Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Parasitology ; 147(14): 1614-1628, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32943127

RESUMEN

This paper reviews current knowledge of the structure, genesis, cytochemistry and putative functions of the haplosporosomes of haplosporidians (Urosporidium, Haplosporidium, Bonamia, Minchinia) and paramyxids (Paramyxa, Paramyxoides, Marteilia, Marteilioides, Paramarteilia), and the sporoplasmosomes of myxozoans (Myxozoa - Malacosporea, Myxosporea). In all 3 groups, these bodies occur in plasmodial trophic stages, disappear at the onset of sporogony, and reappear in the spore. Some haplosporidian haplosporosomes lack the internal membrane regarded as characteristic of these bodies and that phylum. Haplosporidian haplosporogenesis is through the Golgi (spherulosome in the spore), either to form haplosporosomes at the trans-Golgi network, or for the Golgi to produce formative bodies from which membranous vesicles bud, thus acquiring the external membrane. The former method also forms sporoplasmosomes in malacosporeans, while the latter is the common method of haplosporogenesis in paramyxids. Sporoplasmogenesis in myxosporeans is largely unknown. The haplosporosomes of Haplosporidium nelsoni and sporoplasmosomes of malacosporeans are similar in arraying themselves beneath the plasmodial plasma membrane with their internal membranes pointing to the exterior, possibly to secrete their contents to lyse host cells or repel haemocytes. It is concluded that these bodies are probably multifunctional within and between groups, their internal membranes separating different functional compartments, and their origin may be from common ancestors in the Neoproterozoic.


Asunto(s)
Cercozoos/fisiología , Haplosporidios/fisiología , Myxozoa/fisiología , Animales , Cercozoos/clasificación , Haplosporidios/clasificación , Interacciones Huésped-Parásitos , Myxozoa/clasificación , Rhizaria/clasificación , Rhizaria/fisiología
2.
J Invertebr Pathol ; 176: 107460, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32891682

RESUMEN

During a histopathological survey of Mytilus galloprovincialis in Galicia (NW Spain), microcells were observed infecting several organs of the symbiont copepod Mytilicola intestinalis. Positive results of PCR assay with specific primers for genus Mikrocytos and a clear signal of in situ hybridization with MACKINI-1 digoxigenin- labelled DNA probe (DIG-ISH) indicated a protozoan parasite of Mikrocytos genus. The ultrastructural study revealed intra and extracellular locations, polymorphic nuclei, intracellular round vesicles in the cytoplasm and absence of mitochondria. The present paper reports the characterization of the Mikrocytos sp. infecting M. intestinalis and proposes a novel species in the genus: Mikrocytos mytilicoli n. sp. A sequence of 18S-28S rDNA was obtained with 95.6% maximum identity (query cover 100%) with Mikrocytos mackini. Phylogenetic analysis showed that M. mytilicoli n. sp. and M. mackini share a common ancestor. However, comparison of the ITS1 rDNA region showed low similarity (75.8%) with M. mackini, which, combined with differences in ultrastructural details, host and geographic location, support the designation of a new species. This is the first description of a microcytid parasite of the genus Mikrocytos from a non-bivalve host.


Asunto(s)
Cercozoos/clasificación , Copépodos/parasitología , Interacciones Huésped-Parásitos , Animales , Cercozoos/citología , Cercozoos/genética , Cercozoos/ultraestructura , Copépodos/fisiología , ADN Protozoario/análisis , ADN Espaciador Ribosómico/análisis , Microscopía , Microscopía Electrónica de Transmisión , Mytilus/fisiología , Filogenia , ARN Ribosómico 18S/análisis , ARN Ribosómico 28S/análisis , España , Simbiosis
3.
Environ Microbiol ; 22(11): 4620-4632, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803809

RESUMEN

The soils of the McMurdo Dry Valleys (MDV) of Antarctica are established models for understanding fundamental processes in soil ecosystem functioning (e.g. ecological tipping points, community structuring and nutrient cycling) because the extreme physical environment drastically reduces biodiversity and ecological complexity. Understanding the functioning of MDV soils requires in-depth knowledge of the diversity of MDV soil species. Protists, which contribute significantly to soil ecosystem functioning worldwide, remain poorly characterized in the MDV. To better assess the diversity of MDV protists, we performed shotgun metagenomics on 18 sites representing a variety of landscape features and edaphic variables. Our results show MDV soil protists are diverse at both the genus (155 of 281 eukaryote genera) and family (120) levels, but comprise only 6% of eukaryotic reads. Protists are structured by moisture, total N and distance from the local coast and possess limited richness in arid (< 5% moisture) and at high elevation sites, known drivers of communities in the MDV. High relative diversity and broad distribution of protists in our study promotes these organisms as key members of MDV soil microbiomes and the MDV as a useful system for understanding the contribution of soil protists to the structure of soil microbiomes.


Asunto(s)
Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Microbiota/genética , Regiones Antárticas , Biodiversidad , Cercozoos/clasificación , Cercozoos/genética , Cercozoos/aislamiento & purificación , Chlorophyta/clasificación , Chlorophyta/genética , Cilióforos/clasificación , Cilióforos/genética , Cilióforos/aislamiento & purificación , Ecosistema , Eucariontes/genética , Metagenómica , Suelo/química , Suelo/parasitología , Microbiología del Suelo , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
4.
Protist ; 171(3): 125731, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32464531

RESUMEN

Ventrifissura is a group of poorly studied heterotrophic biflagellates in the phylum Cercozoa. Despite a phylogenetic placement with only weak support and a lack of ultrastructural data, Ventrifissura was assigned to Thecofilosea. In the presented study, we established cultures of two novel species of Ventrifissura (V. oblonga n. sp. and V. velata n. sp.) isolated from coastal marine environments in Japan, and performed light and electron microscopy observations and molecular phylogenetic analysis. Transmission electron microscopy revealed that V. oblonga shares several ultrastructural characteristics with thecofilosean flagellates, including permanently condensed chromosomes, a extracellular theca, and slender extrusomes. Molecular phylogenetic analysis could not resolve the phylogenetic position, but the possibility that Ventrifissura clusters into Ventrifilosa was supported by approximately unbiased tests. Based on both morphological and phylogenetic findings, we concluded that Ventrifissura is a basal lineage of Thecofilosea.


Asunto(s)
Cercozoos/clasificación , Filogenia , Cercozoos/ultraestructura , ADN Protozoario/genética , ADN Ribosómico/genética , Japón , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
5.
Protist ; 171(2): 125718, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32114354

RESUMEN

Rigid and persistent shells of microeukaryotes are widely used as bioindicators in ecological and paleontological studies. Drawing conclusions on ecological or evolutionary patterns depends strongly on the right taxonomic assignment of the observed species, however confusion is common. Especially in filose shelled amoebae it is often unclear whether species belong to the Imbricatea or Thecofilosea when only morphological data are collected. Molecular surveys shed light on their evolutionary relationship; based on these we propose a hypothesis how to differentiate doubtful species even light microscopically.


Asunto(s)
Cercozoos/clasificación , Cercozoos/citología , Animales , Cercozoos/genética , Filogenia , Pigmentación/fisiología , Especificidad de la Especie
6.
Proc Natl Acad Sci U S A ; 117(10): 5364-5375, 2020 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-32094181

RESUMEN

Nucleomorphs are relic endosymbiont nuclei so far found only in two algal groups, cryptophytes and chlorarachniophytes, which have been studied to model the evolutionary process of integrating an endosymbiont alga into a host-governed plastid (organellogenesis). However, past studies suggest that DNA transfer from the endosymbiont to host nuclei had already ceased in both cryptophytes and chlorarachniophytes, implying that the organellogenesis at the genetic level has been completed in the two systems. Moreover, we have yet to pinpoint the closest free-living relative of the endosymbiotic alga engulfed by the ancestral chlorarachniophyte or cryptophyte, making it difficult to infer how organellogenesis altered the endosymbiont genome. To counter the above issues, we need novel nucleomorph-bearing algae, in which endosymbiont-to-host DNA transfer is on-going and for which endosymbiont/plastid origins can be inferred at a fine taxonomic scale. Here, we report two previously undescribed dinoflagellates, strains MGD and TGD, with green algal endosymbionts enclosing plastids as well as relic nuclei (nucleomorphs). We provide evidence for the presence of DNA in the two nucleomorphs and the transfer of endosymbiont genes to the host (dinoflagellate) genomes. Furthermore, DNA transfer between the host and endosymbiont nuclei was found to be in progress in both the MGD and TGD systems. Phylogenetic analyses successfully resolved the origins of the endosymbionts at the genus level. With the combined evidence, we conclude that the host-endosymbiont integration in MGD/TGD is less advanced than that in cryptophytes/chrorarachniophytes, and propose the two dinoflagellates as models for elucidating organellogenesis.


Asunto(s)
Cercozoos/ultraestructura , Criptófitas/ultraestructura , Dinoflagelados/ultraestructura , Evolución Molecular , Genoma de Plastidios , Plastidios/fisiología , Simbiosis , Núcleo Celular/genética , Núcleo Celular/fisiología , Cercozoos/clasificación , Cercozoos/genética , Chlorophyta/clasificación , Chlorophyta/fisiología , Chlorophyta/ultraestructura , Criptófitas/clasificación , Criptófitas/genética , Dinoflagelados/clasificación , Dinoflagelados/genética , Modelos Biológicos , Filogenia , Plastidios/genética
7.
Protist ; 171(1): 125701, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31955058

RESUMEN

The testate amoeba Leptogromia operculata was described by Valkanov in 1970 from marine waters. We re-discovered this species in brackish water along the North Sea in the Netherlands. Based on detailed comparison of morphology and SSU rDNA phylogeny we conclude that this species represents a sister clade to the Euglyphida (Imbricatea, Cercozoa). We further describe a similar species Trivalvularis immunda gen. nov., sp. nov. from freshwater in France and the Netherlands on basis of morphological data. Trivalvularis and Leptogromia share a unique oral apparatus with three valves that can close the aperture of the shell. Due to this unique morphological character and the phylogenetic analysis of L. operculata we place both species in a new family Trivalvulariidae in the new order Trivalvulariida.


Asunto(s)
Cercozoos/clasificación , Cercozoos/genética , ADN Protozoario/genética , ADN Ribosómico/genética , Filogenia , Países Bajos , Aguas Salinas , Especificidad de la Especie
8.
J Eukaryot Microbiol ; 67(1): 86-99, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31432582

RESUMEN

Reclamation of anthropogenically impacted environments is a critical issue worldwide. In the oil sands extraction industry of Alberta, reclamation of mining-impacted areas, especially areas affected by tailings waste, is an important aspect of the mining life cycle. A reclamation technique currently under study is water-capping, where tailings are capped by water to create an end-pit lake (EPL). Base Mine Lake (BML) is the first full-scale end-pit lake in the Alberta oil sands region. In this study, we sequenced eukaryotic 18S rRNA genes recovered from 92 samples of Base Mine Lake water in a comprehensive sampling programme covering the ice-free period of 2015. The 565 operational taxonomic units (OTUs) generated revealed a dynamic and diverse community including abundant Microsporidia, Ciliata and Cercozoa, though 41% of OTUs were not classifiable below the phylum level by comparison to 18S rRNA databases. Phylogenetic analysis of five heterotrophic phyla (Cercozoa, Fungi, Ciliata, Amoebozoa and Excavata) revealed substantial novel diversity, with many clusters of OTUs that were more similar to each other than to any reference sequence. All of these groups are entirely or mostly heterotrophic, as a relatively small number of definitively photosynthetic clades were amplified from the BML samples.


Asunto(s)
Cercozoos/clasificación , Cilióforos/clasificación , Lagos/parasitología , Microbiota , Microsporidios/clasificación , Alberta , Minería , Yacimiento de Petróleo y Gas/parasitología , Filogenia
9.
J Eukaryot Microbiol ; 67(2): 245-251, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31808200

RESUMEN

Thecofilosea is a class in Cercozoa (Rhizaria) comprising mainly freshwater-inhabiting algivores. Recently, numerous isolates of thecofilosean amoebae have been cultured and were characterized by an integrated morphological and molecular approach. As attempts to establish a culture of Lecythium mutabilis repeatedly failed, it was not yet investigated by molecular means. We isolated single cells of L. mutabilis directly from their habitat and successfully sequenced the V4 region of their SSU rDNA. Phylogenetic analyses showed that L. mutabilis is not directly related to the genus Lecythium and instead branches within the Fiscullidae (Tectofilosida, Thecofilosea). Accordingly, we transfer the species L. mutabilis to a novel genus Omnivora gen. nov.


Asunto(s)
Cercozoos/clasificación , Cercozoos/citología , Cercozoos/genética , ADN Protozoario/análisis , ADN Ribosómico/análisis , Filogenia
10.
Mol Ecol Resour ; 20(2): 398-403, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31677344

RESUMEN

We have compiled a database of functional traits for two widespread and ecologically important groups of protists, Cercozoa and Endomyxa (Rhizaria). The functional traits of microorganisms are crucially important for interpreting results from environmental sequencing surveys. Linking morphological and ecological traits to environmental factors is common practice in studies involving micro- and macroorganisms, but is rarely applied to protists. Our database provides functional and ecologically significant traits linked to morphology, nutrition, locomotion and habitats. We discuss how the use of functional traits may help to unveil underlying ecosystem processes. This database is intended as a common reference for the molecular ecology community and will boost the understanding of ecosystem functions, especially those driven by biological interactions.


Asunto(s)
Rhizaria/genética , Cercozoos/clasificación , Cercozoos/genética , ADN Ambiental/genética , Bases de Datos Genéticas , Ecosistema , Fenotipo , Filogenia , Rhizaria/clasificación , Análisis de Secuencia de ADN
11.
Microb Ecol ; 79(3): 631-643, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31664477

RESUMEN

Marine phytomyxids represent often overlooked obligate biotrophic parasites colonizing diatoms, brown algae, and seagrasses. An illustrative example of their enigmatic nature is the phytomyxid infecting the seagrass Halophila stipulacea (a well-known Lessepsian migrant from the Indo-Pacific to the Mediterranean Sea). In the Mediterranean, the occurrence of this phytomyxid was first described in 1995 in the Strait of Messina (southern Italy) and the second time in 2017 in the Aegean coast of Turkey. Here we investigated, using scuba diving, stereomicroscopy, light and scanning electron microscopy, and molecular methods, whether the symbiosis is still present in southern Italy, its distribution in this region and its relation to the previous reports. From the total of 16 localities investigated, the symbiosis has only been found at one site. A seasonal pattern was observed with exceptionally high abundance (> 40% of the leaf petioles colonized) in September 2017, absence of the symbiosis in May/June 2018, and then again high infection rates (~ 30%) in September 2018. In terms of anatomy and morphology as well as resting spore dimensions and arrangement, the symbiosis seems to be identical to the preceding observations in the Mediterranean. According to the phylogenetic analyses of the 18S rRNA gene, the phytomyxid represents the first characterized member of the environmental clade "TAGIRI-5". Our results provide new clues about its on-site ecology (incl. possible dispersal mechanisms), hint that it is rare but established in the Mediterranean, and encourage further research into its distribution, ecophysiology, and taxonomy.


Asunto(s)
Cercozoos/fisiología , Hydrocharitaceae/parasitología , Hojas de la Planta/parasitología , Simbiosis , Cercozoos/clasificación , Cercozoos/genética , Especies Introducidas , Italia , Mar Mediterráneo , Filogenia , ARN Protozoario/análisis , ARN Ribosómico 18S/análisis
12.
FEMS Microbiol Ecol ; 95(4)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30915436

RESUMEN

Protists are the most important predators of soil microbes like bacteria and fungi and are highly diverse in terrestrial ecosystems. However, the structure of protistan communities throughout the soil profile is still poorly explored. Here, we used Illumina sequencing to track differences in the relative abundance and diversity of Cercozoa, a major group of protists, at two depths; 10-30 cm (topsoil) and 60-75 cm (subsoil) in an agricultural field in Germany. At the two depths, we also distinguished among three soil compartments: rhizosphere, drilosphere (earthworm burrows) and bulk soil. With increasing depth, we found an overall decline in richness, but we were able to detect subsoil specific phylotypes and contrasting relative abundance patterns between topsoil and subsoil for different clades. We also found that the compartment effect disappeared in the subsoil when compared to the topsoil. More studies are now needed to describe and isolate these possibly subsoil specific phylotypes and better understand their ecology and function.


Asunto(s)
Cercozoos/aislamiento & purificación , Ecosistema , Microbiota , Suelo/parasitología , Agricultura , Biodiversidad , Cercozoos/clasificación , Cercozoos/genética , Alemania , Microbiota/genética , Rizosfera , Suelo/química
13.
J Invertebr Pathol ; 163: 86-93, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30905857

RESUMEN

Paramyxean parasites in the genus Marteilia deteriorate digestive tissues of the host organisms, resulting in mortality of oysters, cockles, and mussels. Most reports of infection by Marteilia spp. are from Europe, while a new species of Marteilia was identified recently in Japan. Here, we report a previously unidentified species in the genus Marteilia from digestive diverticula of Manila clam Ruditapes philippinarum from the south coast of Korea. Prevalence of the parasite was low, 0.5-3.3% in the study sites. We characterized this species using light and transmission electron microscopy (TEM), and analyzed the 18S rDNA sequence. Light microscopy revealed the sporulation process from uninucleated stage to spore in the epithelial tissues of the digestive gland. TEM revealed that the parasites produced four secondary cells containing four tri-cellular spores. An electron-dense haplosporosome-like structure and striated inclusions were evident in the spore and the primary cells, respectively, while refringent granules were rarely observed in the secondary cells. Phylogenetic analyses of the 18S rDNA sequence placed this isolate in the genus Marteilia, although it is not identical to other known species in the genus. Based on morphological and molecular characters, we describe this species as Marteilia tapetis sp. nov., the second Marteilia species reported parasitizing Manila clams in Asian waters.


Asunto(s)
Bivalvos/parasitología , Cercozoos , Animales , Cercozoos/clasificación , Cercozoos/genética , Cercozoos/aislamiento & purificación , Cercozoos/ultraestructura , ADN Protozoario , Sistema Digestivo/microbiología , Filogenia , Infecciones por Protozoos/diagnóstico , Infecciones por Protozoos/parasitología , ARN Ribosómico 18S/genética
15.
Mol Phylogenet Evol ; 130: 416-423, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318266

RESUMEN

The phylum Cercozoa consists of a diverse assemblage of amoeboid and flagellated protists that forms a major component of the supergroup, Rhizaria. However, despite its size and ubiquity, the phylogeny of the Cercozoa remains unclear as morphological variability between cercozoan species and ambiguity in molecular analyses, including phylogenomic approaches, have produced ambiguous results and raised doubts about the monophyly of the group. Here we sought to resolve these ambiguities using a 161-gene phylogenetic dataset with data from newly available genomes and deeply sequenced transcriptomes, including three new transcriptomes from Aurigamonas solis, Abollifer prolabens, and a novel species, Lapot gusevi n. gen. n. sp. Our phylogenomic analysis strongly supported a monophyletic Cercozoa, and approximately-unbiased tests rejected the paraphyletic topologies observed in previous studies. The transcriptome of L. gusevi represents the first transcriptomic data from the large and recently characterized Aquavolonidae-Treumulida-'Novel Clade 12' group, and phylogenomics supported its position as sister to the cercozoan subphylum, Endomyxa. These results provide insights into the phylogeny of the Cercozoa and the Rhizaria as a whole.


Asunto(s)
Cercozoos/clasificación , Cercozoos/genética , Genoma , Filogenia , Teorema de Bayes , Funciones de Verosimilitud
16.
J Eukaryot Microbiol ; 66(4): 560-573, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30372564

RESUMEN

Vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae known primarily from freshwater and soil. Environmental sequence data indicate that there is also a considerable diversity of vampyrellids inhabiting marine ecosystems, but their phenotypic traits and ecology remain largely unexplored. We discovered algivorous vampyrellids of the filoflabellate morphotype in coastal habitats in Atlantic Canada, established cultures by single-cell isolation, and characterised three strains using light microscopy, SSU rRNA gene sequencing, feeding experiments and growth experiments at various salinities. These strains exhibit orange, discoid trophozoites with ventral filopodia, moving granules ("membranosomes"), and rolling locomotion, similar to freshwater species previously assigned to Hyalodiscus Hertwig & Lesser, but here moved to Placopus Schulze (due to homonymy with Hyalodiscus Ehrenberg). SSU rRNA gene phylogenies place our strains in two distinct positions within "lineage B3" (here referred to as Placopodidae). Based on these morphological, habitat and molecular data, we describe two new species, Placopus melkoniani sp. nov. and Placopus pusillus sp. nov., both of which feed on chlorophyte flagellates (Tetraselmis, Pyramimonas) and the cryptophyte Chroomonas. They perforate the theca of Tetraselmis to extract the protoplast, and thereby represent the first vampyrellids known to degrade the biochemically exotic cell wall of the Chlorodendrales (Chlorophyta, Viridiplantae).


Asunto(s)
Cercozoos/clasificación , Chlorophyta/microbiología , Interacciones Huésped-Patógeno , Rasgos de la Historia de Vida , Cercozoos/fisiología , Cercozoos/ultraestructura , Microscopía , Microscopía Electrónica de Rastreo , Rhizaria/clasificación , Rhizaria/fisiología , Rhizaria/ultraestructura , Salinidad
17.
Protist ; 169(6): 853-874, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30415103

RESUMEN

Sainouroidea is a molecularly diverse clade of cercozoan flagellates and amoebae in the eukaryotic supergroup Rhizaria. Previous 18S rDNA environmental sequencing of globally collected fecal and soil samples revealed great diversity and high sequence divergence in the Sainouroidea. However, a very limited amount of this diversity has been observed or described. The two described genera of amoebae in this clade are Guttulinopsis, which displays aggregative multicellularity, and Rosculus, which does not. Although the identity of Guttulinopsis is straightforward due to the multicellular fruiting bodies they form, the same is not true for Rosculus, and the actual identity of the original isolate is unclear. Here we isolated amoebae with morphologies like that of Guttulinopsis and Rosculus from many environments and analyzed them using 18S rDNA sequencing, light microscopy, and transmission electron microscopy. We define a molecular species concept for Sainouroidea that resulted in the description of 4 novel genera and 12 novel species of naked amoebae. Aggregative fruiting is restricted to the genus Guttulinopsis, but other than this there is little morphological variation amongst these taxa. Taken together, simple identification of these amoebae is problematic and potentially unresolvable without the 18S rDNA sequence.


Asunto(s)
Cercozoos/clasificación , Cercozoos/aislamiento & purificación , Filogenia , Cercozoos/citología , Cercozoos/genética , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Microbiología Ambiental , Microscopía , Microscopía Electrónica de Transmisión , ARN Ribosómico 18S/genética , Análisis de Secuencia de ADN
18.
PLoS One ; 13(7): e0200961, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30024971

RESUMEN

Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5' end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5' end sequence of 28-33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.


Asunto(s)
Cercozoos/genética , Evolución Molecular , Transferencia de Gen Horizontal , Fotosíntesis , ARN Lider Empalmado/genética , Trans-Empalme , Biodiversidad , Cercozoos/clasificación , Cercozoos/crecimiento & desarrollo , Cromatóforos/metabolismo , ADN Protozoario/genética , Genoma de Protozoos , Filogenia , Simbiosis
19.
Parasitology ; 145(11): 1483-1492, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886855

RESUMEN

Marteilia refringens causes marteiliosis in oysters, mussels and other bivalve molluscs. This parasite previously comprised two species, M. refringens and Marteilia maurini, which were synonymized in 2007 and subsequently referred to as M. refringens 'O-type' and 'M-type'. O-type has caused mass mortalities of the flat oyster Ostrea edulis. We used high throughput sequencing and histology to intensively screen flat oysters and mussels (Mytilus edulis) from the UK, Sweden and Norway for infection by both types and to generate multi-gene datasets to clarify their genetic distinctiveness. Mussels from the UK, Norway and Sweden were more frequently polymerase chain reaction (PCR)-positive for M-type (75/849) than oysters (11/542). We did not detect O-type in any northern European samples, and no histology-confirmed Marteilia-infected oysters were found in the UK, Norway and Sweden, even where co-habiting mussels were infected by the M-type. The two genetic lineages within 'M. refringens' are robustly distinguishable at species level. We therefore formally define them as separate species: M. refringens (previously O-type) and Marteilia pararefringens sp. nov. (M-type). We designed and tested new Marteilia-specific PCR primers amplifying from the 3' end of the 18S rRNA gene through to the 5.8S gene, which specifically amplified the target region from both tissue and environmental samples.


Asunto(s)
Cercozoos/clasificación , Mytilus edulis/parasitología , Ostrea/parasitología , Infecciones Protozoarias en Animales/epidemiología , Animales , Secuenciación de Nucleótidos de Alto Rendimiento , Noruega , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/genética , Suecia , Reino Unido
20.
Protist ; 169(3): 432-449, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29870898

RESUMEN

Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering.


Asunto(s)
Biodiversidad , Cercozoos/clasificación , Cercozoos/genética , Suelo/parasitología , Europa (Continente) , Secuenciación de Nucleótidos de Alto Rendimiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA