RESUMEN
Osteoarthritis (OA) is an age-related cartilage-degenerating joint disease. Mitochondrial dysfunction has been reported to promote the development of OA. Poly (ADP-ribose) polymerase family member 12 (PARP12) is a key regulator of mitochondrial function, protein translation, and inflammation. However, the role of PARP12 in OA-based cartilage degradation and the underlying mechanisms are relatively unknown. Here, we first demonstrated that PARP12 inhibits mitophagy and promotes OA progression in human OA cartilage and a monosodium iodoacetate-induced rat OA model. Using mass spectrometry and co-immunoprecipitation assay, PARP12 was shown to interact with ISG15, upregulate mitofusin 1 and 2 (MFN1/2) ISGylation, which downregulated MFN1/2 ubiquitination and SUMOylation, thereby inhibiting PINK1/Parkin-dependent chondrocyte mitophagy and promoting cartilage degradation. Moreover, inflammatory cytokine-induced interferon regulatory factor 1 (IRF1) activation was required for the upregulation of PARP12 expression, and it directly bound to the PARP12 promoter to activate transcription. XAV-939 inhibited PARP12 expression and suppressed OA pathogenesis in vitro and in vivo. Clinically, PARP12 can be used to predict the severity of OA; thus, it represents a new target for the study of mitophagy and OA progression. In brief, the IRF1-mediated upregulation of PARP12 promoted cartilage degradation by inhibiting PINK1/Parkin-dependent mitophagy via ISG15-based attenuation of MFN1/2 ubiquitylation and SUMOylation. Our data provide new insights into the molecular mechanisms underlying PARP12-based regulation of mitophagy and can facilitate the development of therapeutic strategies for the treatment of OA.
Asunto(s)
Citocinas , GTP Fosfohidrolasas , Factor 1 Regulador del Interferón , Mitofagia , Osteoartritis , Proteínas Quinasas , Sumoilación , Ubiquitina-Proteína Ligasas , Ubiquitinación , Ubiquitinas , Regulación hacia Arriba , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Mitofagia/efectos de los fármacos , Animales , Humanos , Regulación hacia Arriba/efectos de los fármacos , Factor 1 Regulador del Interferón/metabolismo , Factor 1 Regulador del Interferón/genética , Ubiquitinación/efectos de los fármacos , Ubiquitinas/metabolismo , Ubiquitinas/genética , Citocinas/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Sumoilación/efectos de los fármacos , Ratas , Proteínas Quinasas/metabolismo , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Masculino , Ratas Sprague-Dawley , Poli(ADP-Ribosa) Polimerasas/metabolismo , Poli(ADP-Ribosa) Polimerasas/genética , Cartílago/metabolismo , Cartílago/patología , Cartílago/efectos de los fármacos , Proteínas Mitocondriales , Proteínas de Transporte de Membrana MitocondrialRESUMEN
The current study aimed to investigate the physicochemical properties of the natural eggshell membrane (NEM) and its protective effects against H2O2-induced oxidative stress in human chondrocytes (SW-1353). Bioactive components from NEM related to cartilage were profiled, consisting of 1.1 ± 0.07% hyaluronic acid, 1.2 ± 0.25% total sulfated glycosaminoglycans as chondroitin sulfate, 3.1 ± 0.33% collagen, and 54.4 ± 2.40% total protein. Protein was hydrolyzed up to 43.72 ± 0.76% using in vitro gastro-intestinal digestive enzymes. Peptides eluted at 9.58, 12.46, and 14.58 min using nano-LC-ESI-MS were identified as TEW, SWVE, and VYL peptides with an M/Z value of 435.1874, 520.2402, and 394.2336, respectively. Radical scavenging activity of NEM at 10 mg/mL using the ABTS assay was revealed to be 2.1 times higher than that of the positive control. NEM treatment significantly enhanced cellular SOD expression (p < 0.05). Pre-treatment with NEM (0.1, 1, and 10 mg/mL) dose-dependently reduced H2O2-induced ROS levels in SW-1353. Cell live imaging confirmed that NEM pre-treatment led to a significant reduction in apoptosis expression compared to control. Results from the present study suggest that NEM rich in cartilage protective components including hyaluronic acid, collagen, and chondroitin antioxidative peptides could be a potential therapeutic agent for osteoarthritis (OA) by scavenging oxidative stress.
Asunto(s)
Condrocitos , Peróxido de Hidrógeno , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Peróxido de Hidrógeno/farmacología , Cáscara de Huevo/química , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Animales , Especies Reactivas de Oxígeno/metabolismo , Ácido Hialurónico/farmacología , Antioxidantes/farmacología , Sustancias Protectoras/farmacología , Línea Celular , Péptidos/farmacologíaRESUMEN
Cartilage damage caused by injuries or degenerative diseases remains a major challenge in the field of regenerative medicine. In this study, we developed a composite hydrogel system for the delivery of melatonin and menstrual blood stem cells (MenSCs) to treat a rat model of cartilage defect. The composite delivery system was produced by incorporation of melatonin into the gelatin fibers and dispersing these fibers into calcium alginate hydrogels. Various characterization methods including cell viability assay, microstructure studies, degradation rate measurement, drug release, anti-inflammatory assay, and radical scavenging assay were used to characterize the hydrogel system. MenSCs were encapsulated within the nanocomposite hydrogel and implanted into a rat model of full-thickness cartilage defect. A 1.3 mm diameter drilled in the femoral trochlea and used for the in vivo study. Results showed that the healing potential of nanocomposite hydrogels containing melatonin and MenSCs was significantly higher than polymer-only hydrogels. Our study introduces a novel composite hydrogel system, combining melatonin and MenSCs, demonstrating enhanced cartilage repair efficacy, offering a promising avenue for regenerative medicine.
Asunto(s)
Gelatina , Hidrogeles , Melatonina , Nanocompuestos , Nanofibras , Melatonina/farmacología , Melatonina/química , Melatonina/administración & dosificación , Animales , Gelatina/química , Hidrogeles/química , Nanocompuestos/química , Ratas , Nanofibras/química , Femenino , Humanos , Cartílago/efectos de los fármacos , Ratas Sprague-Dawley , Menstruación/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Alginatos/química , Cicatrización de Heridas/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacosRESUMEN
In the pharmaceutical sector, solid lipid nanoparticles (SLN) are vital for drug delivery incorporating a lipid core. Chondroitin sulfate (CHON) is crucial for cartilage health. It is often used in osteoarthritis (OA) treatment. Due to conflicting results from clinical trials on CHON's efficacy in OA treatment, there has been a shift toward exploring effective topical systems utilizing nanotechnology. This study aimed to optimize a solid lipid nanoparticle formulation aiming to enhance CHON permeation for OA therapy. A 3 × 3 × 2 Design of these experiments determined the ideal parameters: a CHON concentration of 0.4 mg/mL, operating at 20,000 rpm speed, and processing for 10 min for SLN production. Transmission electron microscopy analysis confirmed the nanoparticles' spherical morphology, ensuring crucial uniformity for efficient drug delivery. Cell viability assessments showed no significant cytotoxicity within the tested parameters, indicating a safe profile for potential clinical application. The cell internalization assay indicates successful internalization at 1.5 h and 24 h post-treatment. Biopharmaceutical studies supported SLNs, indicating them to be effective CHON carriers through the skin, showcasing improved skin permeation and CHON retention compared to conventional methods. In summary, this study successfully optimized SLN formulation for efficient CHON transport through pig ear skin with no cellular toxicity, highlighting SLNs' potential as promising carriers to enhance CHON delivery in OA treatment and advance nanotechnology-based therapeutic strategies in pharmaceutical formulations.
Asunto(s)
Sulfatos de Condroitina , Nanopartículas , Sulfatos de Condroitina/química , Animales , Porcinos , Nanopartículas/química , Regeneración/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Osteoartritis/tratamiento farmacológico , Osteoartritis/patología , Supervivencia Celular/efectos de los fármacos , Humanos , Administración Tópica , Nanoestructuras/química , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Piel/efectos de los fármacos , Piel/metabolismoRESUMEN
This study presents new injectable hydrogels based on hyaluronic acid and collagen type II that mimic the polysaccharide-protein structure of natural cartilage. After collagen isolation from chicken sternal cartilage, tyramine-grafted hyaluronic acid and collagen type II (HA-Tyr and COL-II-Tyr) were synthesized. Hybrid hydrogels were prepared with different ratios of HA-Tyr/COL-II-Tyr using horseradish peroxidase and noncytotoxic concentrations of hydrogen peroxide to encapsulate human bone marrow-derived mesenchymal stromal cells (hBM-MSCs). The findings showed that a higher HA-Tyr content resulted in a higher storage modulus and a lower hydrogel shrinkage, resulting in hydrogel swelling. Incorporating COL-II-Tyr into HA-Tyr hydrogels induced a more favorable microenvironment for hBM-MSCs chondrogenic differentiation. Compared to HA-Tyr alone, the hybrid HA-Tyr/COL-II-Tyr hydrogel promoted enhanced chondrocyte adhesion, spreading, proliferation, and upregulation of cartilage-related gene expression. These results highlight the promising potential of injectable HA-Tyr/COL-II-Tyr hybrid hydrogels to deliver cells for cartilage regeneration.
Asunto(s)
Cartílago , Colágeno Tipo II , Ácido Hialurónico , Hidrogeles , Células Madre Mesenquimatosas , Ingeniería de Tejidos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Colágeno Tipo II/metabolismo , Ingeniería de Tejidos/métodos , Hidrogeles/química , Hidrogeles/farmacología , Humanos , Cartílago/efectos de los fármacos , Cartílago/citología , Cartílago/metabolismo , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Animales , Condrogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Proliferación Celular/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Tiramina/química , Tiramina/farmacologíaRESUMEN
Stem cell-based therapies show promise for clinically addressing circumferential tracheal defects (CTD) through tissue engineering. However, creating a tissue-engineered tracheal tube possesses a healthy cartilage matrix and intact tube structure remains a challenge. A solution lies in the use of an injectable hydrogel with shape adaptability and chondrogenic capacity, serving as a practical and dependable platform for tubular tracheal cartilage regeneration. In this study, we developed an injectable hydrogel using modified natural polymers-hydrazide-grafted gelatin (Gelatin-ADH) and aldehyde-modified hyaluronic acid with sulfated groups (HA-CHO-SO3) via Schiff Base interaction. Additionally, aldehyde-modified ß-cyclodextrin (ß-CD-CHO) was introduced into the network during hydrogel formation. The negative sulfated groups and hydrophobic cavities of ß-cyclodextrin facilitated the efficient encapsulation and sustained release of transforming growth factor-ß1 (TGF-ß1) and kartogenin (KGN) within our hydrogel. This synergistically promoted the chondrogenesis of loaded bone marrow stem cells (BMSCs). Subsequently, we employed this TGF-ß1, KGN, and BMSCs loaded hydrogel to form a cartilage ring. This ring was then assembled into an engineered tracheal cartilage tube using our previously reported ring-to-tube strategy. Our results demonstrated that the engineered tracheal cartilage tube effectively repaired CTD in a rabbit model. Hence, this study introduces a novel hydrogel with significant clinical application potential for tracheal tissue engineering.
Asunto(s)
Gelatina , Ácido Hialurónico , Hidrogeles , Ingeniería de Tejidos , Tráquea , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Animales , Gelatina/química , Tráquea/efectos de los fármacos , Conejos , Hidrogeles/química , Ingeniería de Tejidos/métodos , Sistemas de Liberación de Medicamentos , Factor de Crecimiento Transformador beta1/metabolismo , Condrogénesis/efectos de los fármacos , beta-Ciclodextrinas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Inyecciones , Cartílago/efectos de los fármacos , Sulfatos/química , Anilidas , Ácidos FtálicosRESUMEN
Osteoarthritis is a chronic, age-related joint disease. Previous studies have shown that osteoarthritis develops during intrauterine development. Prednisone is frequently used to treat pregnancies complicated by autoimmune diseases. However, limited research has been conducted on the enduring effects of prednisone use during pregnancy on the offspring. In this study, we investigated the effect of excessive prednisone exposure on cartilage development and susceptibility to osteoarthritis in the offspring. We found that prenatal prednisone exposure (PPE) impaired cartilage extracellular matrix (ECM) synthesis, resulting in poor cartilage pathology in female offspring during the adult period, which was further exacerbated after long-distance running stimulation. Additionally, PPE suppressed cartilage development during the intrauterine period. Tracing back to the intrauterine period, we found that Pred, rather than prednisone, decreased glutamine metabolic flux, which resulted in increased oxidative stress, and decreased histone acetylation, and expression of cartilage phenotypic genes. Further, PGC-1α-mediated mitochondrial biogenesis, while PPE caused hypermethylation in the promoter region of PGC-1α and decreased its expression in fetal cartilage by activating the glucocorticoid receptor, resulting in a reduction of glutamine flux controlled by mitochondrial biogenesis. Additionally, overexpression of PGC-1α (either pharmacological or through lentiviral transfection) reversed PPE- and Pred-induced cartilage ECM synthesis impairment. In summary, this study demonstrated that PPE causes chondrodysplasia in female offspring and increases their susceptibility to postnatal osteoarthritis. Hence, targeting PGC-1α early on could be a potential intervention strategy for PPE-induced osteoarthritis susceptibility.
Asunto(s)
Glutamina , Mitocondrias , Osteoartritis , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Prednisona , Efectos Tardíos de la Exposición Prenatal , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Femenino , Animales , Embarazo , Osteoartritis/metabolismo , Osteoartritis/inducido químicamente , Osteoartritis/genética , Osteoartritis/etiología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Glutamina/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Prednisona/efectos adversos , Matriz Extracelular/metabolismo , Cartílago/metabolismo , Cartílago/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacosRESUMEN
Rheumatoid arthritis (RA) is a systemic autoimmune disorder that severely compromises joint health. The primary therapeutic strategy for advanced RA aims to inhibit joint inflammation. However, the nonspecific distribution of pharmacological agents has limited therapeutic efficacy and heightens the risks associated with RA treatment. To address this issue, we developed mesenchymal stem cell (MSC)-based biomimetic liposomes, termed MSCsome, which were composed of a fusion between MSC membranes and liposomes. MSC some with relatively simple preparation method effectively enhanced the targeting efficiency of drug to diseased joints. Interaction between lymphocyte function-associated antigen-1 and intercellular adhesion molecule-1 enhanced the affinity of the MSCsome for polarized macrophages, thereby improving its targeting capability to affected joints. The effective targeted delivery facilitated drug accumulation in joints, resulting in the significant inhibition of the inflammation, as well as protection and repair of the cartilage. In conclusion, this study introduced MSCsome as a promising approach for the effective treatment of advanced RA, providing a novel perspective on targeted drug delivery therapy for inflammatory diseases.
Asunto(s)
Artritis Reumatoide , Dexametasona , Sistemas de Liberación de Medicamentos , Liposomas , Células Madre Mesenquimatosas , Liposomas/uso terapéutico , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/patología , Dexametasona/administración & dosificación , Humanos , Animales , Ratones , Células Endoteliales de la Vena Umbilical Humana , Ratones Endogámicos BALB C , Ratones Endogámicos DBA , Masculino , Biomimética , Cartílago/efectos de los fármacos , Cartílago/patologíaRESUMEN
The avascular nature of cartilage tissue limits inherent regenerative capacity to counter any damage and this has become a substantial burden to the health of individuals. As a result, there is a high demand to repair and regenerate cartilage. Existing tissue engineering approaches for cartilage regeneration typically produce either microporous or nano-fibrous scaffolds lacking the desired biological outcome due to lack of biomimetic dual architecture of microporous construct with nano-fibrous interconnected structures like the native cartilage. Most of these scaffolds also fail to suppress ROS generation and provide sustained bioenergetics to cells, resulting in the loss of metabolic activity under avascular microenvironment of cartilage. A dual architecture microporous construct with nano-fibrous interconnected network of cellulose aerogel reinforced with arginine-coated graphene oxide (CNF-GO-Arg aerogel) was developed for cartilage regeneration. The designed dual-architectured CNF-GO-Arg aerogel using dual ice templating assembly demonstrates 80 % strain recovery ability under compression. The release of Arginine from CNF-GO-Arg aerogel supported 41 % reduction in intracellular ROS activity and promoted chondrogenic differentiation of hMSCs by shifting mitochondrial bioenergetics towards oxidative phosphorylation indicated by JC-1 dye staining. Overall developed CNF-GO-Arg aerogel provided multifunctionality via biomimetic morphology, cellular bioenergetics, and suppressed ROS generation to address the need for regeneration of cartilage.
Asunto(s)
Arginina , Cartílago , Celulosa , Grafito , Andamios del Tejido , Celulosa/química , Celulosa/farmacología , Grafito/química , Grafito/farmacología , Humanos , Andamios del Tejido/química , Arginina/química , Arginina/farmacología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Ingeniería de Tejidos/métodos , Metabolismo Energético/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Especies Reactivas de Oxígeno/metabolismo , Condrogénesis/efectos de los fármacos , Geles/química , Regeneración/efectos de los fármacos , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacologíaRESUMEN
Osteoarthritis (OA) is a prevalent joint disease characterized by cartilage degeneration and subchondral bone homeostasis imbalance. Effective topical OA therapy is challenging, as therapeutic drugs often suffer from insufficient penetration and rapid clearance. We develop miniature polydopamine (PDA) nanocapsules (sub-60 nm), which are conjugated with collagen-binding polypeptide (CBP) and loaded with an anabolic drug (i.e., parathyroid hormone 1-34, PTH 1-34) for efficient OA treatment. Such multifunctional polymeric nanocapsules, denoted as PDA@CBP-PTH, possess deformability when interacting with the dense collagen fiber networks, enabling the efficient penetration into 1 mm cartilage in 4 h and prolonged retention within the joints up to 28 days. Moreover, PDA@CBP-PTH nanocapsules exhibit excellent reactive oxygen species scavenging property in chondrocytes and enhance the anabolism in subchondral bone. The nanosystem, as dual-mode treatment for OA, demonstrates rapid penetration, long-lasting effects, and combinational therapeutic impact, paving the way for reversing the progression of OA for joint health care.
Asunto(s)
Indoles , Nanocápsulas , Osteoartritis , Polímeros , Osteoartritis/tratamiento farmacológico , Nanocápsulas/química , Polímeros/química , Animales , Indoles/administración & dosificación , Indoles/farmacocinética , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Hormona Paratiroidea/administración & dosificación , Hormona Paratiroidea/farmacocinética , Hormona Paratiroidea/uso terapéutico , Péptidos/administración & dosificación , Péptidos/química , Péptidos/farmacocinética , Especies Reactivas de Oxígeno/metabolismo , Masculino , Fragmentos de Péptidos/administración & dosificación , Fragmentos de Péptidos/farmacocinética , Cartílago Articular/metabolismo , Cartílago Articular/efectos de los fármacos , Humanos , Cartílago/metabolismo , Cartílago/efectos de los fármacosRESUMEN
BACKGROUND: Tianhe Zhuifeng Gao (TZG) is an authorized Chinese patent drug with satisfying clinical efficacy, especially for RA patients with cold-dampness syndrome. However, its underlying pharmacological mechanisms remain unclear. METHOD: Anti-arthritic effects of TZG were evaluated using an adjuvant-induced arthritis (AIA) rat model. Transcriptional regulatory network analysis based on synovial tissues obtained from AIA rats, combining with our previous analysis based on whole blood samples from RA patients with cold-dampness syndrome and co-immunoprecipitation were performed to identify involved dominant pathways, which were experimentally verified using AIA-wind-cold-dampness stimulation modified (AIA-M) animal model. RESULTS: TZG treatment dramatically attenuated joint injury and inflammatory response in AIA rats, and PSMC2-RUNX2-COL1A1 axis, which was closely associated with bone/cartilage damage, was inferred to be one of therapeutic targets of TZG against RA. Experimentally, TZG displayed obvious pharmacological effects for alleviating the joint inflammation and destruction through reinstating the body weight, reducing the arthritis score, the limbs diameters, the levels of RF and CRP, and the inflammatory cytokines, recovering the thymus and spleen indexes, diminishing bone and cartilage destruction, as well elevating the pain thresholds of AIA-M rats. In addition, TZG markedly reversed the abnormal energy metabolism in AIA-M rats through enhancing articular temperature, daily water consumption, and regulating expression levels of energy metabolism parameters and hormones. Moreover, TZG also significantly modulated the abnormal expression levels of PSMC2, RUNX2 and COL1A1 proteins in the ankle tissues of AIA-M rats. CONCLUSION: TZG may exert the bone protective effects in RA therapy via regulating bone and cartilage damage-associated PSMC2-RUNX2-COL1A1 axis.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Cadena alfa 1 del Colágeno Tipo I , Colágeno Tipo I , Medicamentos Herbarios Chinos , Animales , Artritis Reumatoide/tratamiento farmacológico , Artritis Experimental/tratamiento farmacológico , Ratas , Humanos , Masculino , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , Redes Reguladoras de Genes/efectos de los fármacos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Cartílago/metabolismo , Cartílago/patología , Cartílago/efectos de los fármacos , Huesos/efectos de los fármacos , Huesos/metabolismo , Huesos/patología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/farmacología , Transducción de Señal/efectos de los fármacosRESUMEN
Once damaged, cartilage has poor intrinsic capacity to repair itself. Current cartilage repair strategies cannot restore the damaged tissue sufficiently. It is hypothesized that biomimetic scaffolds, which can recapitulate important properties of the cartilage extracellular matrix, play a beneficial role in supporting cell behaviors such as growth, cartilage differentiation, and integration with native cartilage, ultimately facilitating tissue recovery. Adipose-derived stem cells regenerated cartilage upon the sequential release of transforming growth factor ß1(TGFß1) and fibroblast growth factor 2(FGF2) using a nanofibrous scaffold, in order to get the recovery of functional cartilage. Experiments in vitro have demonstrated that the release sequence of growth factors FGF2 to TGFß1 is the most essential to promote adipose-derived stem cells into chondrocytes that then synthesize collagen II. Mouse subcutaneous implantation indicated that the treatment sequence of FGF2 to TGFß1 was able to significantly induce multiple increase in cartilage regeneration in vivo. This result demonstrates that the group treated with FGF2 to TGFß1 released from a nanofibrous scaffold provides a good strategy for cartilage regeneration by making a favorable microenvironment for cell growth and cartilage regeneration.
Asunto(s)
Diferenciación Celular , Factor 2 de Crecimiento de Fibroblastos , Nanofibras , Células Madre , Andamios del Tejido , Factor de Crecimiento Transformador beta1 , Animales , Factor 2 de Crecimiento de Fibroblastos/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Ratones , Nanofibras/química , Diferenciación Celular/efectos de los fármacos , Andamios del Tejido/química , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/fisiología , Condrogénesis/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/citología , Cartílago/fisiología , Tejido Adiposo/citología , Condrocitos/citología , Condrocitos/efectos de los fármacos , Condrocitos/fisiología , Células Cultivadas , Ingeniería de Tejidos/métodosRESUMEN
Cartilage tissue engineering holds great promise for efficient cartilage regeneration. However, early inflammatory reactions to seed cells and/or scaffolds impede this process. Consequently, managing inflammation is of paramount importance. Moreover, due to the body's restricted chondrogenic capacity, inducing cartilage regeneration becomes imperative. Thus, a controlled platform is essential to establish an anti-inflammatory microenvironment before initiating the cartilage regeneration process. In this study, we utilized fifth-generation polyamidoamine dendrimers (G5) as a vehicle for drugs to create composite nanoparticles known as G5-Dic/Sr. These nanoparticles were generated by surface modification with diclofenac (Dic), known for its potent anti-inflammatory effects, and encapsulating strontium (Sr), which effectively induces chondrogenesis, within the core. Our findings indicated that the G5-Dic/Sr nanoparticle exhibited selective Dic release during the initial 9 days and gradual Sr release from days 3 to 15. Subsequently, these nanoparticles were incorporated into a gelatin methacryloyl (GelMA) hydrogel, resulting in GelMA@G5-Dic/Sr. In vitro assessments demonstrated GelMA@G5-Dic/Sr's biocompatibility with bone marrow stem cells (BMSCs). The enclosed nanoparticles effectively mitigated inflammation in lipopolysaccharide-induced RAW264.7 macrophages and significantly augmented chondrogenesis in BMSCs cocultures. Implanting BMSCs-loaded GelMA@G5-Dic/Sr hydrogels in immunocompetent rabbits for 2 and 6 weeks revealed diminished inflammation and enhanced cartilage formation compared to GelMA, GelMA@G5, GelMA@G5-Dic, and GelMA@G5/Sr hydrogels. Collectively, this study introduces an innovative strategy to advance cartilage regeneration by temporally modulating inflammation and chondrogenesis in immunocompetent animals. Through the development of a platform addressing the temporal modulation of inflammation and the limited chondrogenic capacity, we offer valuable insights to the field of cartilage tissue engineering.
Asunto(s)
Condrogénesis , Dendrímeros , Diclofenaco , Inflamación , Nanopartículas , Estroncio , Condrogénesis/efectos de los fármacos , Estroncio/química , Estroncio/farmacología , Animales , Diclofenaco/farmacología , Diclofenaco/química , Dendrímeros/química , Dendrímeros/farmacología , Nanopartículas/química , Inflamación/tratamiento farmacológico , Conejos , Ratones , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Hidrogeles/química , Hidrogeles/farmacología , Propiedades de Superficie , Gelatina/química , Cartílago/efectos de los fármacos , Cartílago/fisiología , Liberación de Fármacos , Ingeniería de Tejidos , Portadores de Fármacos/químicaRESUMEN
BACKGROUND: The incidence of osteochondral defects caused by trauma, arthritis or tumours is increasing annually, but progress has not been made in terms of treatment methods. Due to the heterogeneous structure and biological characteristics of cartilage and subchondral bone, the integration of osteochondral repair is still a challenge. RESULTS: In the present study, a novel bilayer hydrogel scaffold was designed based on anatomical characteristics to imitate superficial cartilage and subchondral bone. The scaffold showed favourable biocompatibility, and the addition of an antioxidant nanozyme (LiMn2O4) promoted reactive oxygen species (ROS) scavenging by upregulating antioxidant proteins. The cartilage layer effectively protects against chondrocyte degradation in the inflammatory microenvironment. Subchondral bionic hydrogel scaffolds promote osteogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs) by regulating the AMPK pathway in vitro. Finally, an in vivo rat preclinical osteochondral defect model confirmed that the bilayer hydrogel scaffold efficiently promoted cartilage and subchondral bone regeneration. CONCLUSIONS: In general, our biomimetic hydrogel scaffold with the ability to regulate the inflammatory microenvironment can effectively repair osteochondral defects. This strategy provides a promising method for regenerating tissues with heterogeneous structures and biological characteristics.
Asunto(s)
Regeneración Ósea , Hidrogeles , Células Madre Mesenquimatosas , Osteogénesis , Ratas Sprague-Dawley , Andamios del Tejido , Animales , Hidrogeles/química , Hidrogeles/farmacología , Andamios del Tejido/química , Ratas , Células Madre Mesenquimatosas/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Condrocitos/efectos de los fármacos , Masculino , Diferenciación Celular/efectos de los fármacos , Inflamación , Ingeniería de Tejidos/métodos , Especies Reactivas de Oxígeno/metabolismo , Condrogénesis/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago Articular/efectos de los fármacos , Células CultivadasRESUMEN
Polysaccharides, known as naturally abundant macromolecular materials which can be easily modified chemically, have always attracted scientists' interest due to their outstanding properties in tissue engineering. Moreover, their intrinsic similarity to cartilage ECM components, biocompatibility, and non-harsh processing conditions make polysaccharides an excellent option for cartilage tissue engineering. Imitating the natural ECM structure to form a fibrous scaffold at the nanometer scale in order to recreate the optimal environment for cartilage regeneration has always been attractive for researchers in the past few years. However, there are some challenges for polysaccharides electrospun nanofibers preparation, such as poor solubility (Alginate, cellulose, chitin), high viscosity (alginate, chitosan, and Hyaluronic acid), high surface tension, etc. Several methods are reported in the literature for facing polysaccharide electrospinning issues, such as using carrier polymers, modification of polysaccharides, and using different solvent systems. In this review, considering the importance of polysaccharide-based electrospun nanofibers in cartilage tissue engineering applications, the main achievements in the past few years, and challenges for their electrospinning process are discussed. After careful investigation of reported studies in the last few years, alginate, chitosan, hyaluronic acid, chondroitin sulfate, and cellulose were chosen as the main polysaccharide base electrospun nanofibers used for cartilage regeneration.
Asunto(s)
Cartílago , Nanofibras , Polisacáridos , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Nanofibras/química , Humanos , Polisacáridos/química , Cartílago/efectos de los fármacos , Cartílago/fisiología , Animales , Materiales Biocompatibles/química , Quitosano/química , Alginatos/químicaRESUMEN
In this study, we developed a composite hydrogel based on Gellan gum containing Boswellia serrata extract (BSE). BSE was either incorporated directly or loaded into an MgAl-layered double hydroxide (LDH) clay to create a multifunctional cartilage substitute. This composite was designed to provide anti-inflammatory properties while enhancing chondrogenesis. Additionally, LDH was exploited to facilitate the loading of hydrophobic BSE components and to improve the hydrogel's mechanical properties. A calcination process was also adopted on LDH to increase BSE loading. Physicochemical and mechanical characterizations were performed by spectroscopic (XPS and FTIR), thermogravimetric, rheological, compression test, weight loss and morphological (SEM) investigations. RPLC-ESI-FTMS was employed to investigate the boswellic acids release in simulated synovial fluid. The composites were cytocompatible and capable of supporting the mesenchymal stem cells (hMSC) growth in a 3D-conformation. Loading BSE resulted in the modulation of the pro-inflammatory cascade by down-regulating COX2, PGE2 and IL1ß. Chondrogenesis studies demonstrated an enhanced differentiation, leading to the up-regulation of COL 2 and ACAN. This effect was attributed to the efficacy of BSE in reducing the inflammation through PGE2 down-regulation and IL10 up-regulation. Proteomics studies confirmed gene expression findings by revealing an anti-inflammatory protein signature during chondrogenesis of the cells cultivated onto loaded specimens. Concluding, BSE-loaded composites hold promise as a tool for the in-situ modulation of the inflammatory cascade while preserving cartilage healing.
Asunto(s)
Boswellia , Cartílago , Condrogénesis , Extractos Vegetales , Polisacáridos Bacterianos , Boswellia/química , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Condrogénesis/efectos de los fármacos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Andamios del Tejido/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Inflamación/patología , TriterpenosRESUMEN
Collagen-based (COL) hydrogels could be a promising treatment option for injuries to the articular cartilage (AC) becuase of their similarity to AC native extra extracellular matrix. However, the high hydration of COL hydrogels poses challenges for AC's mechanical properties. To address this, we developed a hydrogel platform that incorporating cellulose nanocrystals (CNCs) within COL and followed by plastic compression (PC) procedure to expel the excessive fluid out. This approach significantly improved the mechanical properties of the hydrogels and enhanced the chondrogenic differentiation of mesenchymal stem cells (MSCs). Radially confined PC resulted in higher collagen fibrillar densities together with reducing fibril-fibril distances. Compressed hydrogels containing CNCs exhibited the highest compressive modulus and toughness. MSCs encapsulated in these hydrogels were initially affected by PC, but their viability improved after 7 days. Furthermore, the morphology of the cells and their secretion of glycosaminoglycans (GAGs) were positively influenced by the compressed COL-CNC hydrogel. Our findings shed light on the combined effects of PC and CNCs in improving the physical and mechanical properties of COL and their role in promoting chondrogenesis.
Asunto(s)
Diferenciación Celular , Celulosa , Condrogénesis , Colágeno , Hidrogeles , Células Madre Mesenquimatosas , Nanopartículas , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Celulosa/química , Celulosa/farmacología , Condrogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Nanopartículas/química , Colágeno/química , Colágeno/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Animales , Plásticos/química , Plásticos/farmacología , Supervivencia Celular/efectos de los fármacos , Glicosaminoglicanos/metabolismo , Cartílago/citología , Cartílago/efectos de los fármacosRESUMEN
Designing artificial nano-enzymes for scavenging reactive oxygen species (ROS) in chondrocytes (CHOs) is considered the most feasible pathway for the treatment of osteoarthritis (OA). However, the accumulation of ROS due to the amount of nano-enzymatic catalytic site exposure and insufficient oxygen supply seriously threatens the clinical application of this therapy. Although metal-organic framework (MOF) immobilization of artificial nano-enzymes to enhance active site exposure has been extensively studied, artificial nano-enzymes/MOFs for ROS scavenging in OA treatment are still lacking. In this study, a biocompatible lubricating hydrogel-loaded iron-doped zeolitic imidazolate framework-8 (Fe/ZIF-8/Gel) centrase was engineered to scavenge endogenous overexpressed ROS synergistically generating dissolved oxygen and enhancing sustained lubrication for CHOs as a ternary artificial nano-enzyme. This property enabled the nano-enzymatic hydrogels to mitigate OA hypoxia and inhibit oxidative stress damage successfully. Ternary strategy-based therapies show excellent cartilage repair in vivo. The experimental results suggest that nano-enzyme-enhanced lubricating hydrogels are a potentially effective OA treatment and a novel strategy.
Asunto(s)
Condrocitos , Hidrogeles , Especies Reactivas de Oxígeno , Hidrogeles/química , Hidrogeles/farmacología , Animales , Condrocitos/metabolismo , Condrocitos/efectos de los fármacos , Condrocitos/citología , Especies Reactivas de Oxígeno/metabolismo , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Osteoartritis/tratamiento farmacológico , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Tamaño de la Partícula , Humanos , Zeolitas/químicaRESUMEN
Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.
Asunto(s)
Huesos , Cartílago , Colágeno , Gadiformes , Hidrolisados de Proteína , Animales , Colágeno/metabolismo , Humanos , Cartílago/efectos de los fármacos , Cartílago/metabolismo , Huesos/efectos de los fármacos , Huesos/metabolismo , Hidrolisados de Proteína/farmacología , Hidrolisados de Proteína/química , Células Madre Mesenquimatosas/efectos de los fármacos , Bebidas , Alimentos Funcionales , HidrólisisRESUMEN
Osteoarthritis is more prevalent than any other form of arthritis and is characterized by the progressive mechanical deterioration of joints. Glucosamine, an amino monosaccharide, has been used for over fifty years as a dietary supplement to alleviate osteoarthritis-related discomfort. Silibinin, extracted from milk thistle, modifies the degree of glycosylation of target proteins, making it an essential component in the treatment of various diseases. In this study, we aimed to investigate the functional roles of glucosamine and silibinin in cartilage homeostasis using the TC28a2 cell line. Western blots showed that glucosamine suppressed the N-glycosylation of the gp130, EGFR, and N-cadherin proteins. Furthermore, both glucosamine and silibinin differentially decreased and increased target proteins such as gp130, Snail, and KLF4 in TC28a2 cells. We observed that both compounds dose-dependently induced the proliferation of TC28a2 cells. Our MitoSOX and DCFH-DA dye data showed that 1 µM glucosamine suppressed mitochondrial reactive oxygen species (ROS) generation and induced cytosol ROS generation, whereas silibinin induced both mitochondrial and cytosol ROS generation in TC28a2 cells. Our JC-1 data showed that glucosamine increased red aggregates, resulting in an increase in the red/green fluorescence intensity ratio, while all the tested silibinin concentrations increased the green monomers, resulting in decreases in the red/green ratio. We observed increasing subG1 and S populations and decreasing G1 and G2/M populations with increasing amounts of glucosamine, while increasing amounts of silibinin led to increases in subG1, S, and G2/M populations and decreases in G1 populations in TC28a2 cells. MTT data showed that both glucosamine and silibinin induced cytotoxicity in TC28a2 cells in a dose-dependent manner. Regarding endoplasmic reticulum stress, both compounds induced the expression of CHOP and increased the level of p-eIF2α/eIF2α. With respect to O-GlcNAcylation status, glucosamine and silibinin both reduced the levels of O-GlcNAc transferase and hypoxia-inducible factor 1 alpha. Furthermore, we examined proteins and mRNAs related to these processes. In summary, our findings demonstrated that these compounds differentially modulated cellular proliferation, mitochondrial and cytosol ROS generation, the mitochondrial membrane potential, the cell cycle profile, and autophagy. Therefore, we conclude that glucosamine and silibinin not only mediate glycosylation modifications but also regulate cellular processes in human chondrocytes.