Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.273
Filtrar
1.
J Phys Chem B ; 128(32): 7781-7791, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39106061

RESUMEN

Much attention has been given to studying the translational diffusion of globular proteins, whereas the translational diffusion of intrinsically disordered proteins (IDPs) is less studied. In this study, we investigate the translational diffusion and how it is affected by the self-association of an IDP, κ-casein, using pulsed-field gradient nuclear magnetic resonance and time-resolved Förster resonance energy transfer. Using the analysis of the shape of diffusion attenuation and the concentration dependence of κ-casein diffusion coefficients and intermolecular interactions, we demonstrate that κ-casein exhibits continuous self-association. When the volume fraction of κ-casein is below 0.08, we observe that κ-casein self-association results in a macroscopic phase separation upon storage at 4 °C. At κ-casein volume fractions above 0.08, self-association leads to the formation of labile gel-like networks without subsequent macroscopic phase separation. Unlike α-casein, which shows a strong concentration dependence and extensive gel-like network formation, only one-third of κ-casein molecules participate in the gel network at a time, resulting in a more dynamic and less extensive structure. These findings highlight the unique association properties of κ-casein, contributing to a better understanding of its behavior under various conditions and its potential role in casein micelle formation.


Asunto(s)
Caseínas , Transferencia Resonante de Energía de Fluorescencia , Proteínas Intrínsecamente Desordenadas , Caseínas/química , Caseínas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Difusión , Resonancia Magnética Nuclear Biomolecular
2.
Molecules ; 29(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39125078

RESUMEN

It has been reported that the modification of immobilized glyoxyl-ficin with aldehyde dextran can promote steric hindrances that greatly reduce the activity of the immobilized protease against hemoglobin, while the protease still maintained a reasonable level of activity against casein. In this paper, we studied if this effect may be different depending on the amount of ficin loaded on the support. For this purpose, both the moderately loaded and the overloaded glyoxyl-ficin biocatalysts were prepared and modified with aldehyde dextran. While the moderately loaded biocatalyst had a significantly reduced activity, mainly against hemoglobin, the activity of the overloaded biocatalyst was almost maintained. This suggests that aldehyde dextran was able to modify areas of the moderately loaded enzyme that were not available when the enzyme was overloaded. This modification promoted a significant increase in biocatalyst stability for both biocatalysts, but the stability was higher for the overloaded biocatalyst (perhaps due to a combination of inter- and intramolecular crosslinking).


Asunto(s)
Aldehídos , Dextranos , Enzimas Inmovilizadas , Ficaína , Dextranos/química , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Ficaína/química , Ficaína/metabolismo , Aldehídos/química , Hemoglobinas/química , Hemoglobinas/metabolismo , Biocatálisis , Especificidad por Sustrato , Caseínas/química , Caseínas/metabolismo , Estabilidad de Enzimas
3.
BMC Vet Res ; 20(1): 286, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961471

RESUMEN

BACKGROUND: The milk's nutritional value is determined by its constituents, including fat, protein, carbohydrates, and minerals. The mammary gland's ability to produce milk is controlled by a complex network of genes. Thereby, the fat, protein, and lactose synthesis must be boost in milk to increase milk production efficiency. This can be accomplished by fusing genetic advancements with proper management practices. Therefore, this study aimed to investigate the association between the Lipoprotein lipase (LPL), kappa casein CSN3, and Glucose transporter 1 (GLUT1) genes expression levels and such milk components as fat, protein, and lactose in different dairy breeds during different stages of lactation. METHODS: To achieve such a purpose, 94 milk samples were collected (72 samples from 36 multiparous black-white and red-white Holstein-Friesian (HF) cows and 22 milk samples from 11 Egyptian buffaloes) during the early and peak lactation stages. The milk samples were utilized for milk analysis and genes expressions analyses using non- invasive approach in obtaining milk fat globules (MFGs) as a source of Ribonucleic acid (RNA). RESULTS: LPL and CSN3 genes expressions levels were found to be significantly higher in Egyptian buffalo than Holstein-Friesian (HF) cows as well as fat and protein percentages. On the other hand, GLUT1 gene expression level was shown to be significantly higher during peak lactation than early lactation. Moreover, lactose % showed a significant difference in peak lactation phase compared to early lactation phase. Also, fat and protein percentages were significantly higher in early lactation period than peak lactation period but lactose% showed the opposite pattern of Egyptian buffalo. CONCLUSION: Total RNA can be successfully obtained from MFGs. The results suggest that these genes play a role in glucose absorption and lactose synthesis in bovine mammary epithelial cells during lactation. Also, these results provide light on the differential expression of these genes among distinct Holstein-Friesian cow breeds and Egyptian buffalo subspecies throughout various lactation phases.


Asunto(s)
Caseínas , Glucolípidos , Glicoproteínas , Lactancia , Gotas Lipídicas , Glándulas Mamarias Animales , Leche , ARN Mensajero , Animales , Bovinos/genética , Lactancia/genética , Femenino , Gotas Lipídicas/metabolismo , Leche/química , Leche/metabolismo , Glucolípidos/metabolismo , Caseínas/genética , Caseínas/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Glándulas Mamarias Animales/metabolismo , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Búfalos/genética , Búfalos/metabolismo , Lactosa/metabolismo , Lactosa/análisis , Proteínas de la Leche/análisis , Proteínas de la Leche/metabolismo , Proteínas de la Leche/genética , Regulación de la Expresión Génica
4.
An Acad Bras Cienc ; 96(suppl 1): e20231333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39046058

RESUMEN

This study was conducted to determine the best combination of protein sources in diets for jundiá, based on growth, metabolism, and nutrient deposition. Five protein combinations were tested: casein + fish meal (control), casein + gelatin, casein + albumin, casein + albumin + fish meal, and albumin + fish meal, in diets containing 370 g Kg-1 of crude protein and 13.4 MJ Kg-1 of digestible energy. The fish (9.38 ± 0.12 g) were allocated in a water recirculation system at a density of 3.35 g L-1 per experimental unit and fed until apparent satiety for 40 days with the diets. The fish fed with the control diet had the highest final weight, specific growth rate, protein and feed efficiency ratio, protein retention, and best apparent feed conversion. On the other hand, fish that received casein + albumin and albumin + fish meal diets showed worse results in growth and body protein retention, low trypsin and chymotrypsin activity, and high intestinal amylase activity. Therefore, the combination referred to as control (casein + fish meal) conclusively provides the best rhythm for nutrient digestion and metabolism processes, enabling fish to reach greater growth and retention of body protein with low whole-fish fat content.


Asunto(s)
Alimentación Animal , Proteínas en la Dieta , Animales , Alimentación Animal/análisis , Proteínas en la Dieta/administración & dosificación , Proteínas en la Dieta/metabolismo , Caseínas/administración & dosificación , Caseínas/metabolismo , Digestión/fisiología , Digestión/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales
5.
Food Funct ; 15(15): 8104-8115, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39007353

RESUMEN

Calcium is the most abundant mineral in the human body and is involved in critical physiological and cellular processes. It is essential for the development, maintenance, and integrity of bone tissue throughout life. Identifying new natural food-grade chelating agents to improve calcium uptake is of increasing interest. Casein phosphopeptides (CPPs), highly phosphorylated peptides obtained after enzymatic hydrolysis of caseins, represent promising calcium-chelating candidates. The aim of this study was to investigate, using cell culture models, the ability of a digested milk matrix enriched in CPPs to regulate calcium transport through the intestinal barrier and elucidate the involved mechanisms. To this end, a CPP-preparation underwent in vitro static digestion and was subsequently incubated with an intestinal barrier model to monitor calcium uptake and transport. Our results demonstrated that the digested CPP preparation enhanced the trans-epithelial calcium transport via paracellular pathways and that CPPs, identified by peptidomics, crossed the intestinal barrier in the same time.


Asunto(s)
Calcio , Caseínas , Mucosa Intestinal , Fosfopéptidos , Caseínas/farmacología , Caseínas/metabolismo , Caseínas/química , Fosfopéptidos/farmacología , Fosfopéptidos/metabolismo , Fosfopéptidos/química , Humanos , Calcio/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Células CACO-2 , Transporte Biológico , Animales , Digestión , Absorción Intestinal/efectos de los fármacos
6.
Molecules ; 29(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39064949

RESUMEN

Transglutaminase (TGase)-catalyzed crosslinking has gained substantial traction as a novel strategy for reducing allergenic risk in food proteins, particularly within the realm of hypoallergenic food production. This study explored the impact of TGase crosslinking on conformational changes in a binary protein system composed of soy protein isolate (SPI) and sodium caseinate (SC) at varying mass ratios (10:0, 7:3, 5:5, 3:7 (w/w)). Specifically, the immunoglobulin E (IgE) binding capacity of soy proteins within this system was examined. Prolonged TGase crosslinking (ranging from 0 h to 15 h) resulted in a gradual reduction in IgE reactivity across all SPI-SC ratios, with the order of IgE-binding capability as follows: SPI > SPI5-SC5 > SPI7-SC3 > SPI3-SC7. These alterations in protein conformation following TGase crosslinking, as demonstrated by variable intrinsic fluorescence, altered surface hydrophobicity, increased ultraviolet absorption and reduced free sulfhydryl content, were identified as the underlying causes. Additionally, ionic bonds were found to play a significant role in maintaining the structure of the dual-protein system after crosslinking, with hydrophobic forces and hydrogen bonds serving as supplementary forces. Generally, the dual-protein system may exhibit enhanced efficacy in reducing the allergenicity of soy protein.


Asunto(s)
Inmunoglobulina E , Conformación Proteica , Proteínas de Soja , Transglutaminasas , Transglutaminasas/química , Transglutaminasas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/inmunología , Inmunoglobulina E/inmunología , Inmunoglobulina E/metabolismo , Reactivos de Enlaces Cruzados/química , Interacciones Hidrofóbicas e Hidrofílicas , Humanos , Caseínas/química , Caseínas/metabolismo , Caseínas/inmunología
7.
Food Chem ; 457: 140140, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901350

RESUMEN

Cold plasma is a nonthermal process used for modification of proteins. The objective of this study was to investigate the effect of cold plasma technology on the phosphorylation degree, functional and oxidation properties, and structure of casein in sheep milk. Cold plasma treatment for 3-4 min significantly increased the phosphorylation degree and enhanced functional properties, including water-holding capacity, solubility, foaming capacity and stability. Besides, plasma treatment time profoundly influenced protein oxidation, and treatment for 2 and 3 min could be the preferred conditions to minimize protein change. The protein conformation became unstable with the extension of treatment time. Particle size, polymer dispersity index, and microscopy images confirmed alterations in the protein structure following 3 min of processing. Consequently, using cold plasma treatment at 10 kHz 20 kV for 3 min could be suggested for milk protein modification, providing a basis for the application of high-quality caseins in food processing.


Asunto(s)
Caseínas , Manipulación de Alimentos , Leche , Oxidación-Reducción , Animales , Caseínas/química , Caseínas/metabolismo , Leche/química , Ovinos , Fosforilación , Gases em Plasma/química , Solubilidad , Conformación Proteica
8.
Biomolecules ; 14(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927093

RESUMEN

Special attention is given to cow's milk and its variants, with ongoing discussions about health-related impacts primarily focusing on the A1 variant in contrast to the A2 variant. The difference between these variants lies in a single amino acid alteration at position 67 of ß-casein. This alteration is presumed to make the A1 variant more susceptible to enzymatic breakdown during milk digestion, leading to an increased release of the peptide ß-casomorphin-7 (BCM-7). BCM-7 is hypothesized to interact with µ-opioid receptors on immune cells in humans. Although BCM-7 has demonstrated both immunosuppressive and inflammatory effects, its direct impact on the immune system remains unclear. Thus, we examined the influence of A1 and A2 milk on Concanavalin A (ConA)-stimulated human peripheral blood mononuclear cells (PBMCs), as well as the effect of experimentally digested A1 and A2 milk, containing different amounts of free BCM-7 from ß-casein cleavage. Additionally, we evaluated the effects of pure BCM-7 on the proliferation of ConA-stimulated PBMCs and purified CD4+ T cells. Milk fundamentally inhibited PBMC proliferation, independent of the ß-casein variant. In contrast, experimentally digested milk of both variants and pure BCM-7 showed no influence on the proliferation of PBMCs or isolated CD4+ T cells. Our results indicate that milk exerts an anti-inflammatory effect on PBMCs, regardless of the A1 or A2 ß-casein variant, which is nullified after in vitro digestion. Consequently, we deem BCM-7 unsuitable as a biomarker for food-induced inflammation.


Asunto(s)
Caseínas , Proliferación Celular , Endorfinas , Leucocitos Mononucleares , Leche , Fragmentos de Péptidos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Leucocitos Mononucleares/citología , Proliferación Celular/efectos de los fármacos , Leche/química , Endorfinas/farmacología , Endorfinas/metabolismo , Animales , Caseínas/farmacología , Caseínas/metabolismo , Fragmentos de Péptidos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/citología , Concanavalina A/farmacología , Bovinos
9.
Food Res Int ; 190: 114621, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945576

RESUMEN

Ageing leads to changes in the functionality of the digestive tract but the effect of age on digestion and absorption of nutrients remains unclear. The objective of this study was to investigate in vitro the digestion of two high-protein dairy products similar to cream cheese (24 % w/w proteins, 20 % w/w lipids) with opposite casein to whey protein ratios, 80:20 (WP-20), and 20:80 (WP-80). The new static digestion model adapted to the general older adult population (≥65 y.) proposed by INFOGEST was used, as well as the standard version of the protocol. Kinetics of proteolysis and lipolysis were compared between both models for each product, in the gastric and intestinal phases of digestion. In both cream cheeses, the degree of protein hydrolysis (DH-P) was significantly lower for older adults than for young adults at the end of the gastric phase (-19 % for WP-20, and -44 % for WP-80), and at the end of the intestinal phase (-16 % for WP-20, and -20 % for WP-80). The degree of lipid hydrolysis (DH-L) was also significantly lower for older adults than for young adults at the end of the digestion for WP-20 (-30 %), but interestingly it was not the case for WP-80 (similar DH-L were measured). Free fatty acids were also released faster from WP-80 than from WP-20 in both digestion conditions: after 5 min of intestinal digestion DH-L was already ≈32 % for WP-80 against 14 % for WP-20. This was attributed to the opposite casein to whey protein ratios, leading to the formation of different gel structures resulting in different patterns of deconstruction in the gastrointestinal tract. This study highlights the fact that it is essential to carefully consider the composition, structure, and digestibility of foods to develop products adapted to the specific needs of the older adult population.


Asunto(s)
Caseínas , Queso , Digestión , Proteolisis , Proteína de Suero de Leche , Queso/análisis , Proteína de Suero de Leche/metabolismo , Proteína de Suero de Leche/química , Caseínas/metabolismo , Humanos , Anciano , Hidrólisis , Adulto , Lipólisis , Adulto Joven , Factores de Edad , Modelos Biológicos , Cinética
10.
Food Res Int ; 190: 114604, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38945616

RESUMEN

Sheep's milk (SM) is known to differ from cow's milk (CM) in nutritional composition and physicochemical properties, which may lead to different digestion behaviours. This work aimed to investigate the impact of the species (cow vs sheep) and the structure (milk vs yogurt) on the digestion of dairy products. Using an in vitro static gastrointestinal digestion model, CM, SM, cow's milk yogurt (CY) and sheep's milk yogurt (SY) were compared on particle size evolution, microscopic observations, degree of lipolysis, degree of proteolysis, specific protein degradation and calcium bioaccessibility. Species and structure affected particle size evolution during the gastric phase resulting in smaller particles for yogurts compared to milks as well as for CM products compared to SM products. Species impacted lipid composition and lipolysis, with SM products presenting higher short/medium-chain fatty acids content and higher intestinal degree of lipolysis. Proteolysis was influenced by structure, with milks showing higher intestinal degree of proteolysis compared to yogurts. Caseins were digested faster in CM, ⍺-lactalbumin was digested faster in SM despite its higher concentration, and during gastric digestion ß-lactoglobulin was more degraded in CM products compared to SM products and more in yogurts compared to milks. Lastly, SM products released more bioaccessible calcium than CM products. In conclusion, species (cow vs sheep) impacted more the digestion compared to the structure (milk vs yogurt). In fact, SM was different from CM mainly due to a denser protein network that might slow down the accessibility of the enzyme to its substrate which induce a delay of gastric disaggregation and thus lead to slower the digestion of the nutrients.


Asunto(s)
Digestión , Lipólisis , Leche , Tamaño de la Partícula , Proteolisis , Yogur , Animales , Digestión/fisiología , Bovinos , Yogur/análisis , Ovinos , Leche/química , Lactoglobulinas/metabolismo , Tracto Gastrointestinal/metabolismo , Productos Lácteos/análisis , Lactalbúmina/metabolismo , Caseínas/metabolismo , Caseínas/análisis , Especificidad de la Especie , Proteínas de la Leche/análisis , Proteínas de la Leche/metabolismo
11.
Food Chem ; 454: 139752, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38815330

RESUMEN

Ferritin, a vital protein required to store iron in a cage-like structure, is critical for maintaining iron balance. Ferritin can be attacked by free radicals during iron reduction and release, thereby leading to oxidative damage. Whether other biomacromolecules such as casein phosphopeptides (CPP) could influence the ferritin's function in iron oxidation and release and affect the ferritin stability remains unclear. This study aims to investigate the effect of CPP on the ferritin­iron ion interaction, thereby focusing on role of CPP on ferritin stability. Results showed that CPP weakened the iron oxidation activity of ferritin but promoted iron release. Moreover, CPP could effectively chelate iron, capture hydroxyl radicals, and reduce the degradation of ferritin. This study highlights the role of CPP in the ferritin­iron relationship, and lays a foundation for understanding the interaction between ferritin, peptides, and metal ions.


Asunto(s)
Caseínas , Ferritinas , Hierro , Fosfopéptidos , Ferritinas/química , Ferritinas/metabolismo , Caseínas/química , Caseínas/metabolismo , Fosfopéptidos/química , Hierro/metabolismo , Hierro/química , Oxidación-Reducción , Animales , Humanos , Unión Proteica
12.
PLoS One ; 19(5): e0303856, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38787822

RESUMEN

This study investigates the impact of casein hydrolysates on the poultry ceca inoculated with Campylobacter focusing on microbial molecular preferences for different protein sources in the presence of Campylobacter jejuni. Three casein sources (intact casein (IN), casein enzyme hydrolysate (EH), and casein acid hydrolysate (AH)) were introduced to cecal contents in combination with inoculated C. jejuni in an in vitro model system incubated for 48 h at 42°C under microaerophilic conditions. Samples were collected at 0, 24, and 48 h. Genomic DNA was extracted and amplified using custom dual-indexed primers, followed by sequencing on an Illumina MiSeq platform. The obtained sequencing data were then analyzed via QIIME2-2021.11. Metabolite extracts were analyzed with ultra-high-performance liquid orbitrap chromatography-mass spectrometry (UHPLC-MS). Statistical analysis of metabolites was conducted using MetaboAnalyst 5.0, while functional analysis was performed using Mummichog 2.0 with a significance threshold set at P < 0.00001. DNA sequencing and metabolomic analyses revealed that C. jejuni was most abundant in the EH group. Microbial diversity and richness improved in casein supplemented groups, with core microbial differences observed, compared to non-supplemented groups. Vitamin B-associated metabolites significantly increased in the supplemented groups, displaying distinct patterns in vitamin B6 and B9 metabolism between EH and AH groups (P < 0.05). Faecalibacterium and Phascolarctobacterium were associated with AH and EH groups, respectively. These findings suggest microbial interactions in the presence of C. jejuni and casein supplementation are influenced by microbial community preferences for casein hydrolysates impacting B vitamin production and shaping competitive dynamics within the cecal microbial community. These findings underscore the potential of nutritional interventions to modulate the poultry GIT microbiota for improved health outcomes.


Asunto(s)
Campylobacter jejuni , Caseínas , Ciego , Metaboloma , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/metabolismo , Animales , Ciego/microbiología , Ciego/metabolismo , Ciego/efectos de los fármacos , Caseínas/metabolismo , Metaboloma/efectos de los fármacos , Pollos/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Aves de Corral/microbiología
13.
J Agric Food Chem ; 72(22): 12719-12724, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38789103

RESUMEN

Lactononadecapeptide (LNDP; NIPPLTQTPVVVPPFLQPE), a casein-derived peptide comprising 19 residues, is known for its capacity to enhance cognitive function. This study aimed to explore the transepithelial transport and stability of LNDP. Results showed that LNDP retained over 90% stability after 2 h of treatment with gastrointestinal enzymes. The stability of LNDP on Caco-2 cell monolayers ranged from 93.4% ± 0.9% to 101.1% ± 1.2% over a period of 15-60 min, with no significant differences at each time point. The permeability of LNDP across an artificial lipid membrane was very low with the effective permeability of 3.6 × 10-11 cm/s. The Caco-2 assay demonstrated that LNDP could traverse the intestinal epithelium, with an apparent permeability of 1.22 × 10-6 cm/s. Its transport was significantly inhibited to 67.9% ± 5.0% of the control by Gly-Pro, a competitor of peptide transporter 1 (PEPT1). Furthermore, PEPT1 knockdown using siRNA significantly inhibited LNDP transport by 77.6% ± 1.9% in Caco-2 cell monolayers. The LNDP uptake in PEPT1-expressing HEK293 cells was significantly higher (54.5% ± 14.6%) than that in mock cells. These findings suggest that PEPT1 plays a crucial role in LNDP transport, and LNDP exhibits good resistance to gastrointestinal enzymes.


Asunto(s)
Caseínas , Humanos , Células CACO-2 , Transporte Biológico , Caseínas/metabolismo , Caseínas/química , Caseínas/genética , Transportador de Péptidos 1/genética , Transportador de Péptidos 1/metabolismo , Mucosa Intestinal/metabolismo , Estabilidad de Enzimas , Péptidos/química , Péptidos/metabolismo
14.
Molecules ; 29(9)2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38731652

RESUMEN

Bovine milk is an essential supplement due to its rich energy- and nutrient-rich qualities. Caseins constitute the vast majority of the proteins in milk. Among these, ß-casein comprises around 37% of all caseins, and it is an important type of casein with several different variants. The A1 and A2 variants of ß-casein are the most researched genotypes due to the changes in their composition. It is accepted that the A2 variant is ancestral, while a point mutation in the 67th amino acid created the A1 variant. The digestion derived of both A1 and A2 milk is BCM-7. Digestion of A2 milk in the human intestine also forms BCM-9 peptide molecule. The opioid-like characteristics of BCM-7 are highlighted for their potential triggering effect on several diseases. Most research has been focused on gastrointestinal-related diseases; however other metabolic and nervous system-based diseases are also potentially triggered. By manipulating the mechanisms of these diseases, BCM-7 can induce certain situations, such as conformational changes, reduction in protein activity, and the creation of undesired activity in the biological system. Furthermore, the genotype of casein can also play a role in bone health, such as altering fracture rates, and calcium contents can change the characteristics of dietary products. The context between opioid molecules and BCM-7 points to a potential triggering mechanism for the central nervous system and other metabolic diseases discussed.


Asunto(s)
Caseínas , Endorfinas , Humanos , Animales , Caseínas/química , Caseínas/metabolismo , Caseínas/genética , Endorfinas/química , Endorfinas/metabolismo , Leche/química , Leche/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Péptidos Opioides/química , Péptidos Opioides/metabolismo , Bovinos
15.
Langmuir ; 40(22): 11516-11525, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38778622

RESUMEN

Using the surface characterization techniques of quartz crystal microbalance with dissipation, atomic force microscopy, and scanning electron microscopy, the structure of the salivary pellicle was investigated before and after it was exposed to dairy proteins, including micellar casein, skim milk, whey protein isolate (WPI), and a mixture of skim milk and WPI. We have shown that the hydration, viscoelasticity, and adsorbed proteinaceous mass of a preadsorbed salivary pellicle on a PDMS surface are greatly affected by the type of dairy protein. After interaction with whey protein, the preadsorbed saliva pellicle becomes softer. However, exposure of the saliva pellicle to micellar casein causes the pellicle to partially collapse, which results in a thinner and more rigid surface layer. This structure change correlates with the measured lubrication behavior when the saliva pellicle is exposed to dairy proteins. While previous studies suggest that whey protein is the main component in milk to interact with salivary proteins, our study indicates interactions with casein are more important. The knowledge gained here provides insights into the mechanisms by which different components of dairy foods and beverages contribute to mouthfeel and texture perception, as well as influence oral hygiene.


Asunto(s)
Película Dental , Proteínas y Péptidos Salivales , Película Dental/química , Película Dental/metabolismo , Proteínas y Péptidos Salivales/química , Proteínas y Péptidos Salivales/metabolismo , Adsorción , Caseínas/química , Caseínas/metabolismo , Propiedades de Superficie , Proteína de Suero de Leche/química , Humanos , Animales , Microscopía de Fuerza Atómica , Saliva/química , Saliva/metabolismo , Tecnicas de Microbalanza del Cristal de Cuarzo
16.
J Agric Food Chem ; 72(15): 8285-8303, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38588092

RESUMEN

The gut barrier plays an important role in health maintenance by preventing the invasion of dietary pathogens and toxins. Disruption of the gut barrier can cause severe intestinal inflammation. As a natural source, milk is enriched with many active constituents that contribute to numerous beneficial functions, including immune regulation. These components collectively serve as a shield for the gut barrier, protecting against various threats such as biological, chemical, mechanical, and immunological threats. This comprehensive review delves into the active ingredients in milk, encompassing casein, α-lactalbumin, ß-lactoglobulin, lactoferrin, the milk fat globular membrane, lactose, transforming growth factor, and glycopeptides. The primary focus is to elucidate their impact on the integrity and function of the gut barrier. Furthermore, the implications of different processing methods of dairy products on the gut barrier protection are discussed. In conclusion, this study aimed to underscore the vital role of milk and dairy products in sustaining gut barrier health, potentially contributing to broader perspectives in nutritional sciences and public health.


Asunto(s)
Caseínas , Leche , Animales , Leche/metabolismo , Caseínas/metabolismo , Lactalbúmina/metabolismo , Lactoglobulinas/metabolismo , Dieta
17.
J Extracell Vesicles ; 13(4): e12422, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602306

RESUMEN

Human milk contains extracellular vesicles (HMEVs). Pre-clinical models suggest that HMEVs may enhance intestinal function and limit inflammation; however, it is unknown if HMEVs or their cargo survive neonatal human digestion. This limits the ability to leverage HMEV cargo as additives to infant nutrition or as therapeutics. This study aimed to develop an EV isolation pipeline from small volumes of human milk and neonatal intestinal contents after milk feeding (digesta) to address the hypothesis that HMEVs survive in vivo neonatal digestion to be taken up intestinal epithelial cells (IECs). Digesta was collected from nasoduodenal sampling tubes or ostomies. EVs were isolated from raw and pasteurized human milk and digesta by density-gradient ultracentrifugation following two-step skimming, acid precipitation of caseins, and multi-step filtration. EVs were validated by electron microscopy, western blotting, nanoparticle tracking analysis, resistive pulse sensing, and super-resolution microscopy. EV uptake was tested in human neonatal enteroids. HMEVs and digesta EVs (dEVs) show typical EV morphology and are enriched in CD81 and CD9, but depleted of ß-casein and lactalbumin. HMEV and some dEV fractions contain mammary gland-derived protein BTN1A1. Neonatal human enteroids rapidly take up dEVs in part via clathrin-mediated endocytosis. Our data suggest that EVs can be isolated from digestive fluid and that these dEVs can be absorbed by IECs.


Asunto(s)
Líquidos Corporales , Vesículas Extracelulares , Recién Nacido , Lactante , Humanos , Leche Humana/metabolismo , Vesículas Extracelulares/metabolismo , Caseínas/metabolismo
18.
Anim Biotechnol ; 35(1): 2334725, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38623994

RESUMEN

The lactation character of dairy goats is the most important characteristic, and milk protein is an important index to evaluate milk quality. Casein accounts for more than 80% of the total milk protein in goat milk and is the main component of milk protein. Using GMECs (goat mammary epithelial cells) as the research object, the CHECK2 vector of the CSN1S1 gene and the overexpression vector of pcDNA 3.1 were constructed, and the mimics of miR-2284b and the interfering RNA of CSN1S1 were synthesized. Using PCR, RT-qPCR, a dual luciferase activity detection system, EdU, CCK8, cell apoptosis detection and ELISA detection, we explored the regulatory mechanism and molecular mechanism of miR-2284b regulation of αs1-casein synthesis in GMECs. miR-2284b negatively regulates proliferation and apoptosis of GMECs and αs1-casein synthesis. Two new gene sequences of CSN1S1 were discovered. CSN1S1-1/-2 promoted the proliferation of GMECs and inhibited cell apoptosis. However, it had no effect on αs1-casein synthesis. MiR-2284b negatively regulates αs1-casein synthesis in GMECs by inhibiting the CSN1S1 gene. These results all indicated that miR-2284b could regulate αs1-casein synthesis, thus playing a theoretical guiding role in the future breeding process of dairy goats and accelerating the development of dairy goat breeding.


Asunto(s)
Caseínas , MicroARNs , Femenino , Animales , Caseínas/genética , Caseínas/metabolismo , Proteínas de la Leche , Cabras/fisiología , Células Epiteliales/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Glándulas Mamarias Animales/metabolismo
19.
Sci Rep ; 14(1): 9117, 2024 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-38643232

RESUMEN

Milk protein content is an important index to evaluate the quality and nutrition of milk. Accumulating evidence suggests that microRNAs (miRNAs) play important roles in bovine lactation, but little is known regarding the cross-kingdom regulatory roles of plant-derived exogenous miRNAs (xeno-miRNAs) in milk protein synthesis, particularly the underlying molecular mechanisms. The purpose of this study was to explore the regulatory mechanism of alfalfa-derived xeno-miRNAs on proliferation and milk protein synthesis in bovine mammary epithelial cells (BMECs). Our previous study showed that alfalfa miR159a (mtr-miR159a, xeno-miR159a) was highly expressed in alfalfa, and the abundance of mtr-miR159a was significantly lower in serum and whey from high-protein-milk dairy cows compared with low-protein-milk dairy cows. In this study, mRNA expression was detected by real-time quantitative PCR (qRT-PCR), and casein content was evaluated by enzyme-linked immunosorbent assay (ELISA). Cell proliferation and apoptosis were detected using the cell counting kit 8 (CCK-8) assay, 5-ethynyl-2'-deoxyuridine (EdU) staining, western blot, and flow cytometry. A dual-luciferase reporter assay was used to determine the regulation of Protein Tyrosine Phosphatase Receptor Type F (PTPRF) by xeno-miR159a. We found that xeno-miR159a overexpression inhibited proliferation of BMEC and promoted cell apoptosis. Besides, xeno-miR159a overexpression decreased ß-casein abundance, and increased α-casein and κ-casein abundance in BMECs. Dual-luciferase reporter assay result confirmed that PTPRF is a target gene of xeno-miR159a. These results provide new insights into the mechanism by which alfalfa-derived miRNAs regulate BMECs proliferation and milk protein synthesis.


Asunto(s)
MicroARNs , Proteínas de la Leche , Femenino , Bovinos , Animales , Proteínas de la Leche/metabolismo , Medicago sativa/genética , Medicago sativa/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Glándulas Mamarias Animales/metabolismo , Caseínas/genética , Caseínas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Proliferación Celular , Luciferasas/metabolismo , Células Epiteliales/metabolismo
20.
Int J Mol Sci ; 25(8)2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38673732

RESUMEN

Adipose tissue is an active endocrine gland, synthesizing and secreting multiple signaling molecules termed adipokines. Following the detection of adipokines and their receptors in the mammary tissue of various species, it is indicated that adipokines play a role in the development of the mammary gland. The aim of the present study was to determine the concentration-dependent influence of three adipokines, leptin, adiponectin, and chemerin, on the viability, apoptosis, and secretory activity of BME-UV1 bovine mammary epithelial cells. The study confirmed that BME-UV1 cells contain the leptin receptor (Ob-R) protein, and express transcripts of adiponectin (ADIPOR1 and ADIPOR2) and chemerin (CMLKR1 and GPR1) receptors. Regardless of the administered dose, none of the three tested adipokines had an effect on the viability of BME-UV1 cells, and the number of apoptotic cells remained unchanged. However, chemerin (100 ng/mL) stimulated BME-UV1 cells to synthesize and secrete αS1-casein, the major protein component of milk. These results indicate that chemerin may be a potent regulator of the bovine mammary epithelial cells' functional differentiation, contributing, along with the major systemic hormones and local growth factors, to the development of the bovine mammary gland.


Asunto(s)
Apoptosis , Quimiocinas , Células Epiteliales , Glándulas Mamarias Animales , Animales , Bovinos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Quimiocinas/metabolismo , Femenino , Supervivencia Celular/efectos de los fármacos , Línea Celular , Receptores de Adiponectina/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Caseínas/metabolismo , Adiponectina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...