Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.090
Filtrar
1.
Parasit Vectors ; 17(1): 206, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715089

RESUMEN

BACKGROUND: Opisthorchiasis and cholangiocarcinoma (CCA) continue to be public health concerns in many Southeast Asian countries. Although the prevalence of opisthorchiasis is declining, reported cases tend to have a light-intensity infection. Therefore, early detection by using sensitive methods is necessary. Several sensitive methods have been developed to detect opisthorchiasis. The immunological detection of antigenic proteins has been proposed as a sensitive method for examining opisthorchiasis. METHODS: The Opisthorchis viverrini antigenic proteins, including cathepsin B (OvCB), asparaginyl endopeptidase (OvAEP), and cathepsin F (OvCF), were used to construct multi-antigenic proteins. The protein sequences of OvCB, OvAEP, and OvCF, with a high probability of B cell epitopes, were selected using BepiPred 1.0 and the IEDB Analysis Resource. These protein fragments were combined to form OvCB_OvAEP_OvCF recombinant DNA, which was then used to produce a recombinant protein in Escherichia coli strain BL21(DE3). The potency of the recombinant protein as a diagnostic target for opisthorchiasis was assessed using immunoblotting and compared with that of the gold standard method, the modified formalin-ether concentration technique. RESULTS: The recombinant OvCB_OvAEP_OvCF protein showed strong reactivity with total immunoglobulin G (IgG) antibodies against light-intensity O. viverrini infections in the endemic areas. Consequently, a high sensitivity (100%) for diagnosing opisthorchiasis was reported. However, cross-reactivity with sera from other helminth and protozoan infections (including taeniasis, strongyloidiasis, giardiasis, E. coli infection, enterobiasis, and mixed infection of Echinostome spp. and Taenia spp.) and no reactivity with sera from patients with non-parasitic infections led to a reduced specificity of 78.4%. In addition, the false negative rate (FNR), false positive rate (FPR), positive predictive value (PPV), negative predictive value (NPV), and diagnostic accuracy were 0%, 21.6%, 81.4%, 100%, and 88.9%, respectively. CONCLUSIONS: The high sensitivity of the recombinant OvCB_OvAEP_OvCF protein in detecting opisthorchiasis demonstrates its potential as an opisthorchiasis screening target. Nonetheless, research on reducing cross-reactivity should be undertaken by detecting other antibodies in other sample types, such as saliva, urine, and feces.


Asunto(s)
Antígenos Helmínticos , Opistorquiasis , Opisthorchis , Opistorquiasis/diagnóstico , Opisthorchis/inmunología , Opisthorchis/genética , Animales , Antígenos Helmínticos/genética , Antígenos Helmínticos/inmunología , Humanos , Anticuerpos Antihelmínticos/sangre , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/genética , Sensibilidad y Especificidad , Proteínas del Helminto/inmunología , Proteínas del Helminto/genética , Epítopos/inmunología , Epítopos/genética , Catepsina B/genética , Catepsina B/inmunología , Escherichia coli/genética , Cisteína Endopeptidasas
2.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709385

RESUMEN

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Asunto(s)
Catepsina B , Lisosomas , Pancreatitis , Vesículas Secretoras , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Lisosomas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/genética , Catepsina B/metabolismo , Catepsina B/genética , Ratones , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7/metabolismo , Enfermedad Aguda , Células Acinares/metabolismo , Células Acinares/patología , Tripsinógeno/metabolismo , Tripsinógeno/genética , Ceruletida , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Ratones Endogámicos C57BL , Ratones Noqueados
3.
J Photochem Photobiol B ; 255: 112919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677261

RESUMEN

Endolysosomes perform a wide range of cellular functions, including nutrient sensing, macromolecule digestion and recycling, as well as plasma membrane repair. Because of their high activity in cancerous cells, endolysosomes are attractive targets for the development of novel cancer treatments. Light-activated compounds termed photosensitizers (PS) can catalyze the oxidation of specific biomolecules and intracellular organelles. To selectively damage endosomes and lysosomes, HT-29 colorectal cancer cells were incubated with nanomolar concentrations of meso-tetraphenylporphine disulfonate (TPPS2a), an amphiphilic PS taken up via endocytosis and activated by green light (522 nm, 2.1 J.cm-1). Several cellular responses were characterized by a combination of immunofluorescence and immunoblotting assays. We showed that TPPS2a photosensitization blocked autophagic flux without extensive endolysosomal membrane rupture. Nevertheless, there was a severe functional failure of endolysosomes due to a decrease in CTSD (cathepsin D, 55%) and CTSB (cathepsin B, 52%) maturation. PSAP (prosaposin) processing (into saposins) was also considerably impaired, a fact that could be detrimental to glycosphingolipid homeostasis. Therefore, photosensitization of HT-29 cells previously incubated with a low concentration of TPPS2a promotes endolysosomal dysfunction, an effect that can be used to improve cancer therapies.


Asunto(s)
Autofagia , Lisosomas , Fármacos Fotosensibilizantes , Humanos , Células HT29 , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Autofagia/efectos de la radiación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Endosomas/metabolismo , Endosomas/efectos de los fármacos , Catepsinas/metabolismo , Catepsinas/antagonistas & inhibidores , Luz , Porfirinas/farmacología , Porfirinas/química , Catepsina D/metabolismo , Catepsina B/metabolismo
4.
ACS Infect Dis ; 10(5): 1664-1678, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38686397

RESUMEN

In this study, we have identified and optimized two lead structures from an in-house screening, with promising results against the parasitic flatworm Schistosoma mansoni and its target protease S. mansoni cathepsin B1 (SmCB1). Our correlation analysis highlighted the significance of physicochemical properties for the compounds' in vitro activities, resulting in a dual approach to optimize the lead structures, regarding both phenotypic effects in S. mansoni newly transformed schistosomula (NTS), adult worms, and SmCB1 inhibition. The optimized compounds from both approaches ("phenotypic" vs "SmCB1" approach) demonstrated improved efficacy against S. mansoni NTS and adult worms, with 2h from the "SmCB1" approach emerging as the most potent compound. 2h displayed nanomolar inhibition of SmCB1 (Ki = 0.050 µM) while maintaining selectivity toward human off-target cathepsins. Additionally, the greatly improved efficacy of compound 2h toward S. mansoni adults (86% dead worms at 10 µM, 68% at 1 µM, 35% at 0.1 µM) demonstrates its potential as a new therapeutic agent for schistosomiasis, underlined by its improved permeability.


Asunto(s)
Catepsina B , Schistosoma mansoni , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , Schistosoma mansoni/genética , Animales , Catepsina B/antagonistas & inhibidores , Catepsina B/metabolismo , Esquistosomiasis mansoni/tratamiento farmacológico , Diseño de Fármacos , Humanos , Fenotipo , Relación Estructura-Actividad , Antihelmínticos/farmacología , Antihelmínticos/química , Proteínas del Helminto/antagonistas & inhibidores
5.
J Nanobiotechnology ; 22(1): 109, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481326

RESUMEN

BACKGROUND: Immunogenic cell death (ICD) is a crucial approach to turn immunosuppressive tumor microenvironment (ITM) into immune-responsive milieu and improve the response rate of immune checkpoint blockade (ICB) therapy. However, cancer cells show resistance to ICD-inducing chemotherapeutic drugs, and non-specific toxicity of those drugs against immune cells reduce the immunotherapy efficiency. METHODS: Herein, we propose cancer cell-specific and pro-apoptotic liposomes (Aposomes) encapsulating second mitochondria-derived activator of caspases mimetic peptide (SMAC-P)-doxorubicin (DOX) conjugated prodrug to potentiate combinational ICB therapy with ICD. The SMAC-P (AVPIAQ) with cathepsin B-cleavable peptide (FRRG) was directly conjugated to DOX, and the resulting SMAC-P-FRRG-DOX prodrug was encapsulated into PEGylated liposomes. RESULTS: The SMAC-P-FRRG-DOX encapsulated PEGylated liposomes (Aposomes) form a stable nanostructure with an average diameter of 109.1 ± 5.14 nm and promote the apoptotic cell death mainly in cathepsin B-overexpressed cancer cells. Therefore, Aposomes induce a potent ICD in targeted cancer cells in synergy of SMAC-P with DOX in cultured cells. In colon tumor models, Aposomes efficiently accumulate in targeted tumor tissues via enhanced permeability and retention (EPR) effect and release the encapsulated prodrug of SMAC-P-FRRG-DOX, which is subsequently cleaved to SMAC-P and DOX in cancer cells. Importantly, the synergistic activity of inhibitors of apoptosis proteins (IAPs)-inhibitory SMAC-P sensitizing the effects of DOX induces a potent ICD in the cancer cells to promote dendritic cell (DC) maturation and stimulate T cell proliferation and activation, turning ITM into immune-responsive milieu. CONCLUSIONS: Eventually, the combination of Aposomes with anti-PD-L1 antibody results in a high rate of complete tumor regression (CR: 80%) and also prevent the tumor recurrence by immunological memory established during treatments.


Asunto(s)
Complejos Multienzimáticos , Neoplasias , Oligopéptidos , Profármacos , Humanos , Profármacos/farmacología , Profármacos/química , Catepsina B , Liposomas , Doxorrubicina/farmacología , Doxorrubicina/química , Inmunoterapia , Neoplasias/tratamiento farmacológico , Péptidos , Polietilenglicoles , Línea Celular Tumoral , Microambiente Tumoral
6.
Part Fibre Toxicol ; 21(1): 16, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509617

RESUMEN

BACKGROUND: Organomodified nanoclays (ONC), two-dimensional montmorillonite with organic coatings, are increasingly used to improve nanocomposite properties. However, little is known about pulmonary health risks along the nanoclay life cycle even with increased evidence of airborne particulate exposures in occupational environments. Recently, oropharyngeal aspiration exposure to pre- and post-incinerated ONC in mice caused low grade, persistent lung inflammation with a pro-fibrotic signaling response with unknown mode(s) of action. We hypothesized that the organic coating presence and incineration status of nanoclays determine the inflammatory cytokine secretary profile and cytotoxic response of macrophages. To test this hypothesis differentiated human macrophages (THP-1) were acutely exposed (0-20 µg/cm2) to pristine, uncoated nanoclay (CloisNa), an ONC (Clois30B), their incinerated byproducts (I-CloisNa and I-Clois30B), and crystalline silica (CS) followed by cytotoxicity and inflammatory endpoints. Macrophages were co-exposed to lipopolysaccharide (LPS) or LPS-free medium to assess the role of priming the NF-κB pathway in macrophage response to nanoclay treatment. Data were compared to inflammatory responses in male C57Bl/6J mice following 30 and 300 µg/mouse aspiration exposure to the same particles. RESULTS: In LPS-free media, CloisNa exposure caused mitochondrial depolarization while Clois30B exposure caused reduced macrophage viability, greater cytotoxicity, and significant damage-associated molecular patterns (IL-1α and ATP) release compared to CloisNa and unexposed controls. LPS priming with low CloisNa doses caused elevated cathepsin B/Caspage-1/IL-1ß release while higher doses resulted in apoptosis. Clois30B exposure caused dose-dependent THP-1 cell pyroptosis evidenced by Cathepsin B and IL-1ß release and Gasdermin D cleavage. Incineration ablated the cytotoxic and inflammatory effects of Clois30B while I-CloisNa still retained some mild inflammatory potential. Comparative analyses suggested that in vitro macrophage cell viability, inflammasome endpoints, and pro-inflammatory cytokine profiles significantly correlated to mouse bronchioalveolar lavage inflammation metrics including inflammatory cell recruitment. CONCLUSIONS: Presence of organic coating and incineration status influenced inflammatory and cytotoxic responses following exposure to human macrophages. Clois30B, with a quaternary ammonium tallow coating, induced a robust cell membrane damage and pyroptosis effect which was eliminated after incineration. Conversely, incinerated nanoclay exposure primarily caused elevated inflammatory cytokine release from THP-1 cells. Collectively, pre-incinerated nanoclay displayed interaction with macrophage membrane components (molecular initiating event), increased pro-inflammatory mediators, and increased inflammatory cell recruitment (two key events) in the lung fibrosis adverse outcome pathway.


Asunto(s)
Catepsina B , Lipopolisacáridos , Masculino , Humanos , Ratones , Animales , Catepsina B/metabolismo , Catepsina B/farmacología , Lipopolisacáridos/farmacología , Ensayos Analíticos de Alto Rendimiento , Inflamación/inducido químicamente , Inflamación/metabolismo , Macrófagos , Citocinas/metabolismo , Interleucina-1beta/metabolismo
7.
Transl Psychiatry ; 14(1): 166, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38538614

RESUMEN

Melatonin improves chronic stress-induced hippocampal damage and depression-like behaviors, but the mechanism needs further study. This study was to explore the mechanism of melatonin inhibiting microglia pyroptosis. In virtro experiments, melatonin improved corticosterone-induced the ultrastructure and microstructure damage of HAPI cells by inhibiting pyroptosis, thereby increasing cell survival rate. Protein-protein interaction network and molecular autodocking predicted that Cathespin B might be the target of melatonin inhibition of NLRP3-mediated pyroptosis. Melatonin inhibited corticosterone-induced Cathespin B expression. Both Cathepsin B inhibitor CA-074Me and NLRP3 knockout inhibited the HAPI cells pyroptosis. Similarly, melatonin inhibited Cathepsin B agonist Pazopanib-induced activation of Cathepsin B/NLRP3 signaling pathway and HAPI cells pyroptosis. In vivo studies, melatonin inhibited chronic restraint stress (CRS)-induced activation of Cathepsin B/NLRP3 signaling pathway and alleviated hippocampal microglia pyroptosis in rats. Inhibition of microglia pyroptosis improved CRS-induced depression-like behaviors of rats. In addition, inhibition of Cathepsin B and NLRP3 alleviated hippocampal pyroptosis. Melatonin inhibited Pazopanib-induced activation of Cathepsin B/NLRP3 signaling pathway and hippocampal pyroptosis. These results demonstrated that melatonin could alleviate CRS-induced hippocampal microglia pyroptosis by inhibiting Cathepsin B/NLRP3 signaling pathway, thereby improving depression-like behaviors in rats. This study reveals the molecular mechanism of melatonin in the prevention and treatment of chronic stress-related encephalopathy.


Asunto(s)
Catepsina B , Indazoles , Melatonina , Pirimidinas , Sulfonamidas , Animales , Ratas , Melatonina/farmacología , Corticosterona , Depresión/tratamiento farmacológico , Microglía , Proteína con Dominio Pirina 3 de la Familia NLR , Piroptosis , Transducción de Señal , Hipocampo
8.
Neurobiol Dis ; 194: 106468, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38460801

RESUMEN

Intracerebral hemorrhage (ICH) is a subtype of stroke marked by elevated mortality and disability rates. Recently, mounting evidence suggests a significant role of ferroptosis in the pathogenesis of ICH. Through a combination of bioinformatics analysis and basic experiments, our goal is to identify the primary cell types and key molecules implicated in ferroptosis post-ICH. This aims to propel the advancement of ferroptosis research, offering potential therapeutic targets for ICH treatment. Our study reveals pronounced ferroptosis in microglia and identifies the target gene, cathepsin B (Ctsb), by analyzing differentially expressed genes following ICH. Ctsb, a cysteine protease primarily located in lysosomes, becomes a focal point in our investigation. Utilizing in vitro and in vivo models, we explore the correlation between Ctsb and ferroptosis in microglia post-ICH. Results demonstrate that ICH and hemin-induced ferroptosis in microglia coincide with elevated levels and activity of Ctsb protein. Effective alleviation of ferroptosis in microglia after ICH is achieved through the inhibition of Ctsb protease activity and protein levels using inhibitors and shRNA. Additionally, a notable increase in m6A methylation levels of Ctsb mRNA post-ICH is observed, suggesting a pivotal role of m6A methylation in regulating Ctsb translation. These research insights deepen our comprehension of the molecular pathways involved in ferroptosis after ICH, underscoring the potential of Ctsb as a promising target for mitigating brain damage resulting from ICH.


Asunto(s)
Lesiones Encefálicas , Catepsina B , Ferroptosis , Microglía , Humanos , Lesiones Encefálicas/metabolismo , Catepsina B/genética , Catepsina B/metabolismo , Hemorragia Cerebral/patología , Microglía/metabolismo , Animales , Ratones
9.
Eur J Med Chem ; 269: 116329, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38508117

RESUMEN

Cathepsin B (CTSB) is a key lysosomal protease that plays a crucial role in the development of cancer. This article elucidates the relationship between CTSB and cancer from the perspectives of its structure, function, and role in tumor growth, migration, invasion, metastasis, angiogenesis and autophagy. Further, we summarized the research progress of cancer treatment related drugs targeting CTSB, as well as the potential and advantages of Traditional Chinese medicine in treating tumors by regulating the expression of CTSB.


Asunto(s)
Catepsina B , Catepsina B/metabolismo , Endopeptidasas/química , Endopeptidasas/metabolismo , Lisosomas/química , Lisosomas/metabolismo
10.
Int Immunopharmacol ; 129: 111645, 2024 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-38354512

RESUMEN

Metabolic changes have been linked to the development of inflammatory bowel disease (IBD), which includes colitis. Allulose, an endogenous bioactive monosaccharide, is vital to the synthesis of numerous compounds and metabolic processes within living organisms. Nevertheless, the precise biochemical mechanism by which allulose inhibits colitis remains unknown. Allulose is an essential and intrinsic protector of the intestinal mucosal barrier, as it maintains the integrity of tight junctions in the intestines, according to the current research. It is also important to know that there is a link between the severity of inflammatory bowel disease (IBD) and colorectal cancer (CRC), chemically-induced colitis in rodents, and lower levels of allulose in the blood. Mice with colitis, either caused by dextran sodium sulphate (DSS) or naturally occurring colitis in IL-10-/- mice, had less damage to their intestinal mucosa after being given allulose. Giving allulose to a colitis model starts a chain of reactions because it stops cathepsin B from ejecting and helps lysosomes stick together. This system effectively stops the activity of myosin light chain kinase (MLCK) when intestinal epithelial damage happens. This stops the breakdown of tight junction integrity and the start of mitochondrial dysfunction. To summarise, the study's findings have presented data that supports the advantageous impact of allulose in reducing the advancement of colitis. Its ability to stop the disruption of the intestinal barrier enables this. Therefore, allulose has potential as a medicinal supplement for treating colitis.


Asunto(s)
Colitis , Enteritis , Fructosa , Enfermedades Inflamatorias del Intestino , Enfermedades Mitocondriales , Humanos , Ratones , Animales , Catepsina B/metabolismo , Células CACO-2 , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Mucosa Intestinal , Uniones Estrechas , Enfermedades Mitocondriales/metabolismo , Sulfato de Dextran/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
11.
Bioconjug Chem ; 35(2): 132-139, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38345213

RESUMEN

Targeted drug delivery approaches that selectively and preferentially deliver therapeutic agents to specific tissues are of great interest for safer and more effective pharmaceutical treatments. We investigated whether cathepsin B cleavage of a valine-citrulline [VC(S)]-containing linker is required for the release of monomethyl auristatin E (MMAE) from albumin-drug conjugates. In this study, we used an engineered version of human serum albumin, Veltis High Binder II (HBII), which has enhanced binding to the neonatal Fc (fragment crystallizable) receptor (FcRn) to improve drug release upon binding and FcRn-mediated recycling. The linker-payload was conjugated to cysteine 34 of albumin using a carbonylacrylic (caa) reagent which produced homogeneous and plasma stable conjugates that retained FcRn binding. Two caa-linker-MMAE reagents were synthesized─one with a cleavable [VC(S)] linker and one with a noncleavable [VC(R)] linker─to question whether protease-mediated cleavage is needed for MMAE release. Our findings demonstrate that cathepsin B is required to achieve efficient and selective antitumor activity. The conjugates equipped with the cleavable [VC(S)] linker had potent antitumor activity in vivo facilitated by the release of free MMAE upon FcRn binding and internalization. In addition to the pronounced antitumor activity of the albumin conjugates in vivo, we also demonstrated their preferable tumor biodistribution and biocompatibility with no associated toxicity or side effects. These results suggest that the use of engineered albumins with high FcRn binding combined with protease cleavable linkers is an efficient strategy to target delivery of drugs to solid tumors.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Neoplasias , Humanos , Recién Nacido , Albúminas/metabolismo , Catepsina B/metabolismo , Línea Celular Tumoral , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Inmunoconjugados/metabolismo , Neoplasias/tratamiento farmacológico , Péptido Hidrolasas , Distribución Tisular
12.
ACS Nano ; 18(8): 6445-6462, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38358804

RESUMEN

Tumor-associated macrophages (TAMs) are closely related to the progression of glioblastoma multiform (GBM) and its development of therapeutic resistance to conventional chemotherapy. TAM-targeted therapy combined with conventional chemotherapy has emerged as a promising strategy to combat GBM. However, the presence of the blood-brain barrier (BBB) severely limits the therapeutic efficacy. Meanwhile, the lack of ability to distinguish different targeted cells also poses a challenge for precise therapy. Herein, we propose a cathepsin B (CTSB)-responsive programmed brain-targeted delivery system (D&R-HM-MCA) for simultaneous TAM-targeted and GBM-targeted delivery. D&R-HM-MCA could cross the BBB via low density lipoprotein receptor-associated protein 1 (LRP1)-mediated transcytosis. Upon reaching the GBM site, the outer angiopep-2 modification could be detached from D&R-HM-MCA via cleavage of the CTSB-responsive peptide, which could circumvent abluminal LRP1-mediated efflux. The exposed p-aminophenyl-α-d-mannopyranoside (MAN) modification could further recognize glucose transporter-1 (GLUT1) on GBM and macrophage mannose receptor (MMR) on TAMs. D&R-HM-MCA could achieve chemotherapeutic killing of GBM and simultaneously induce TAM polarization from anti-inflammatory M2 phenotype to pro-inflammatory M1 phenotype, thus resensitizing the chemotherapeutic response and improving anti-GBM immune response. This CTSB-responsive brain-targeted delivery system not only can improve brain delivery efficiency, but also can enable the combination of chemo-immunotherapy against GBM. The effectiveness of this strategy may provide thinking for designing more functional brain-targeted delivery systems and more effective therapeutic regimens.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Catepsina B/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/metabolismo , Inmunoterapia , Línea Celular Tumoral , Microambiente Tumoral
13.
Sci Rep ; 14(1): 4517, 2024 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402255

RESUMEN

PURPOSE Cathepsin B (Cat B) is a cysteine lysosomal protease that is upregulated in many inflammatory diseases and widely expressed in the brain. Here, we used a Cat B activatable near-infrared (NIR) imaging probe to measure glial activation in vivo in the formalin test, a standard orofacial inflammatory pain model. The probe's efficacy was quantified with immunohistochemical analysis of the somatosensory cortex. PROCEDURES Three different concentrations of Cat B imaging probe (30, 50, 100 pmol/200 g bodyweight) were injected intracisternally into the foramen magnum of rats under anesthesia. Four hours later formalin (1.5%, 50 µl) was injected into the upper lip and the animal's behaviors recorded for 45 min. Subsequently, animals were repeatedly scanned using the IVIS Spectrum (8, 10, and 28 h post imaging probe injection) to measure extracellular Cat B activity. Aldehyde fixed brain sections were immunostained with antibodies against microglial marker Iba1 or astrocytic GFAP and detected with fluorescently labeled secondary antibodies to quantify co-localization with the fluorescent probe. RESULTS The Cat B imaging probe only slightly altered the formalin test results. Nocifensive behavior was only reduced in phase 1 in the 100 pmol group. In vivo measured fluorescence efficiency was highest in the 100 pmol group 28 h post imaging probe injection. Post-mortem immunohistochemical analysis of the somatosensory cortex detected the greatest amount of NIR fluorescence localized on microglia and astrocytes in the 100 pmol imaging probe group. Sensory neuron neuropeptide and cell injury marker expression in ipsilateral trigeminal ganglia was not altered by the presence of fluorescent probe. CONCLUSIONS These data demonstrate a concentration- and time-dependent visualization of extracellular Cat B in activated glia in the formalin test using a NIR imaging probe. Intracisternal injections are well suited for extracellular CNS proteinase detection in conditions when the blood-brain barrier is intact.


Asunto(s)
Catepsina B , Colorantes Fluorescentes , Ratas , Animales , Catepsina B/metabolismo , Dimensión del Dolor , Colorantes Fluorescentes/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Microglía/metabolismo , Dolor Facial/metabolismo , Formaldehído/metabolismo
14.
Plant Cell Rep ; 43(3): 81, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418607

RESUMEN

KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Apoptosis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
15.
Mol Pharm ; 21(3): 1382-1389, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38372213

RESUMEN

Cathepsin B, a lysosomal protease, is considered as a crucial biomarker for tumor diagnosis and treatment as it is overexpressed in numerous cancers. A stimulus-responsive SF scaffold has been reported to detect the activity of a variety of tumor-associated enzymes. In this work, a small-molecule PET tracer ([68Ga]NOTA-SF-CV) was developed by combining an SF scaffold with a cathepsin B-specific recognition substrate Cit-Val. Upon activation by cathepsin B, [68Ga]NOTA-SF-CV could form the cyclization product in a reduction environment, resulting in reduced hydrophilicity. This unique property could effectively prevent exocytosis of the tracer in cathepsin B-overexpressing tumor cells, leading to prolonged retention and amplified PET imaging signal. Moreover, [68Ga]NOTA-SF-CV had great targeting specificity to cathepsin B. In vivo microPET imaging results showed that [68Ga]NOTA-SF-CV was able to effectively visualize the expression level of cathepsin B in various tumors. Hence, [68Ga]NOTA-SF-CV may be served as a potential tracer for diagnosing cathepsin B-related diseases.


Asunto(s)
Radioisótopos de Galio , Neoplasias , Humanos , Radioisótopos de Galio/química , Catepsina B , Tomografía de Emisión de Positrones/métodos , Neoplasias/diagnóstico por imagen , Radiofármacos/química , Línea Celular Tumoral
16.
Cells ; 13(3)2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38334675

RESUMEN

Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer's disease-like pathologies in mice, including interleukin-1ß (IL-1ß) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1ß production by microglia. We first subjected IL-1ß-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human ß-defensin 3 (hBD3). IL-1ß production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1ß production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1ß production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1ß production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1ß production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1ß without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1ß through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1ß-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL.


Asunto(s)
Microglía , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Catepsina B/metabolismo , Quinasa I-kappa B/metabolismo , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos , Microglía/metabolismo , FN-kappa B/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Factores de Virulencia/metabolismo
17.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354122

RESUMEN

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Asunto(s)
Proteína HN , Virus de la Enfermedad de Newcastle , Animales , Virus de la Enfermedad de Newcastle/metabolismo , Proteína HN/metabolismo , Catepsina B , Apoptosis , Lisosomas/metabolismo
18.
Reprod Biol ; 24(1): 100857, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38295720

RESUMEN

Preeclampsia (PE) is a serious complication, and soluble fms-like tyrosine kinase (sFLT1) released from the placenta is one of the causes of PE pathology. Trophoblasts are the primary source of sFLT1; however, monocytes/macrophages exist enough in the placenta can also secrete sFLT1. Sterile inflammatory responses, especially NLRP3 inflammasome and its downstream gasdermin D (GSDMD)-regulated pyroptosis, may be involved in the development of PE pathology. In this study, we investigated whether human monocyte/macrophage cell line THP-1 cells secrete sFLT1 depending on the NLRP3 inflammasome and GSDMD. To differentiate THP-1 monocytes into macrophages, treatment with phorbol 12-myristate 13-acetate (PMA) induced sFLT1 with interleukin (IL)- 1ß, but did not induce cell lytic death. IL-1ß secretion induced by PMA inhibited by deletion of NLRP3 and inhibitors of NLRP3 and caspase-1, but deletion of NLRP3 and these inhibitors did not affect sFLT1 secretion in THP-1 cells. Both gene deletion and inhibition of GSDMD dramatically decreased IL-1ß and sFLT1 secretion from THP-1 cells. Treatment with CA074-ME (a cathepsin B inhibitor) also reduced the secretion of both sFLT1 and IL-1ß in THP-1 cells. In conclusion, THP-1 macrophages release sFLT1 in a GSDMD-dependent manner, but not in the NLRP3 inflammasome-dependent manner, and this sFLT1 release may be associated with the non-lytic role of GSDMD. In addition, sFLT1 levels induced by PMA are associated with lysosomal cathepsin B in THP-1 macrophages. We suggest that sFLT1 synthesis regulated by GSDMD are involved in the pathology of PE.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Inflamasomas/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Catepsina B/metabolismo , Gasderminas , Macrófagos/metabolismo
19.
PLoS One ; 19(1): e0294514, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38165884

RESUMEN

Atherosclerosis (AS) is a chronic inflammatory disease involving cell death and inflammatory responses. Pyroptosis, a newly discovered pro-inflammatory programmed cell death process, exacerbates inflammatory responses. However, the roles of cathepsin B (CTSB) in pyroptosis and AS remain unclear. To gain further insight, we fed ApoE-/- mice a high-fat diet to investigate the effects and mechanisms of CTSB overexpression and silencing on AS. We also explored the specific role of CTSB in vascular smooth muscle cells (VSMCs) in vitro. The study revealed that high-fat diet led to the formation of AS plaques, and CTSB was found to increase the AS plaque lesion area. Immunohistochemical and TUNEL/caspase-1 staining revealed the existence of pyroptosis in atherosclerotic plaques, particularly in VSMCs. In vitro studies, including Hoechst 33342/propidium iodide staining, a lactate dehydrogenase (LDH) release assay, detection of protein indicators of pyroptosis, and detection of interleukin-1ß (IL-1ß) in cell culture medium, demonstrated that oxidized low-density lipoprotein (ox-LDL) induced VSMC pyroptosis. Additionally, CTSB promoted VSMC pyroptosis. Ox-LDL increased the expression of CTSB, which in turn activated the NOD-like receptor protein 3 (NLRP3) inflammasome and promoted NLRP3 expression by facilitating nuclear factor kappa B (NF-κB) p65 nuclear translocation. This effect could be attenuated by the NF-κB inhibitor SN50. Our research found that CTSB not only promotes VSMC pyroptosis by activating the NLRP3 inflammasome, but also increases the expression of NLRP3.


Asunto(s)
Aterosclerosis , Catepsina B , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/metabolismo , Catepsina B/metabolismo , Inflamasomas/metabolismo , Ratones Noqueados para ApoE , Músculo Liso Vascular/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Placa Aterosclerótica/patología , Piroptosis , Transducción de Señal
20.
Nano Lett ; 24(3): 950-957, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38198622

RESUMEN

Sonodynamic therapy (SDT) was hampered by the sonosensitizers with low bioavailability, tumor accumulation, and therapeutic efficiency. In situ responsive sonosensitizer self-assembly strategy may provide a promising route for cancer sonotheranositics. Herein, an intelligent sonotheranostic peptide-purpurin conjugate (P18-P) is developed that can self-assemble into supramolecular structures via self-aggregation triggered by rich enzyme cathepsin B (CTSB). After intravenous injection, the versatile probe could achieve deep tissue penetration because of the penetration sequence of P18-P. More importantly, CTSB-triggered self-assembly strongly prolonged retention time, amplified photoacoustic imaging signal for sensitive CTSB detection, and boosted reactive oxygen species for advanced SDT, evoking specific CTSB responsive sonotheranostics. This peptide-purpurin conjugate may serve as an efficient sonotheranostic platform for the early diagnosis of CTSB activity and effective cancer therapy.


Asunto(s)
Nanopartículas , Neoplasias , Terapia por Ultrasonido , Humanos , Catepsina B , Terapia por Ultrasonido/métodos , Neoplasias/tratamiento farmacológico , Péptidos/uso terapéutico , Especies Reactivas de Oxígeno , Línea Celular Tumoral , Nanopartículas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA