Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Phycol ; 54(6): 818-828, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30229900

RESUMEN

Filaments in the surface layers of metaphytic mats are exposed to high photon flux densities of PAR and UVBR. We investigated the effect of UVBR exposure on growth of eight isolates of common metaphytic algae (Cladophora, Mougeotia, Oedogonium, Pithophora, Spirogyra, and Zygnema) acclimated to either high or low PAR levels prior to UVBR exposure. All isolates acclimated to low PAR exhibited significant reductions in growth rate caused by the UVBR exposure (P < 0.05). Acclimation to high PAR resulted in seven of the isolates being more tolerant of the UVB exposure. The two Zygnema isolates exhibited the most pronounced effect of high PAR acclimation with growth rates of UVB exposed treatments being equal to that of controls (P > 0.05). High PAR acclimation also protected chlorophyll a levels in the Zygnema isolates. Absorption of UVB by methanol extracts increased 322%-381% for the two Zygnema isolates when high PAR acclimated. The broad absorption peak at 270 nm suggests that phenolic compounds were responsible. Previous studies have shown that Zygnema isolates from extreme environments tolerate UVBR and contain UVB screening compounds, but our results extend these adaptions to Zygnema from typical temperate zone habitats. Although none of the other metaphytic algae produced UVB absorbing compounds, they all exhibited higher growth rates under UVBR exposure following high PAR acclimation. This suggests that the algae evaluated have inducible defenses against UVBR exposure that coupled with their mat structure would provide an adaption to the challenging light environment in shallow-water habitats.


Asunto(s)
Carofíceas/efectos de la radiación , Chlorophyta/efectos de la radiación , Algas Marinas/efectos de la radiación , Rayos Ultravioleta , Carofíceas/crecimiento & desarrollo , Carofíceas/metabolismo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Estanques , Ríos , Algas Marinas/crecimiento & desarrollo , Algas Marinas/metabolismo , Protectores Solares/metabolismo , Protectores Solares/efectos de la radiación
2.
Planta ; 246(5): 971-986, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28721563

RESUMEN

MAIN CONCLUSION: The basal streptophyte Klebsormidium and the advanced Zygnema show adaptation to terrestrialization. Differences are found in photoprotection and resistance to short-term light changes, but not in CO 2 acquisition. Streptophyte green algae colonized land about 450-500 million years ago giving origin to terrestrial plants. We aim to understand how their physiological adaptations are linked to the ecological conditions (light, water and CO2) characterizing modern terrestrial habitats. A new Klebsormidium isolate from a strongly acidic environment of a former copper mine (Schwarzwand, Austria) is investigated, in comparison to Klebsormidium cf. flaccidum and Zygnema sp. We show that these genera possess different photosynthetic traits and water requirements. Particularly, the Klebsormidium species displayed a higher photoprotection capacity, concluded from non-photochemical quenching (NPQ) and higher tolerance to high light intensity than Zygnema. However, Klebsormidium suffered from photoinhibition when the light intensity in the environment increased rapidly, indicating that NPQ is involved in photoprotection against strong and stable irradiance. Klebsormidium was also highly resistant to cellular water loss (dehydration) under low light. On the other hand, exposure to relatively high light intensity during dehydration caused a harmful over-reduction of the electron transport chain, leading to PSII damages and impairing the ability to recover after rehydration. Thus, we suggest that dehydration is a selective force shaping the adaptation of this species towards low light. Contrary to the photosynthetic characteristics, the inorganic carbon (C i ) acquisition was equivalent between Klebsormidium and Zygnema. Despite their different habitats and restriction to hydro-terrestrial environment, the three organisms showed similar use of CO2 and HCO3- as source of Ci for photosynthesis, pointing out a similar adaptation of their CO2-concentrating mechanisms to terrestrial life.


Asunto(s)
Adaptación Fisiológica , Dióxido de Carbono/metabolismo , Carofíceas/fisiología , Fotosíntesis/fisiología , Carofíceas/efectos de la radiación , Deshidratación , Desecación , Ecología , Ecosistema , Luz , Fenotipo , Fotosíntesis/efectos de la radiación , Especificidad de la Especie , Agua/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...