Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 461
Filtrar
1.
J Phys Chem B ; 128(24): 5803-5813, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38860885

RESUMEN

Centromeric chromatin is a subset of chromatin structure and governs chromosome segregation. The centromere is composed of both CENP-A nucleosomes (CENP-Anuc) and H3 nucleosomes (H3nuc) and is enriched with alpha-satellite (α-sat) DNA repeats. These CENP-Anuc have a different structure than H3nuc, decreasing the base pairs (bp) of wrapped DNA from 147 bp for H3nuc to 121 bp for CENP-Anuc. All these factors can contribute to centromere function. We investigated the interaction of H3nuc and CENP-Anuc with NF-κB, a crucial transcription factor in regulating immune response and inflammation. We utilized atomic force microscopy (AFM) to characterize complexes of both types of nucleosomes with NF-κB. We found that NF-κB unravels H3nuc, removing more than 20 bp of DNA, and that NF-κB binds to the nucleosomal core. Similar results were obtained for the truncated variant of NF-κB comprised only of the Rel homology domain and missing the transcription activation domain (TAD), suggesting that RelATAD is not critical in unraveling H3nuc. By contrast, NF-κB did not bind to or unravel CENP-Anuc. These findings with different affinities for two types of nucleosomes to NF-κB may have implications for understanding the mechanisms of gene expression in bulk and centromere chromatin.


Asunto(s)
Centrómero , Cromatina , FN-kappa B , Nucleosomas , Centrómero/metabolismo , Centrómero/química , Cromatina/metabolismo , Cromatina/química , FN-kappa B/metabolismo , Nucleosomas/metabolismo , Nucleosomas/química , Humanos , Microscopía de Fuerza Atómica , Unión Proteica , Proteína A Centromérica/metabolismo , Proteína A Centromérica/química , ADN/química , ADN/metabolismo
2.
Science ; 376(6595): 844-852, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35420891

RESUMEN

Kinetochores assemble onto specialized centromeric CENP-A (centromere protein A) nucleosomes (CENP-ANuc) to mediate attachments between chromosomes and the mitotic spindle. We describe cryo-electron microscopy structures of the human inner kinetochore constitutive centromere associated network (CCAN) complex bound to CENP-ANuc reconstituted onto α-satellite DNA. CCAN forms edge-on contacts with CENP-ANuc, and a linker DNA segment of the α-satellite repeat emerges from the fully wrapped end of the nucleosome to thread through the central CENP-LN channel that tightly grips the DNA. The CENP-TWSX histone-fold module further augments DNA binding and partially wraps the linker DNA in a manner reminiscent of canonical nucleosomes. Our study suggests that the topological entrapment of the linker DNA by CCAN provides a robust mechanism by which kinetochores withstand both pushing and pulling forces exerted by the mitotic spindle.


Asunto(s)
Proteína A Centromérica , Cinetocoros , Nucleosomas , Centrómero/química , Proteína A Centromérica/química , Microscopía por Crioelectrón , ADN/química , Humanos , Cinetocoros/química , Nucleosomas/química , Unión Proteica
3.
Science ; 374(6569): eabi7489, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34762468

RESUMEN

Centromeres attach chromosomes to spindle microtubules during cell division and, despite this conserved role, show paradoxically rapid evolution and are typified by complex repeats. We used long-read sequencing to generate the Col-CEN Arabidopsis thaliana genome assembly that resolves all five centromeres. The centromeres consist of megabase-scale tandemly repeated satellite arrays, which support CENTROMERE SPECIFIC HISTONE H3 (CENH3) occupancy and are densely DNA methylated, with satellite variants private to each chromosome. CENH3 preferentially occupies satellites that show the least amount of divergence and occur in higher-order repeats. The centromeres are invaded by ATHILA retrotransposons, which disrupt genetic and epigenetic organization. Centromeric crossover recombination is suppressed, yet low levels of meiotic DNA double-strand breaks occur that are regulated by DNA methylation. We propose that Arabidopsis centromeres are evolving through cycles of satellite homogenization and retrotransposon-driven diversification.


Asunto(s)
Arabidopsis/genética , Centrómero/genética , Cromosomas de las Plantas/genética , Epigénesis Genética , Arabidopsis/ultraestructura , Centrómero/química , Metilación de ADN , ADN Satélite , Evolución Molecular , Genoma de Planta , Histonas/análisis , Meiosis , Recombinación Genética , Retroelementos , Análisis de Secuencia de ADN
4.
Nucleic Acids Res ; 49(16): 9053-9065, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34352103

RESUMEN

Centromeres are essential for chromosome movement. In independent taxa, species with holocentric chromosomes exist. In contrast to monocentric species, where no obvious dispersion of centromeres occurs during interphase, the organization of holocentromeres differs between condensed and decondensed chromosomes. During interphase, centromeres are dispersed into a large number of CENH3-positive nucleosome clusters in a number of holocentric species. With the onset of chromosome condensation, the centromeric nucleosomes join and form line-like holocentromeres. Using polymer simulations, we propose a mechanism relying on the interaction between centromeric nucleosomes and structural maintenance of chromosomes (SMC) proteins. Different sets of molecular dynamic simulations were evaluated by testing four parameters: (i) the concentration of Loop Extruders (LEs) corresponding to SMCs, (ii) the distribution and number of centromeric nucleosomes, (iii) the effect of centromeric nucleosomes on interacting LEs and (iv) the assembly of kinetochores bound to centromeric nucleosomes. We observed the formation of a line-like holocentromere, due to the aggregation of the centromeric nucleosomes when the chromosome was compacted into loops. A groove-like holocentromere structure formed after a kinetochore complex was simulated along the centromeric line. Similar mechanisms may also organize a monocentric chromosome constriction, and its regulation may cause different centromere types during evolution.


Asunto(s)
Ciclo Celular , Centrómero/metabolismo , Nucleosomas/química , Animales , Caenorhabditis elegans , Centrómero/química , Ensamble y Desensamble de Cromatina , Simulación por Computador , ADN/química , ADN/metabolismo , Histonas/química , Histonas/metabolismo , Nucleosomas/metabolismo
5.
PLoS Genet ; 17(6): e1009645, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34157021

RESUMEN

Small non-protein coding RNAs are involved in pathways that control the genome at the level of chromatin. In Schizosaccharomyces pombe, small interfering RNAs (siRNAs) are required for the faithful propagation of heterochromatin that is found at peri-centromeric repeats. In contrast to repetitive DNA, protein-coding genes are refractory to siRNA-mediated heterochromatin formation, unless siRNAs are expressed in mutant cells. Here we report the identification of 20 novel mutant alleles that enable de novo formation of heterochromatin at a euchromatic protein-coding gene by using trans-acting siRNAs as triggers. For example, a single amino acid substitution in the pre-mRNA cleavage factor Yth1 enables siRNAs to trigger silent chromatin formation with unparalleled efficiency. Our results are consistent with a kinetic nascent transcript processing model for the inhibition of small-RNA-directed de novo formation of heterochromatin and lay a foundation for further mechanistic dissection of cellular activities that counteract epigenetic gene silencing.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Silenciador del Gen , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Schizosaccharomyces/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Alelos , Sustitución de Aminoácidos , Centrómero/química , Centrómero/metabolismo , Ensamble y Desensamble de Cromatina , Perfilación de la Expresión Génica , Heterocromatina/química , Heterocromatina/metabolismo , Cinética , Modelos Genéticos , Anotación de Secuencia Molecular , Mutación , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Schizosaccharomyces/metabolismo , Factores de Escisión y Poliadenilación de ARNm/metabolismo
6.
PLoS Genet ; 17(6): e1009646, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34166371

RESUMEN

Pericentromeric heterochromatin (PCH), the constitutive heterochromatin of pericentromeric regions, plays crucial roles in various cellular events, such as cell division and DNA replication. PCH forms chromocenters in the interphase nucleus, and chromocenters cluster at the prophase of meiosis. Chromocenter clustering has been reported to be critical for the appropriate progression of meiosis. However, the molecular mechanisms underlying chromocenter clustering remain elusive. In this study, we found that global DNA hypomethylation, 5hmC enrichment in PCH, and chromocenter clustering of Dnmt1-KO ESCs were similar to those of the female meiotic germ cells. Tet1 is essential for the deposition of 5hmC and facultative histone marks of H3K27me3 and H2AK119ub at PCH, as well as chromocenter clustering. RING1B, one of the core components of PRC1, is recruited to PCH by TET1, and PRC1 plays a critical role in chromocenter clustering. In addition, the rearrangement of the chromocenter under DNA hypomethylated condition was mediated by liquid-liquid phase separation. Thus, we demonstrated a novel role of Tet1 in chromocenter rearrangement in DNA hypomethylated cells.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1/genética , Proteínas de Unión al ADN/genética , ADN/genética , Epigénesis Genética , Heterocromatina/química , Células Madre Embrionarias de Ratones/metabolismo , Proteínas Proto-Oncogénicas/genética , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Animales , Línea Celular , Centrómero/química , Centrómero/metabolismo , ADN/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/deficiencia , Metilación de ADN , Proteínas de Unión al ADN/metabolismo , Femenino , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Meiosis , Ratones , Células Madre Embrionarias de Ratones/citología , Óvulo/citología , Óvulo/metabolismo , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
7.
Nature ; 593(7857): 101-107, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33828295

RESUMEN

The complete assembly of each human chromosome is essential for understanding human biology and evolution1,2. Here we use complementary long-read sequencing technologies to complete the linear assembly of human chromosome 8. Our assembly resolves the sequence of five previously long-standing gaps, including a 2.08-Mb centromeric α-satellite array, a 644-kb copy number polymorphism in the ß-defensin gene cluster that is important for disease risk, and an 863-kb variable number tandem repeat at chromosome 8q21.2 that can function as a neocentromere. We show that the centromeric α-satellite array is generally methylated except for a 73-kb hypomethylated region of diverse higher-order α-satellites enriched with CENP-A nucleosomes, consistent with the location of the kinetochore. In addition, we confirm the overall organization and methylation pattern of the centromere in a diploid human genome. Using a dual long-read sequencing approach, we complete high-quality draft assemblies of the orthologous centromere from chromosome 8 in chimpanzee, orangutan and macaque to reconstruct its evolutionary history. Comparative and phylogenetic analyses show that the higher-order α-satellite structure evolved in the great ape ancestor with a layered symmetry, in which more ancient higher-order repeats locate peripherally to monomeric α-satellites. We estimate that the mutation rate of centromeric satellite DNA is accelerated by more than 2.2-fold compared to the unique portions of the genome, and this acceleration extends into the flanking sequence.


Asunto(s)
Cromosomas Humanos Par 8/química , Cromosomas Humanos Par 8/genética , Evolución Molecular , Animales , Línea Celular , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Cromosomas Humanos Par 8/fisiología , Metilación de ADN , ADN Satélite/genética , Epigénesis Genética , Femenino , Humanos , Macaca mulatta/genética , Masculino , Repeticiones de Minisatélite/genética , Pan troglodytes/genética , Filogenia , Pongo abelii/genética , Telómero/química , Telómero/genética , Telómero/metabolismo
8.
PLoS Comput Biol ; 17(4): e1008869, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33861734

RESUMEN

ParABS, the most widespread bacterial DNA segregation system, is composed of a centromeric sequence, parS, and two proteins, the ParA ATPase and the ParB DNA binding proteins. Hundreds of ParB proteins assemble dynamically to form nucleoprotein parS-anchored complexes that serve as substrates for ParA molecules to catalyze positioning and segregation events. The exact nature of this ParBS complex has remained elusive, what we address here by revisiting the Stochastic Binding model (SBM) introduced to explain the non-specific binding profile of ParB in the vicinity of parS. In the SBM, DNA loops stochastically bring loci inside a sharp cluster of ParB. However, previous SBM versions did not include the negative supercoiling of bacterial DNA, leading to use unphysically small DNA persistences to explain the ParB binding profiles. In addition, recent super-resolution microscopy experiments have revealed a ParB cluster that is significantly smaller than previous estimations and suggest that it results from a liquid-liquid like phase separation. Here, by simulating the folding of long (≥ 30 kb) supercoiled DNA molecules calibrated with realistic DNA parameters and by considering different possibilities for the physics of the ParB cluster assembly, we show that the SBM can quantitatively explain the ChIP-seq ParB binding profiles without any fitting parameter, aside from the supercoiling density of DNA, which, remarkably, is in accord with independent measurements. We also predict that ParB assembly results from a non-equilibrium, stationary balance between an influx of produced proteins and an outflux of excess proteins, i.e., ParB clusters behave like liquid-like protein condensates with unconventional "leaky" boundaries.


Asunto(s)
Proteínas Bacterianas/química , Centrómero/química , Segregación Cromosómica , ADN Bacteriano/química , ADN Superhelicoidal/química , Modelos Biológicos , Nucleoproteínas/química , Unión Proteica , Procesos Estocásticos
9.
Nature ; 591(7851): 671-676, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33658710

RESUMEN

Meiotic processes are potentially dangerous to genome stability and could be disastrous if activated in proliferative cells. Here we show that two key meiosis-defining proteins, the topoisomerase Spo11 (which forms double-strand breaks) and the meiotic cohesin Rec8, can dismantle centromeres. This dismantlement is normally observable only in mutant cells that lack the telomere bouquet, which provides a nuclear microdomain conducive to centromere reassembly1; however, overexpression of Spo11 or Rec8 leads to levels of centromere dismantlement that cannot be countered by the bouquet. Specific nucleosome remodelling factors mediate centromere dismantlement by Spo11 and Rec8. Ectopic expression of either protein in proliferating cells leads to the loss of mitotic kinetochores in both fission yeast and human cells. Hence, while centromeric chromatin has been characterized as extraordinarily stable, Spo11 and Rec8 challenge this stability and may jeopardize kinetochores in cancers that express meiotic proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Centrómero/metabolismo , Endodesoxirribonucleasas/metabolismo , Meiosis , Fosfoproteínas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Línea Celular , Proliferación Celular , Cromatina/química , Cromatina/metabolismo , Humanos , Cinetocoros/metabolismo , Schizosaccharomyces
10.
Genes Genomics ; 43(3): 217-226, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33523401

RESUMEN

BACKGROUND: Centromeres are specialized chromosomal domains involved in kinetochore formation and faithful chromosome segregation. Despite a high level of functional conservation, centromeres are not identified by DNA sequences, but by epigenetic means. Universally, centromeres are typically formed on highly repetitive DNA, which were previously considered to be silent. However, recent studies have shown that transcription occurs in this region, known as centromeric-derived RNAs (cenRNAs). CenRNAs that contribute to fundamental aspects of centromere function have been recently investigated in detail. However, the distribution, behavior and contributions of centromeric transcripts are still poorly understood. OBJECTIVE: The aim of this article is to provide an overview of the roles of cenRNAs in centromere formation and function. METHODS: We describe the structure and DNA sequence of centromere from yeast to human. In addition, we briefly introduce the roles of cenRNAs in centromere formation and function, kinetochore structure, accurate chromosome segregation, and pericentromeric heterochromatin assembly. Centromeric circular RNAs (circRNAs) and R-loops are rising stars in centromere function. CircRNAs have been successfully identified in various species with the assistance of high-throughput sequencing and novel computational approaches for non-polyadenylated RNA transcripts. Centromeric R-loops can be identified by the single-strand DNA ligation-based library preparation technique. But the molecular features and function of these centromeric R-loops and circRNAs are still being investigated. CONCLUSION: In this review, we summarize recent findings on the epigenetic regulation of cenRNAs across species, which would provide useful information about cenRNAs and interesting hints for further studies.


Asunto(s)
Centrómero , ARN/fisiología , Ciclo Celular , Centrómero/química , Centrómero/metabolismo , Proteína A Centromérica/metabolismo , Segregación Cromosómica , ADN/química , Heterocromatina/metabolismo , Humanos , Cinetocoros/química , Estructuras R-Loop , ARN/metabolismo
11.
J Mol Biol ; 433(6): 166676, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33065112

RESUMEN

The centromere is an essential chromatin domain required for kinetochore recruitment and chromosome segregation in eukaryotes. To perform this role, centro-chromatin adopts a unique structure that provides access to kinetochore proteins and maintains stability under tension during mitosis. This is achieved by the presence of nucleosomes containing the H3 variant CENP-A, which also acts as the epigenetic mark defining the centromere. In this review, we discuss the role of CENP-A on the structure and dynamics of centromeric chromatin. We further discuss the impact of the CENP-A binding proteins CENP-C, CENP-N, and CENP-B on modulating centro-chromatin structure. Based on these findings we provide an overview of the higher order structure of the centromere.


Asunto(s)
Proteína A Centromérica/química , Proteína B del Centrómero/química , Centrómero/ultraestructura , Cromatina/ultraestructura , Proteínas Cromosómicas no Histona/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Centrómero/metabolismo , Proteína A Centromérica/genética , Proteína A Centromérica/metabolismo , Proteína B del Centrómero/genética , Proteína B del Centrómero/metabolismo , Cromatina/química , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Humanos , Mitosis , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cohesinas
13.
Essays Biochem ; 64(2): 205-221, 2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32720682

RESUMEN

The centromere is a chromosome locus that directs equal segregation of chromosomes during cell division. A nucleosome containing the histone H3 variant CENP-A epigenetically defines the centromere. Here, we summarize findings from recent structural biology studies, including several CryoEM structures, that contributed to elucidate specific features of the CENP-A nucleosome and molecular determinants of its interactions with CENP-C and CENP-N, the only two centromere proteins that directly bind to it. Based on those findings, we propose a role of the CENP-A nucleosome in the organization of centromeric chromatin beyond binding centromeric proteins.


Asunto(s)
Proteína A Centromérica , Nucleosomas/química , Centrómero/química , Proteína A Centromérica/química , Proteína A Centromérica/fisiología , Cromatina/química , Humanos , Conformación Molecular , Saccharomyces cerevisiae
14.
Nature ; 582(7810): 119-123, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32494069

RESUMEN

The three-dimensional architecture of the genome governs its maintenance, expression and transmission. The cohesin protein complex organizes the genome by topologically linking distant loci, and is highly enriched in specialized chromosomal domains surrounding centromeres, called pericentromeres1-6. Here we report the three-dimensional structure of pericentromeres in budding yeast (Saccharomyces cerevisiae) and establish the relationship between genome organization and function. We find that convergent genes mark pericentromere borders and, together with core centromeres, define their structure and function by positioning cohesin. Centromeres load cohesin, and convergent genes at pericentromere borders trap it. Each side of the pericentromere is organized into a looped conformation, with border convergent genes at the base. Microtubule attachment extends a single pericentromere loop, size-limited by convergent genes at its borders. Reorienting genes at borders into a tandem configuration repositions cohesin, enlarges the pericentromere and impairs chromosome biorientation during mitosis. Thus, the linear arrangement of transcriptional units together with targeted cohesin loading shapes pericentromeres into a structure that is competent for chromosome segregation. Our results reveal the architecture of the chromosomal region within which kinetochores are embedded, as well as the restructuring caused by microtubule attachment. Furthermore, we establish a direct, causal relationship between the three-dimensional genome organization of a specific chromosomal domain and cellular function.


Asunto(s)
Centrómero/genética , Centrómero/metabolismo , Genes Fúngicos , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/metabolismo , Centrómero/química , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Genoma Fúngico/genética , Viabilidad Microbiana/genética , Mitosis/genética , Conformación Molecular , Cohesinas
15.
Genome Res ; 30(5): 684-696, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32424070

RESUMEN

Centromeres pose an evolutionary paradox: strongly conserved in function but rapidly changing in sequence and structure. However, in the absence of damage, centromere locations are usually conserved within a species. We report here that isolates of the pathogenic yeast species Candida parapsilosis show within-species polymorphism for the location of centromeres on two of its eight chromosomes. Its old centromeres have an inverted-repeat (IR) structure, whereas its new centromeres have no obvious structural features but are located within 30 kb of the old site. Centromeres can therefore move naturally from one chromosomal site to another, apparently spontaneously and in the absence of any significant changes in DNA sequence. Our observations are consistent with a model in which all centromeres are genetically determined, such as by the presence of short or long IRs or by the ability to form cruciforms. We also find that centromeres have been hotspots for genomic rearrangements in the C. parapsilosis clade.


Asunto(s)
Candida parapsilosis/genética , Centrómero , Centrómero/química , Secuenciación de Inmunoprecipitación de Cromatina , Cromosomas Fúngicos , Evolución Molecular , Genómica , Secuencias Invertidas Repetidas , Saccharomycetales
16.
Genomics ; 112(5): 3097-3107, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32470643

RESUMEN

Centromeric satellite DNA (cen-satDNA) sequences of the Asian swamp eel (Monopterus albus) were characterized. Three GC-rich cen-satDNA sequences were detected as a 233 bp MALREP-A and a 293 bp MALREP-B localized to all chromosomes, and a 293 bp MALREP-C distributed on eight chromosome pairs. Sequence lengths of MALREP-B and MALREP-C were 60 bp larger than that of MALREP-A, showing partial homology with core sequences (233 bp). Size differences between MALREP-A and MALREP-B/C suggest the possible occurrence of two satDNA families. The presence of an additional 60 bp in MALREP-B/C resulted from an ancient dimer of 233 bp monomers and subsequent mutation and homogenization between the two monomers. All MALREPs showed partial homology with transposable elements (TEs), suggesting that the MALREPs originated from the TEs. The MALREPs might have been acquired in the Asian swamp eel, thereby promoting fixation in the species.


Asunto(s)
Centrómero/química , ADN Satélite/química , Secuencias Repetitivas Esparcidas , Smegmamorpha/genética , Animales , Mapeo Cromosómico , Secuencia de Consenso , Genómica , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN , Vertebrados/genética
17.
Elife ; 92020 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-32469306

RESUMEN

Centromeres of Candida albicans form on unique and different DNA sequences but a closely related species, Candida tropicalis, possesses homogenized inverted repeat (HIR)-associated centromeres. To investigate the mechanism of centromere type transition, we improved the fragmented genome assembly and constructed a chromosome-level genome assembly of C. tropicalis by employing PacBio sequencing, chromosome conformation capture sequencing (3C-seq), chromoblot, and genetic analysis of engineered aneuploid strains. Further, we analyzed the 3D genome organization using 3C-seq data, which revealed spatial proximity among the centromeres as well as telomeres of seven chromosomes in C. tropicalis. Intriguingly, we observed evidence of inter-centromeric translocations in the common ancestor of C. albicans and C. tropicalis. Identification of putative centromeres in closely related Candida sojae, Candida viswanathii and Candida parapsilosis indicates loss of ancestral HIR-associated centromeres and establishment of evolutionary new centromeres (ENCs) in C. albicans. We propose that spatial proximity of the homologous centromere DNA sequences facilitated karyotype rearrangements and centromere type transitions in human pathogenic yeasts of the CUG-Ser1 clade.


Asunto(s)
Centrómero , Evolución Molecular , Candida/genética , Centrómero/química , Centrómero/genética , Centrómero/metabolismo , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , Cromosomas Fúngicos/metabolismo , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , Eliminación de Gen , Genoma Fúngico/genética , Telómero/genética , Translocación Genética/genética
18.
PLoS One ; 15(5): e0226472, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32379828

RESUMEN

The ParB-parS partition complexes that bacterial replicons use to ensure their faithful inheritance also find employment in visualization of DNA loci, as less intrusive alternatives to fluorescent repressor-operator systems. The ability of ParB molecules to interact via their N-terminal domains and to bind to non-specific DNA enables expansion of the initial complex to a size both functional in partition and, via fusion to fluorescent peptides, visible by light microscopy. We have investigated whether it is possible to dispense with the need to insert parS in the genomic locus of interest, by determining whether ParB fused to proteins that bind specifically to natural DNA sequences can still assemble visible complexes. In yeast cells, coproduction of fusions of ParB to a fluorescent peptide and to a TALE protein targeting an endogenous sequence did not yield visible foci; nor did any of several variants of these components. In E.coli, coproduction of fusions of SopB (F plasmid ParB) to fluorescent peptide, and to dCas9 together with specific guide RNAs, likewise yielded no foci. The result of coproducing analogous fusions of SopB proteins with distinct binding specificities was also negative. Our observations imply that in order to assemble higher order partition complexes, ParB proteins need specific activation through binding to their cognate parS sites.


Asunto(s)
Proteínas Bacterianas/metabolismo , Centrómero/química , Centrómero/metabolismo , ADN Bacteriano/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Secuencia de Bases , Sitios de Unión , Proteína 9 Asociada a CRISPR , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Plásmidos/genética , Unión Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Simportadores/genética , Simportadores/metabolismo
19.
Mamm Genome ; 31(5-6): 181-195, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32296924

RESUMEN

Maintaining genome stability is essential to an organism's health and survival. Breakdown of the mechanisms protecting the genome and the resulting genome instability are an important aspect of the aging process and have been linked to diseases such as cancer. Thus, a large network of interconnected pathways is responsible for ensuring genome integrity in the face of the continuous challenges that induce DNA damage. While these pathways are diverse, epigenetic mechanisms play a central role in many of them. DNA modifications, histone variants and modifications, chromatin structure, and non-coding RNAs all carry out a variety of functions to ensure that genome stability is maintained. Epigenetic mechanisms ensure the functions of centromeres and telomeres that are essential for genome stability. Epigenetic mechanisms also protect the genome from the invasion by transposable elements and contribute to various DNA repair pathways. In this review, we highlight the integral role of epigenetic mechanisms in the maintenance of genome stability and draw attention to issues in need of further study.


Asunto(s)
Envejecimiento/genética , Reparación del ADN , Epigénesis Genética , Genoma , Inestabilidad Genómica , Neoplasias/genética , Envejecimiento/metabolismo , Animales , Centrómero/química , Centrómero/metabolismo , Cromatina/química , Cromatina/metabolismo , ADN/genética , ADN/metabolismo , Daño del ADN , Código de Histonas , Histonas/genética , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patología , ARN no Traducido/genética , ARN no Traducido/metabolismo , Telómero/química , Telómero/metabolismo
20.
Mol Biol Evol ; 37(8): 2341-2356, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259249

RESUMEN

Satellite repeats are major sequence constituents of centromeres in many plant and animal species. Within a species, a single family of satellite sequences typically occupies centromeres of all chromosomes and is absent from other parts of the genome. Due to their common origin, sequence similarities exist among the centromere-specific satellites in related species. Here, we report a remarkably different pattern of centromere evolution in the plant tribe Fabeae, which includes genera Pisum, Lathyrus, Vicia, and Lens. By immunoprecipitation of centromeric chromatin with CENH3 antibodies, we identified and characterized a large and diverse set of 64 families of centromeric satellites in 14 species. These families differed in their nucleotide sequence, monomer length (33-2,979 bp), and abundance in individual species. Most families were species-specific, and most species possessed multiple (2-12) satellites in their centromeres. Some of the repeats that were shared by several species exhibited promiscuous patterns of centromere association, being located within CENH3 chromatin in some species, but apart from the centromeres in others. Moreover, FISH experiments revealed that the same family could assume centromeric and noncentromeric positions even within a single species. Taken together, these findings suggest that Fabeae centromeres are not shaped by the coevolution of a single centromeric satellite with its interacting CENH3 proteins, as proposed by the centromere drive model. This conclusion is also supported by the absence of pervasive adaptive evolution of CENH3 sequences retrieved from Fabeae species.


Asunto(s)
Centrómero/química , ADN Satélite/química , Fabaceae/genética , Variación Genética , Selección Genética , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...