted with accumulated STING to inhibit its degradation. Inhibition of STING or LARP7 expression significantly improved myocardial injury induced by high glucose. CONCLUSIONS: Targeted inhibition of LARP7 or STING expression may be a potential therapeutic strategy for the treatment of DCM.


Asunto(s)
Apoptosis , Cardiomiopatías Diabéticas , Fibrosis , Glucosa , Proteínas de la Membrana , Miocitos Cardíacos , Ribonucleoproteínas , Animales , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Glucosa/metabolismo , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/etiología , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Ratones , Masculino , Antígeno SS-B , Ratones Endogámicos C57BL , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Autofagia , Miocardio/metabolismo , Miocardio/patología , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/metabolismo
8.
Mol Metab ; 86: 101978, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950776

RESUMEN

OBJECTIVE: Aberrant glucolipid metabolism in the heart is a characteristic factor in diabetic cardiomyopathy (DbCM). Super-enhancers-driven noncoding RNAs (seRNAs) are emerging as powerful regulators in the progression of cardiac diseases. However, the functions of seRNAs in DbCM have not been fully elucidated. METHODS: Super enhancers and their associated seRNAs were screened and identified by H3K27ac ChIP-seq data in the Encyclopedia of DNA Elements (ENCODE) dataset. A dual-luciferase reporter assay was performed to analyze the function of super-enhancers on the transcription of peroxisome proliferator-activated receptor α-related seRNA (PPARα-seRNA). A DbCM mouse model was established using db/db leptin receptor-deficient mice. Adeno-associated virus serotype 9-seRNA (AAV9-seRNA) was injected via the tail vein to evaluate the role of seRNA in DbCM. The underlying mechanism was explored through RNA pull-down, RNA and chromatin immunoprecipitation, and chromatin isolation by RNA purification. RESULTS: PPARα-seRNA was regulated by super-enhancers and its levels were increased in response to high glucose and palmitic acid stimulation in cardiomyocytes. Functionally, PPARα-seRNA overexpression aggravated lipid deposition, reduced glucose uptake, and repressed energy production. In contrast, PPARα-seRNA knockdown ameliorated metabolic disorder in vitro. In vivo, overexpression of PPARα-seRNA exacerbated cardiac metabolic disorder and deteriorated cardiac dysfunction, myocardial fibrosis, and hypertrophy in DbCM. Mechanistically, PPARα-seRNA bound to the histone demethylase KDM4B (Lysine-specific demethylase 4B) and decreased H3K9me3 levels in the promoter region of PPARα, ultimately enhancing its transcription. CONCLUSIONS: Our study revealed the pivotal function of a super-enhancer-driven long noncoding RNA (lncRNA), PPARα-seRNA, in the deterioration of cardiac function and the exacerbation of metabolic abnormalities in diabetic cardiomyopathy, which recruited KDM4B to the promoter region of PPARα and repression of its transcription. This suggests a promising therapeutic strategy for the treatment of DbCM.


Asunto(s)
Cardiomiopatías Diabéticas , Metabolismo de los Lípidos , PPAR alfa , ARN Largo no Codificante , Animales , Masculino , Ratones , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Elementos de Facilitación Genéticos/genética , Glucosa/metabolismo , Metabolismo de los Lípidos/genética , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , PPAR alfa/metabolismo , PPAR alfa/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
9.
Int Immunopharmacol ; 138: 112605, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38963979

RESUMEN

Ferroptosis, characterized by the accumulation of reactive oxygen species and lipid peroxidation, is involved in various cardiovascular diseases. (Pro)renin receptor (PRR) in performs as ligands in the autophagic process, and its function in diabetic cardiomyopathy (DCM) is not fully understood. We investigated whether PRR promotes ferroptosis through the nuclear receptor coactivator 4 (NCOA 4)-mediated ferritinophagy pathway and thus contributes to DCM. We first established a mouse model of DCM with downregulated and upregulated PRR expression and used a ferroptosis inhibitor. Myocardial inflammation and fibrosis levels were then measured, cardiac function and ferroptosis-related indices were assessed. In vitro, neonatal rat ventricular primary cardiomyocytes were cultured with high glucose and transfected with recombinant adenoviruses knocking down or overexpressing the PRR, along with a ferroptosis inhibitor and small interfering RNA for the ferritinophagy receptor, NCOA4. Ferroptosis levels were measured in vitro. The results showed that the knockdown of PRR not only alleviated cardiomyocyte ferroptosis in vivo but also mitigated the HG-induced ferroptosis in vitro. Moreover, administration of Fer-1 can inhibit HG-induced ferroptosis. NCOA4 knockdown blocked the effect of PRR on ferroptosis and improved cell survival. Our result indicated that inhibition of PRR and NCOA4 expression provides a new therapeutic strategy for the treatment of DCM. The effect of PRR on the pathological process of DCM in mice may be in promoting cardiomyocyte ferroptosis through the NCOA 4-mediated ferritinophagy pathway.


Asunto(s)
Cardiomiopatías Diabéticas , Ferroptosis , Miocitos Cardíacos , Coactivadores de Receptor Nuclear , Receptor de Prorenina , Animales , Ratones , Ratas , Autofagia , Células Cultivadas , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Modelos Animales de Enfermedad , Regulación hacia Abajo , Ferritinas/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Coactivadores de Receptor Nuclear/metabolismo , Coactivadores de Receptor Nuclear/genética , Receptor de Prorenina/genética , Receptor de Prorenina/metabolismo , Transducción de Señal
10.
Cardiovasc Diabetol ; 23(1): 227, 2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-38951895

RESUMEN

In recent years, the incidence of diabetes has been increasing rapidly, posing a serious threat to human health. Diabetic cardiomyopathy (DCM) is characterized by cardiomyocyte hypertrophy, myocardial fibrosis, apoptosis, ventricular remodeling, and cardiac dysfunction in individuals with diabetes, ultimately leading to heart failure and mortality. However, the underlying mechanisms contributing to DCM remain incompletely understood. With advancements in molecular biology technology, accumulating evidence has shown that numerous non-coding RNAs (ncRNAs) crucial roles in the development and progression of DCM. This review aims to summarize recent studies on the involvement of three types of ncRNAs (micro RNA, long ncRNA and circular RNA) in the pathophysiology of DCM, with the goal of providing innovative strategies for the prevention and treatment of DCM.


Asunto(s)
Cardiomiopatías Diabéticas , ARN Circular , ARN Largo no Codificante , Humanos , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/metabolismo , Animales , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , ARN no Traducido/genética , ARN no Traducido/metabolismo , Transducción de Señal , Miocardio/patología , Miocardio/metabolismo
11.
Sci Rep ; 14(1): 15324, 2024 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961143

RESUMEN

Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.


Asunto(s)
Biología Computacional , Cardiomiopatías Diabéticas , Redes Reguladoras de Genes , Mapas de Interacción de Proteínas , Cardiomiopatías Diabéticas/genética , Biología Computacional/métodos , Animales , Ratones , Mapas de Interacción de Proteínas/genética , Humanos , Inhibidor 1 de Activador Plasminogénico/genética , Perfilación de la Expresión Génica , Receptor IGF Tipo 1/genética , Ontología de Genes , Regulación de la Expresión Génica
12.
BMC Cardiovasc Disord ; 24(1): 351, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987672

RESUMEN

Diabetic cardiomyopathy (DCM) is a chronic disease caused by diabetes mellitus, which is recognized as a worldwide challenging disease. This study aimed to investigate the role and the potential mechanism of knocking down the NACHT-, LRR- and PYD domains-containing protein 3 (NLRP3), an inflammasome associated with onset and progression of various diseases, on high glucose or diabetes -induced cardiac cells pyroptosis and ferroptosis, two regulated non-necrosis cell death modalities discovered recent years. In the present study, both in vivo and in vitro studies were conducted simultaneously. Diabetic rats were induced by 55 mg/kg intraperitoneal injection of streptozotocin (STZ). Following the intraperitoneal injection of MCC950 (10 mg/kg), On the other hand, the DCM model in H9C2 cardiac cells was simulated with 35 mmol/L glucose and a short hairpin RNA vector of NLRP3 were transfected to cells. The results showed that in vivo study, myocardial fibers were loosely arranged and showed inflammatory cell infiltration, mitochondrial cristae were broken and the GSDMD-NT expression was found notably increased in the DM group, while the protein expressions of xCT and GPX4 was significantly decreased, both of which were reversed by MCC950. High glucose reduced the cell viability and ATP level in vitro, accompanied by an increase in LDH release. All of the above indicators were reversed after NLRP3 knockdown compared with the HG treated alone. Moreover, the protein expressions of pyroptosis- and ferroptosis-related fators were significantly decreased or increased, consistent with the results shown by immunofluorescence. Furthermore, the protective effects of NLRP3 knockdown against HG were reversed following the mtROS agonist rotenone (ROT) treatment. In conclusion, inhibition of NLRP3 suppressed DM-induced myocardial injury. Promotion of mitochondrial ROS abolished the protective effect of knockdown NLRP3, and induced the happening of pyroptosis and ferroptosis. These findings may present a novel therapeutic underlying mechanism for clinical diabetes-induced myocardial injury treatment.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ferroptosis , Técnicas de Silenciamiento del Gen , Miocitos Cardíacos , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Animales , Ferroptosis/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/fisiopatología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Masculino , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/metabolismo , Línea Celular , Ratas Sprague-Dawley , Ratas , Transducción de Señal , Especies Reactivas de Oxígeno/metabolismo , Inflamasomas/metabolismo , Sulfonamidas/farmacología , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Gasderminas
13.
Metabolism ; 159: 155979, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038735

RESUMEN

AIMS: The majority of people with diabetes are susceptible to cardiac dysfunction and heart failure, and conventional drug therapy cannot correct the progression of diabetic cardiomyopathy. We assessed the potential role and therapeutic value of LGR6 (G protein-coupled receptor containing leucine-rich repeats 6) in diabetic cardiomyopathy. METHODS AND RESULTS: Type 2 diabetes models were established using high-fat diet/streptozotocin-induced diabetes in mice. LGR6 knockout mice were generated. Recombinant adeno-associated virus serotype 9 carrying LGR6 under the cardiac troponin T promoter was injected into diabetic mice. Cardiomyocytes incubated with high glucose (HG) were used to imitate diabetic cardiomyopathy in vitro. The molecular mechanism was explored through RNA sequencing and a chromatin immunoprecipitation assay. We found that LGR6 expression was upregulated in diabetic hearts and HL1 cardiomyocytes treated with HG. The LGR6 knockout aggravated, but cardiomyocyte-specific LGR6 overexpression ameliorated, cardiac dysfunction and remodeling in diabetic mice. Mechanistically, in vivo and in vitro experiments revealed that LGR6 deletion aggravated, whereas LGR6 overexpression alleviated, ferroptosis and disrupted mitochondrial biogenesis by regulating STAT3/Pgc1a signaling. STAT3 inhibition and Pgc1a activation abrogated LGR6 knockout-induced mitochondrial dysfunction and ferroptosis in diabetic mice. In addition, LGR6 activation by recombinant RSPO3 treatment ameliorated cardiac dysfunction, ferroptosis and mitochondrial dysfunction in diabetic mice. CONCLUSIONS: We identified a previously undescribed signaling pathway of the LGR6-STAT3-Pgc1a axis that plays a critical role in ferroptosis and mitochondrial disorders during diabetic cardiomyopathy and provides an option for treatment of diabetic hearts.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ferroptosis , Miocitos Cardíacos , Biogénesis de Organelos , Receptores Acoplados a Proteínas G , Animales , Masculino , Ratones , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Ferroptosis/fisiología , Ferroptosis/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
14.
Mol Cell Endocrinol ; 592: 112315, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38878954

RESUMEN

Diabetic cardiomyopathy (DCM) is characterized by oxidative damage and inflammatory responses. Myeloid differentiation protein 1 (MD1) exhibits antioxidant and anti-inflammatory properties. However, the specific role of MD1 in DCM has yet to be elucidated. This study aims to investigate the role of MD1 in DCM and to elucidate the underlying mechanisms. We utilized a gain-of-function approach to explore the involvement of MD1 in DCM. Diabetes was induced in MD1-transgenic (MD1-TG) mice and their wild-type (WT) counterparts via streptozotocin (STZ) injection. Additionally, a diabetes cell model was established using H9c2 cells exposed to high glucose levels. We conducted comprehensive evaluations, including pathological analyses, echocardiography, electrocardiography, and molecular assessments, to elucidate the underlying mechanisms of MD1 in DCM. Notably, MD1 expression was reduced in the hearts of STZ-induced diabetic mice. Overexpression of MD1 significantly improved cardiac function and markedly inhibited ventricular pathological hypertrophy and fibrosis in these mice. Furthermore, MD1 overexpression resulted in a substantial decrease in myocardial reactive oxygen species (ROS) accumulation, mitigating myocardial oxidative stress and reducing the levels of inflammation-related markers such as IL-1ß, IL-6, and TNF-α. Mechanistically, MD1 overexpression inhibited the activation of the TLR4/STAT3 signaling pathway, as demonstrated in both in vivo and in vitro experiments. The overexpression of MD1 significantly impeded pathological cardiac remodeling and improved cardiac function in STZ-induced diabetic mice. This effect was primarily attributed to a reduction in ROS accumulation and mitigation of myocardial oxidative stress and inflammation, facilitated by the inhibition of the TLR4/STAT3 signaling pathway.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones Transgénicos , Estrés Oxidativo , Factor de Transcripción STAT3 , Transducción de Señal , Receptor Toll-Like 4 , Remodelación Ventricular , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/genética , Ratones , Masculino , Miocardio/patología , Miocardio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratas , Ratones Endogámicos C57BL , Antígeno 96 de los Linfocitos/metabolismo , Antígeno 96 de los Linfocitos/genética , Línea Celular , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Antígenos de Superficie , Glicoproteínas de Membrana
15.
Adv Sci (Weinh) ; 11(29): e2401676, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837607

RESUMEN

Diabetic cardiomyopathy (DbCM) is characterized by diastolic dysfunction, which progresses into heart failure and aberrant electrophysiology in diabetic patients. Dyslipidemia in type 2 diabetic patients leads to the accumulation of lipid droplets (LDs) in cardiomyocytes and results in lipid toxicity which has been suggested to drive DbCM. It is aimed to explore potential pathways that may boost LDs degradation in DbCM and restore cardiac function. LDs accumulation resulted in an increase in lipid toxicity in DbCM hearts is confirmed. Microlipophagy pathway, rather than traditional macrolipophagy, is activated in DbCM hearts. RNA-Seq data and Rab7-CKO mice implicate that Rab7 is a major modulator of the microlipophagy pathway. Mechanistically, Rab7 is phosphorylated at Tyrosine 183, which allows the recruitment of Rab-interacting lysosome protein (Rilp) to proceed LDs degradation by lysosome. Treating DbCM mice with Rab7 activator ML-098 enhanced Rilp level and rescued the observed cardiac dysfunction. Overall, Rab7-Rilp-mediated microlipophagy may be a promising target in the treatment of lipid toxicity in DbCM is suggested.


Asunto(s)
Cardiomiopatías Diabéticas , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Masculino , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Autofagia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Modelos Animales de Enfermedad , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7/metabolismo
16.
Cell Death Dis ; 15(6): 406, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858351

RESUMEN

Diabetic cardiomyopathy (DCM) is a prevalent myocardial microvascular complication of the myocardium with a complex pathogenesis. Investigating the pathogenesis of DCM can significantly contribute to enhancing its prevention and treatment strategies. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Our study revealed an upregulation of lysine acetyltransferase 2 A (Kat2a) expression in DCM, accompanied by a decrease in N6-methyladenosine (m6A) modified Kat2a mRNA levels. Functionally, inhibition of Kat2a effectively ameliorated high glucose-induced cardiomyocyte injury both in vitro and in vivo by suppressing ferroptosis. Mechanistically, Demethylase alkB homolog 5 (Alkbh5) was found to reduce m6A methylation levels on Kat2a mRNA, leading to its upregulation. YTH domain family 2 (Ythdf2) played a crucial role as an m6A reader protein mediating the degradation of Kat2a mRNA. Furthermore, Kat2a promoted ferroptosis by increasing Tfrc and Hmox1 expression via enhancing the enrichment of H3K27ac and H3K9ac on their promoter regions. In conclusion, our findings unveil a novel role for the Kat2a-ferroptosis axis in DCM pathogenesis, providing valuable insights for potential clinical interventions.


Asunto(s)
Cardiomiopatías Diabéticas , Ferroptosis , Hemo-Oxigenasa 1 , Histona Acetiltransferasas , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Animales , Ferroptosis/genética , Humanos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Ratones , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Masculino , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Adenosina/análogos & derivados , Adenosina/metabolismo
17.
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38867293

RESUMEN

The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.


Asunto(s)
Modelos Animales de Enfermedad , Macrófagos , Ratones Endogámicos C57BL , Daño por Reperfusión Miocárdica , Proteína Quinasa C beta , Transducción de Señal , Animales , Proteína Quinasa C beta/metabolismo , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/enzimología , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/genética , Macrófagos/metabolismo , Macrófagos/enzimología , Masculino , Interleucina-10/metabolismo , Interleucina-10/genética , Ratones , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Células Cultivadas , Fenotipo , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Miocitos Cardíacos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Activación de Macrófagos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Función Ventricular Izquierda , Fosforilación
18.
J Mol Cell Cardiol ; 194: 3-15, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38844061

RESUMEN

Diabetic cardiomyopathy (DCM) is a heart failure syndrome, and is one of the major causes of morbidity and mortality in diabetes. DCM is mainly characterized by ventricular dilation, myocardial hypertrophy, myocardial fibrosis and cardiac dysfunction. Clinical studies have found that insulin resistance is an independent risk factor for DCM. However, its specific mechanism of DCM remains unclear. 8-hydroxyguanine DNA glycosylase 1(OGG1)is involved in DNA base repair and the regulation of inflammatory genes. In this study, we show that OGG1 was associated with the occurrence of DCM. for the first time. The expression of OGG1 was increased in the heart tissue of DCM mice, and OGG1 deficiency aggravated the cardiac dysfunction of DCM mice. Metabolomics show that OGG1 deficiency resulted in obstruction of glycolytic pathway. At the molecular level, OGG1 regulated glucose uptake and insulin resistance by interacting with PPAR-γ in vitro. In order to explore the protective effect of exogenous OGG1 on DCM, OGG1 adeno-associated virus was injected into DCM mice through tail vein in the middle stage of the disease. We found that the overexpression of OGG1 could improve cardiac dysfunction of DCM mice, indicating that OGG1 had a certain therapeutic effect on DCM. These results demonstrate that OGG1 is a new molecular target for the treatment of DCM and has certain clinical significance.


Asunto(s)
ADN Glicosilasas , Cardiomiopatías Diabéticas , Resistencia a la Insulina , Animales , ADN Glicosilasas/metabolismo , ADN Glicosilasas/genética , ADN Glicosilasas/deficiencia , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/etiología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/patología , Ratones , Masculino , PPAR gamma/metabolismo , Glucosa/metabolismo , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Glucólisis , Humanos , Ratones Endogámicos C57BL
19.
Front Endocrinol (Lausanne) ; 15: 1370387, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38883603

RESUMEN

Background: Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials: Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods: The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results: There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion: HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.


Asunto(s)
Biología Computacional , Insuficiencia Cardíaca , Miocitos Cardíacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Insuficiencia Cardíaca/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Ferroptosis/genética , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología
20.
Sci Rep ; 14(1): 12978, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839927

RESUMEN

Diabetic cardiomyopathy is a specific type of cardiomyopathy. In DCM, glucose uptake and utilization are impaired due to insulin deficiency or resistance, and the heart relies more heavily on fatty acid oxidation for energy, resulting in myocardial lipid toxicity-related injury. MARK4 is a member of the AMPK-related kinase family, and improves ischaemic heart failure through microtubule detyrosination. However, the role of MARK4 in cardiac regulation of metabolism is unclear. In this study, after successful establishment of a diabetic cardiomyopathy model induced by streptozotocin and a high-fat diet, MARK4 expression was found to be significantly increased in STZ-induced DCM mice. After AAV9-shMARK4 was administered through the tail vein, decreased expression of MARK4 alleviated diabetic myocardial damage, reduced oxidative stress and apoptosis, and facilitated cardiomyocyte mitochondrial fusion, and promoted myocardial lipid oxidation metabolism. In addition, through the RNA-seq analysis of differentially expressed genes, we found that MARK4 deficiency promoted lipid decomposition and oxidative metabolism by downregulating the expression of ACSL4, thus reducing myocardial lipid accumulation in the STZ-induced DCM model.


Asunto(s)
Coenzima A Ligasas , Cardiomiopatías Diabéticas , Metabolismo de los Lípidos , Miocardio , Animales , Masculino , Ratones , Apoptosis , Coenzima A Ligasas/metabolismo , Coenzima A Ligasas/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicaciones , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/etiología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Miocardio/metabolismo , Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Estrés Oxidativo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Estreptozocina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...