Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.363
Filtrar
1.
Rev Assoc Med Bras (1992) ; 70(5): e20231333, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38775505

RESUMEN

OBJECTIVE: In this study, the effects of leptin, cannabinoid-1 (CB1) receptor agonist ACEA and antagonist AM251, and the interactions between leptin and CB1 receptor agonist/antagonist on oxidant and antioxidant enzymes in the cerebrum, cerebellum, and pedunculus cerebri tissue samples were investigated in the penicillin-induced epileptic model. METHODS: Male Wistar albino rats (n=56) were included in this study. In anesthetized animals, 500 IU penicillin-G potassium was injected into the cortex to induce epileptiform activity. Leptin (1 µg), ACEA (7.5 µg), AM251 (0.25 µg), and the combinations of the leptin+ACEA and leptin+AM251 were administered intracerebroventricularly (i.c.v.) after penicillin injections. Malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPx) levels were measured in the cerebral tissue samples and plasma with the ELISA method. RESULTS: MDA levels increased, while SOD and GPx levels decreased after penicillin injection in the cerebrum and cerebellum. The efficacy of penicillin on SOD, MDA and GPx levels was further enhanced after leptin or AM251 injections. Whereas, ACEA decreased the MDA levels and increased GPx levels compared with the penicillin group. Administration of AM251+leptin did not change any oxidation parameter compared with the AM251. Furthermore, co-administration of ACEA and leptin significantly increased oxidative stress compared with the ACEA-treated group by increasing MDA and decreasing GPx levels. CONCLUSION: It was concluded that leptin reversed the effect of ACEA on oxidative stress. Co-administration of AM251 and leptin did not change oxidative stress compared with the AM251-treated group suggesting AM251 and leptin affect oxidative stress using the same pathways.


Asunto(s)
Epilepsia , Leptina , Malondialdehído , Piperidinas , Pirazoles , Ratas Wistar , Receptor Cannabinoide CB1 , Superóxido Dismutasa , Animales , Leptina/farmacología , Masculino , Receptor Cannabinoide CB1/agonistas , Epilepsia/tratamiento farmacológico , Epilepsia/inducido químicamente , Malondialdehído/análisis , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa/análisis , Piperidinas/farmacología , Pirazoles/farmacología , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/análisis , Ácidos Araquidónicos/farmacología , Ratas , Estrés Oxidativo/efectos de los fármacos , Modelos Animales de Enfermedad , Penicilinas , Cerebelo/efectos de los fármacos , Cerebelo/metabolismo , Cerebro/efectos de los fármacos , Cerebro/metabolismo , Ensayo de Inmunoadsorción Enzimática , Agonistas de Receptores de Cannabinoides/farmacología
2.
PLoS One ; 19(5): e0301267, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753768

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative diseases for which at present no cure is available. Despite the extensive research the progress from diagnosis to prognosis in ALS and frontotemporal dementia (FTD) has been slow which represents suboptimal understanding of disease pathophysiological processes. In recent studies, several genes have been associated with the ALS and FTD diseases such as SOD1, TDP43, and TBK1, whereas the hexanucleotide GGGGCC repeat expansion (HRE) in C9orf72 gene is a most frequent cause of ALS and FTD, that has changed the understanding of these diseases. METHODS: The goal of this study was to identify and spatially determine differential gene expression signature differences between cerebellum and frontal cortex in C9orf72-associated ALS (C9-ALS), to study the network properties of these differentially expressed genes, and to identify miRNAs targeting the common differentially expressed genes in both the tissues. This study thus highlights underlying differential cell susceptibilities to the disease mechanisms in C9-ALS and suggesting therapeutic target selection in C9-ALS. RESULTS: In this manuscript, we have identified that the genes involved in neuron development, protein localization and transcription are mostly enriched in cerebellum of C9-ALS patients, while the UPR-related genes are enriched in the frontal cortex. Of note, UPR pathway genes were mostly dysregulated both in the C9-ALS cerebellum and frontal cortex. Overall, the data presented here show that defects in normal RNA processing and the UPR pathway are the pathological hallmarks of C9-ALS. Interestingly, the cerebellum showed more strong transcriptome changes than the frontal cortex. CONCLUSION: Interestingly, the cerebellum region showed more significant transcriptomic changes as compared to the frontal cortex region suggesting its active participation in the disease process. This nuanced understanding may offer valuable insights for the development of targeted therapeutic strategies aimed at mitigating disease progression in C9-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C9orf72 , Cerebelo , Lóbulo Frontal , Humanos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Lóbulo Frontal/metabolismo , Lóbulo Frontal/patología , Femenino , Masculino , Persona de Mediana Edad , MicroARNs/genética , MicroARNs/metabolismo , Anciano , Demencia Frontotemporal/genética , Demencia Frontotemporal/patología , Demencia Frontotemporal/metabolismo
3.
Am J Hum Genet ; 111(5): 913-926, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38626762

RESUMEN

Expanded CAG repeats in coding regions of different genes are the most common cause of dominantly inherited spinocerebellar ataxias (SCAs). These repeats are unstable through the germline, and larger repeats lead to earlier onset. We measured somatic expansion in blood samples collected from 30 SCA1, 50 SCA2, 74 SCA3, and 30 SCA7 individuals over a mean interval of 8.5 years, along with postmortem tissues and fetal tissues from SCA1, SCA3, and SCA7 individuals to examine somatic expansion at different stages of life. We showed that somatic mosaicism in the blood increases over time. Expansion levels are significantly different among SCAs and correlate with CAG repeat lengths. The level of expansion is greater in individuals with SCA7 who manifest disease compared to that of those who do not yet display symptoms. Brain tissues from SCA individuals have larger expansions compared to the blood. The cerebellum has the lowest mosaicism among the studied brain regions, along with a high expression of ATXNs and DNA repair genes. This was the opposite in cortices, with the highest mosaicism and lower expression of ATXNs and DNA repair genes. Fetal cortices did not show repeat instability. This study shows that CAG repeats are increasingly unstable during life in the blood and the brain of SCA individuals, with gene- and tissue-specific patterns.


Asunto(s)
Mosaicismo , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Humanos , Ataxias Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Femenino , Masculino , Adulto , Persona de Mediana Edad , Cerebelo/metabolismo , Cerebelo/patología , Anciano , Encéfalo/metabolismo , Encéfalo/patología , Ataxina-1/genética
4.
JCI Insight ; 9(10)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625743

RESUMEN

Dysregulated lipid homeostasis is emerging as a potential cause of neurodegenerative disorders. However, evidence of errors in lipid homeostasis as a pathogenic mechanism of neurodegeneration remains limited. Here, we show that cerebellar neurodegeneration caused by Sorting Nexin 14 (SNX14) deficiency is associated with lipid homeostasis defects. Recent studies indicate that SNX14 is an interorganelle lipid transfer protein that regulates lipid transport, lipid droplet (LD) biogenesis, and fatty acid desaturation, suggesting that human SNX14 deficiency belongs to an expanding class of cerebellar neurodegenerative disorders caused by altered cellular lipid homeostasis. To test this hypothesis, we generated a mouse model that recapitulates human SNX14 deficiency at a genetic and phenotypic level. We demonstrate that cerebellar Purkinje cells (PCs) are selectively vulnerable to SNX14 deficiency while forebrain regions preserve their neuronal content. Ultrastructure and lipidomic studies reveal widespread lipid storage and metabolism defects in SNX14-deficient mice. However, predegenerating SNX14-deficient cerebella show a unique accumulation of acylcarnitines and depletion of triglycerides. Furthermore, defects in LD content and telolysosome enlargement in predegenerating PCs suggest lipotoxicity as a pathogenic mechanism of SNX14 deficiency. Our work shows a selective cerebellar vulnerability to altered lipid homeostasis and provides a mouse model for future therapeutic studies.


Asunto(s)
Homeostasis , Metabolismo de los Lípidos , Células de Purkinje , Nexinas de Clasificación , Nexinas de Clasificación/metabolismo , Nexinas de Clasificación/genética , Animales , Ratones , Humanos , Células de Purkinje/metabolismo , Células de Purkinje/patología , Modelos Animales de Enfermedad , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/genética , Ratones Noqueados , Cerebelo/metabolismo , Cerebelo/patología , Masculino , Gotas Lipídicas/metabolismo
5.
J Mol Histol ; 55(3): 279-301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38639812

RESUMEN

Tramadol is a novel centrally acting analgesic. Despite, its implementation during pregnancy may impair neuronal survival and synaptic development in neonatal cerebella. The current investigation assessed the histological and ultrastructural alterations in postnatal cortical cerebellar neuronal development induced by prenatal tramadol. 30 offsprings were divided to control group I: fifteen pups born to mothers given saline from D10 till D21 of gestation. Tramadol-treated group II: fifteen pups born to mothers received tramadol HCL (50 mg/kg/day) from D10 till D21 of gestation. Pups were categorized into three subgroups (a, b, and c) and offered for sacrifice on the seventh, fourteenth and twenty-first post-natal days. Light microscopic examination revealed the overcrowding and signs of red degeneration affecting purkinje cell layer. Neurodegenerative signs of both purkinje and granule cell neurons were also confirmed by TEM in form of chromatin condensation, dilated Golgi channels, disrupted endoplasmic reticulum, marked infolding of the nuclear envelope and decrease in granule cell precursors. In addition, the astrocytic processes and terminal nerve axons appeared with different degrees of demyelination and decreased number of oligodendrocytes and degenerated mitochondria. Furthermore, group II exhibited an increase in P53 immune expression. The area percentage of apoptotic cells detected by TUNEL assay was significantly increased. Besides to the significant decrease of Ki67 immunoreactivity in the stem neuronal cell progenitors. Quantitative PCR results showed a significant decline in micro RNA7 gene expression in tramadol treated groups resulting in affection of multiple target genes in P53 signaling pathways, improper cortical size and defect in neuronal development.


Asunto(s)
Proteína Ácida Fibrilar de la Glía , Antígeno Ki-67 , MicroARNs , Efectos Tardíos de la Exposición Prenatal , Transducción de Señal , Tramadol , Proteína p53 Supresora de Tumor , Animales , Tramadol/farmacología , Tramadol/efectos adversos , MicroARNs/genética , MicroARNs/metabolismo , Embarazo , Transducción de Señal/efectos de los fármacos , Femenino , Ratas , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Antígeno Ki-67/metabolismo , Antígeno Ki-67/genética , Cerebelo/efectos de los fármacos , Cerebelo/ultraestructura , Cerebelo/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Apoptosis/efectos de los fármacos , Ratas Wistar , Animales Recién Nacidos
6.
Neurobiol Dis ; 195: 106492, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38575093

RESUMEN

We performed a comprehensive study of the morphological, functional, and genetic features of moonwalker (MWK) mice, a mouse model of spinocerebellar ataxia caused by a gain of function of the TRPC3 channel. These mice show numerous behavioral symptoms including tremor, altered gait, circling behavior, impaired motor coordination, impaired motor learning and decreased limb strength. Cerebellar pathology is characterized by early and almost complete loss of unipolar brush cells as well as slowly progressive, moderate loss of Purkinje cell (PCs). Structural damage also includes loss of synaptic contacts from parallel fibers, swollen ER structures, and degenerating axons. Interestingly, no obvious correlation was observed between PC loss and severity of the symptoms, as the phenotype stabilizes around 2 months of age, while the cerebellar pathology is progressive. This is probably due to the fact that PC function is severely impaired much earlier than the appearance of PC loss. Indeed, PC firing is already impaired in 3 weeks old mice. An interesting feature of the MWK pathology that still remains to be explained consists in a strong lobule selectivity of the PC loss, which is puzzling considering that TRPC is expressed in every PC. Intriguingly, genetic analysis of MWK cerebella shows, among other alterations, changes in the expression of both apoptosis inducing and resistance factors possibly suggesting that damaged PCs initiate specific cellular pathways that protect them from overt cell loss.


Asunto(s)
Modelos Animales de Enfermedad , Fenotipo , Animales , Ratones , Cerebelo/patología , Cerebelo/metabolismo , Células de Purkinje/patología , Células de Purkinje/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Genotipo , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/metabolismo , Ratones Mutantes Neurológicos , Ratones Endogámicos C57BL , Ratones Transgénicos
7.
Dis Model Mech ; 17(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616770

RESUMEN

Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.


Asunto(s)
Cuerpo Estriado , Modelos Animales de Enfermedad , Distonía , Interneuronas , Parvalbúminas , Proteínas Proto-Oncogénicas c-fos , Receptores de Dopamina D2 , Animales , Interneuronas/metabolismo , Interneuronas/efectos de los fármacos , Parvalbúminas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Distonía/patología , Distonía/metabolismo , Distonía/fisiopatología , Cuerpo Estriado/patología , Cuerpo Estriado/metabolismo , Receptores de Dopamina D2/metabolismo , Receptores de Dopamina D1/metabolismo , Cerebelo/patología , Cerebelo/metabolismo , Ouabaína/farmacología , Ratones Endogámicos C57BL , Ratones , Masculino
8.
Int J Mol Sci ; 25(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38673939

RESUMEN

Polyglutamine (polyQ)-encoding CAG repeat expansions represent a common disease-causing mutation responsible for several dominant spinocerebellar ataxias (SCAs). PolyQ-expanded SCA proteins are toxic for cerebellar neurons, with Purkinje cells (PCs) being the most vulnerable. RNA interference (RNAi) reagents targeting transcripts with expanded CAG reduce the level of various mutant SCA proteins in an allele-selective manner in vitro and represent promising universal tools for treating multiple CAG/polyQ SCAs. However, it remains unclear whether the therapeutic targeting of CAG expansion can be achieved in vivo and if it can ameliorate cerebellar functions. Here, using a mouse model of SCA7 expressing a mutant Atxn7 allele with 140 CAGs, we examined the efficacy of short hairpin RNAs (shRNAs) targeting CAG repeats expressed from PHP.eB adeno-associated virus vectors (AAVs), which were introduced into the brain via intravascular injection. We demonstrated that shRNAs carrying various mismatches with the CAG target sequence reduced the level of polyQ-expanded ATXN7 in the cerebellum, albeit with varying degrees of allele selectivity and safety profile. An shRNA named A4 potently reduced the level of polyQ-expanded ATXN7, with no effect on normal ATXN7 levels and no adverse side effects. Furthermore, A4 shRNA treatment improved a range of motor and behavioral parameters 23 weeks after AAV injection and attenuated the disease burden of PCs by preventing the downregulation of several PC-type-specific genes. Our results show the feasibility of the selective targeting of CAG expansion in the cerebellum using a blood-brain barrier-permeable vector to attenuate the disease phenotype in an SCA mouse model. Our study represents a significant advancement in developing CAG-targeting strategies as a potential therapy for SCA7 and possibly other CAG/polyQ SCAs.


Asunto(s)
Ataxina-7 , Dependovirus , Modelos Animales de Enfermedad , Péptidos , Fenotipo , ARN Interferente Pequeño , Ataxias Espinocerebelosas , Expansión de Repetición de Trinucleótido , Animales , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/terapia , Ataxias Espinocerebelosas/metabolismo , Péptidos/genética , Dependovirus/genética , Ratones , Ataxina-7/genética , Ataxina-7/metabolismo , Expansión de Repetición de Trinucleótido/genética , ARN Interferente Pequeño/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Células de Purkinje/metabolismo , Células de Purkinje/patología , Ratones Transgénicos , Cerebelo/metabolismo , Cerebelo/patología , Humanos , Terapia Genética/métodos , Alelos
9.
Biol Res ; 57(1): 18, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38671534

RESUMEN

BACKGROUND: Patients with liver cirrhosis may show minimal hepatic encephalopathy (MHE) with mild cognitive impairment and motor incoordination. Rats with chronic hyperammonemia reproduce these alterations. Motor incoordination in hyperammonemic rats is due to increased GABAergic neurotransmission in cerebellum, induced by neuroinflammation, which enhances TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway activation. The initial events by which hyperammonemia triggers activation of this pathway remain unclear. MHE in cirrhotic patients is triggered by a shift in inflammation with increased IL-17. The aims of this work were: (1) assess if hyperammonemia increases IL-17 content and membrane expression of its receptor in cerebellum of hyperammonemic rats; (2) identify the cell types in which IL-17 receptor is expressed and IL-17 increases in hyperammonemia; (3) assess if blocking IL-17 signaling with anti-IL-17 ex-vivo reverses activation of glia and of the TNFα-TNFR1-S1PR2-CCL2-BDNF-TrkB pathway. RESULTS: IL-17 levels and membrane expression of the IL-17 receptor are increased in cerebellum of rats with hyperammonemia and MHE, leading to increased activation of IL-17 receptor in microglia, which triggers activation of STAT3 and NF-kB, increasing IL-17 and TNFα levels, respectively. TNFα released from microglia activates TNFR1 in Purkinje neurons, leading to activation of NF-kB and increased IL-17 and TNFα also in these cells. Enhanced TNFR1 activation also enhances activation of the TNFR1-S1PR2-CCL2-BDNF-TrkB pathway which mediates microglia and astrocytes activation. CONCLUSIONS: All these steps are triggered by enhanced activation of IL-17 receptor in microglia and are prevented by ex-vivo treatment with anti-IL-17. IL-17 and IL-17 receptor in microglia would be therapeutic targets to treat neurological impairment in patients with MHE.


Asunto(s)
Cerebelo , Hiperamonemia , Microglía , Ratas Wistar , Receptores de Interleucina-17 , Animales , Hiperamonemia/metabolismo , Microglía/metabolismo , Cerebelo/metabolismo , Masculino , Ratas , Receptores de Interleucina-17/metabolismo , Enfermedades Neuroinflamatorias/metabolismo , Interleucina-17/metabolismo , Encefalopatía Hepática/metabolismo , Transducción de Señal , Modelos Animales de Enfermedad
10.
Nat Commun ; 15(1): 3365, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664376

RESUMEN

Hedgehog (Hh) signaling relies on the primary cilium, a cell surface organelle that serves as a signaling hub for the cell. Using proximity labeling and quantitative proteomics, we identify Numb as a ciliary protein that positively regulates Hh signaling. Numb localizes to the ciliary pocket and acts as an endocytic adaptor to incorporate Ptch1 into clathrin-coated vesicles, thereby promoting Ptch1 exit from the cilium, a key step in Hh signaling activation. Numb loss impedes Sonic hedgehog (Shh)-induced Ptch1 exit from the cilium, resulting in reduced Hh signaling. Numb loss in spinal neural progenitors reduces Shh-induced differentiation into cell fates reliant on high Hh activity. Genetic ablation of Numb in the developing cerebellum impairs the proliferation of granule cell precursors, a Hh-dependent process, resulting in reduced cerebellar size. This study highlights Numb as a regulator of ciliary Ptch1 levels during Hh signal activation and demonstrates the key role of ciliary pocket-mediated endocytosis in cell signaling.


Asunto(s)
Cerebelo , Cilios , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Receptor Patched-1 , Transducción de Señal , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Cilios/metabolismo , Animales , Receptor Patched-1/metabolismo , Receptor Patched-1/genética , Ratones , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Cerebelo/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Humanos , Endocitosis , Diferenciación Celular , Proliferación Celular , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Noqueados
11.
Sci Adv ; 10(17): eade1650, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669326

RESUMEN

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, Purkinje cell-specific Kif17 deletion partially phenocopies Kif17 germline mutants. Unexpectedly, CGNP-specific Kif17 deletion results in the opposite phenotype-increased CGNP proliferation and HH target gene expression due to altered GLI transcription factor processing. Together, these data identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and opposing roles in HH-producing Purkinje cells and HH-responding CGNPs.


Asunto(s)
Cerebelo , Cerebelo/anomalías , Proteínas Hedgehog , Cinesinas , Malformaciones del Sistema Nervioso , Células de Purkinje , Animales , Cinesinas/metabolismo , Cinesinas/genética , Cerebelo/metabolismo , Cerebelo/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Ratones , Células de Purkinje/metabolismo , Transducción de Señal , Proliferación Celular , Ratones Noqueados , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Discapacidades del Desarrollo
12.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38673763

RESUMEN

Chronic ethanol exposure often triggers neuroinflammation in the brain's reward system, potentially promoting the drive for ethanol consumption. A main marker of neuroinflammation is the microglia-derived monocyte chemoattractant protein 1 (MCP1) in animal models of alcohol use disorder in which ethanol is forcefully given. However, there are conflicting findings on whether MCP1 is elevated when ethanol is taken voluntarily, which challenges its key role in promoting motivation for ethanol consumption. Here, we studied MCP1 mRNA levels in areas implicated in consumption motivation-specifically, the prefrontal cortex, hippocampus, and striatum-as well as in the cerebellum, a brain area highly sensitive to ethanol, of C57BL/6 mice subjected to intermittent and voluntary ethanol consumption for two months. We found a significant increase in MCP1 mRNA levels in the cerebellum of mice that consumed ethanol compared to controls, whereas no significant changes were observed in the prefrontal cortex, hippocampus, or striatum or in microglia isolated from the hippocampus and striatum. To further characterize cerebellar neuroinflammation, we measured the expression changes in other proinflammatory markers and chemokines, revealing a significant increase in the proinflammatory microRNA miR-155. Notably, other classical proinflammatory markers, such as TNFα, IL6, and IL-1ß, remained unaltered, suggesting mild neuroinflammation. These results suggest that the onset of neuroinflammation in motivation-related areas is not required for high voluntary consumption in C57BL/6 mice. In addition, cerebellar susceptibility to neuroinflammation may be a trigger to the cerebellar degeneration that occurs after chronic ethanol consumption in humans.


Asunto(s)
Consumo de Bebidas Alcohólicas , Cerebelo , Quimiocina CCL2 , Cuerpo Estriado , Etanol , Hipocampo , Ratones Endogámicos C57BL , Corteza Prefrontal , Animales , Corteza Prefrontal/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/patología , Ratones , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/patología , Cerebelo/metabolismo , Cerebelo/efectos de los fármacos , Cerebelo/patología , Masculino , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/efectos de los fármacos , Etanol/efectos adversos , Consumo de Bebidas Alcohólicas/efectos adversos , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/etiología , Enfermedades Neuroinflamatorias/patología , Microglía/metabolismo , Microglía/efectos de los fármacos , Microglía/patología , Inflamación/metabolismo , Inflamación/patología , Inflamación/inducido químicamente
13.
Biomed Pharmacother ; 174: 116526, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38574621

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is a debilitating neurodegenerative disorder of the cerebellum and brainstem. Memantine has been proposed as a potential treatment for SCA1. It blocks N-methyl-D-aspartate (NMDA) receptors on neurons, reduces excitotoxicity and decreases neurodegeneration in Alzheimer models. However, in cerebellar neurodegenerative diseases, the potential value of memantine is still unclear. We investigated the effects of memantine on motor performance and synaptic transmission in the cerebellum in a mouse model where mutant ataxin 1 is specifically targeted to glia. Lentiviral vectors (LVV) were used to express mutant ataxin 1 selectively in Bergmann glia (BG). In mice transduced with the mutant ataxin 1, chronic treatment with memantine improved motor activity during initial tests, presumably due to preserved BG and Purkinje cell (PC) morphology and numbers. However, mice were unable to improve their rota rod scores during next days of training. Memantine also compromised improvement in the rota rod scores in control mice upon repetitive training. These effects may be due to the effects of memantine on plasticity (LTD suppression) and NMDA receptor modulation. Some effects of chronically administered memantine persisted even after its wash-out from brain slices. Chronic memantine reduced morphological signs of neurodegeneration in the cerebellum of SCA1 model mice. This resulted in an apparent initial reduction of ataxic phenotype, but memantine also affected cerebellar plasticity and ultimately compromised motor learning. We speculate that that clinical application of memantine in SCA1 might be hampered by its ability to suppress NMDA-dependent plasticity in cerebellar cortex.


Asunto(s)
Modelos Animales de Enfermedad , Memantina , Fenotipo , Ataxias Espinocerebelosas , Animales , Memantina/farmacología , Ataxias Espinocerebelosas/tratamiento farmacológico , Ataxias Espinocerebelosas/patología , Ratones , Ataxina-1/metabolismo , Ataxina-1/genética , Actividad Motora/efectos de los fármacos , Cerebelo/efectos de los fármacos , Cerebelo/patología , Cerebelo/metabolismo , Células de Purkinje/efectos de los fármacos , Células de Purkinje/patología , Células de Purkinje/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Ratones Transgénicos , Ratones Endogámicos C57BL , Neuroglía/efectos de los fármacos , Neuroglía/patología , Neuroglía/metabolismo , Masculino , Plasticidad Neuronal/efectos de los fármacos
14.
Zhonghua Bing Li Xue Za Zhi ; 53(5): 452-457, 2024 May 08.
Artículo en Chino | MEDLINE | ID: mdl-38678325

RESUMEN

Objective: To investigate the role of RNA m6A methylation in mediating cerebellar dysplasia through analyzing the phenotypes of the mouse cerebella and the expression of several key m6A regulators upon hypobaric hypoxia treatment. Methods: Five-day old C57/BL6 mice were exposed to hypobaric hypoxia for 9 days. The status of mouse cerebellar development was analyzed by comparing the body weights, brain weights and histological features. Immunostaining of cell-type-specific markers was performed to analyze the cerebellar morphology. Real-time PCR, Western blot and immunohistochemical staining were performed to detect the expression of key m6A regulators in the mouse cerebella. Results: Compared with the control, the body weights, brain weights and cerebellar volumes of hypobaric hypoxic mice were significantly reduced (P<0.01). The expression of specific markers in different cells, including NeuN (mature neuron), Calbindin-D28K (Purkinje cell) and GFAP (astrocyte), was decreased in hypobaric hypoxic mouse cerebella (P<0.01), accompanied with disorganized cellular structure. The expression of methyltransferase METTL3 was significantly down-regulated in the cerebella of hypobaric hypoxic mice (P<0.05). Conclusions: Hypobaric hypoxia stimulation causes mouse cerebellar dysplasia, with structural abnormalities in mature granular neurons, Purkinje cells and astrocytes. Expression of METTL3 is decreased in hypobaric hypoxic mice cerebellum compared with that of normobaric normoxic mice, suggesting that its mediated RNA m6A methylation may play an important role in hypobaric hypoxia-induced mouse cerebellar dysplasia.


Asunto(s)
Calbindinas , Cerebelo , Proteínas de Unión al ADN , Hipoxia , Metiltransferasas , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso , Células de Purkinje , Animales , Ratones , Cerebelo/metabolismo , Hipoxia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Células de Purkinje/metabolismo , Células de Purkinje/patología , Calbindinas/metabolismo , Calbindinas/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Astrocitos/metabolismo , Regulación hacia Abajo , Metilación , Adenosina/metabolismo , Adenosina/análogos & derivados , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/genética
15.
Acta Neuropathol Commun ; 12(1): 62, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637827

RESUMEN

BACKGROUND: Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS: The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION: This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.


Asunto(s)
Trastorno Autístico , Discapacidad Intelectual , Masculino , Niño , Animales , Ratones , Humanos , Discapacidad Intelectual/genética , Trastorno Autístico/genética , Sirtuina 1/genética , Sirtuina 1/metabolismo , Genes Mitocondriales , Proteínas de Homeodominio/genética , Cerebelo/metabolismo , Autopsia , Metilación , Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
16.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673966

RESUMEN

Activity-dependent neuroprotective protein (ADNP) is a neuroprotective protein essential for embryonic development, proper brain development, and neuronal plasticity. Its mutation causes the autism-like ADNP syndrome (also called the Helsmoortel-Van der Aa syndrome), characterized by neural developmental disorders and motor dysfunctions. Similar to the ADNP syndrome, the ADNP haploinsufficient mouse shows low synapse density, leading to motor and cognitive ability delays. Moderate physical activity (PA) has several neuroprotective and cognitive benefits, promoting neuronal survival, differentiation, neurogenesis, and plasticity. Until now, no study has investigated the effect of moderate exercise on ADNP expression and distribution in the rat brain. The aim of the current investigation was to study the effects of moderate exercise on the ADNP expression and neuronal activation measured by the microtubule protein ß-Tubulin III. In pursuit of this objective, twenty-four rats were selected and evenly distributed into two categories: sedentary control rats and rats exposed to moderate physical activity on a treadmill over a span of 12 weeks. Our results showed that moderate PA increases the expression of ADNP and ß-Tubulin III in the dentate gyrus (DG) hippocampal region and cerebellum. Moreover, we found a co-localization of ADNP and ß-Tubulin III in both DG and cerebellum, suggesting a direct association of ADNP with adult neuronal activation induced by moderate PA.


Asunto(s)
Encéfalo , Proteínas del Tejido Nervioso , Condicionamiento Físico Animal , Animales , Masculino , Ratas , Encéfalo/metabolismo , Cerebelo/metabolismo , Giro Dentado/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/genética , Ratas Wistar
17.
Brain Res ; 1834: 148888, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548249

RESUMEN

A Disintegrin And Metalloprotease 10 (ADAM10), is able to control several important physiopathological processes through the shedding of a large number of protein substrates. Although ADAM10 plays a crucial role in the central nervous system (CNS) development and function, its protein distribution in the CNS has not been fully addressed. Here, we described the regional and cellular ADAM10 protein expression in C57BL/6 mice examined by immunofluorescence 1) throughout the adult mouse brain, cerebellum and spinal cord in vivo and 2) in different cell types as neurons, astrocytes, oligodendrocytes and microglia in vitro. We observed ADAM10 expression through the whole CNS, with a strong expression in the hippocampus, in the hypothalamus and in the cerebral and piriform cortex in the brain, in the Purkinje and in granular cell layers in the cerebellum and in the spinal cord to a lower extent. In vivo, ADAM10 protein expression was mainly found in neurons and in some oligodendroglial cell populations. However, in primary cultures we observed ADAM10 expression in neurons, oligodendrocytes, astrocytes and microglia. Interestingly, ADAM10 was not only found in the membrane but also in cytoplasmic vesicles and in the nucleus of primary cultured cells. Overall, this work highlights a wide distribution of ADAM10 throughout the CNS. The nuclear localization of ADAM10, probably due to its intracellular domain, emphasizes its role in cell signalling in physiological and pathological conditions. Further investigations are required to better elucidate the role of ADAM10 in glial cells.


Asunto(s)
Proteína ADAM10 , Sistema Nervioso Central , Proteínas de la Membrana , Ratones Endogámicos C57BL , Neuronas , Médula Espinal , Animales , Proteína ADAM10/metabolismo , Neuronas/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Sistema Nervioso Central/metabolismo , Médula Espinal/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Astrocitos/metabolismo , Microglía/metabolismo , Células Cultivadas , Oligodendroglía/metabolismo , Masculino , Encéfalo/metabolismo , Cerebelo/metabolismo
18.
Neuroreport ; 35(6): 374-379, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38526932

RESUMEN

Lethal giant larvae 1 (LGL1) is originally recognized as a tumor suppressor, implicated in maintaining cell polarity in Drosophila and mammalian cells. Cell polarity plays a crucial role in tumorigenesis. We previously established Pax2-LGL1 -/- conditional knockout mice but did not focus on the tumorigenesis in cerebellar primordium. HE staining was used to detect the morphological structure of the cerebellar primordium during early embryonic development in Pax2-LGL1 -/- mice. Immunofluorescence assays were used to detect the expression of polar molecules. TUNEL staining assessed tissue apoptosis. Our findings reveal that deletion of LGL1 leads to the emergence of neuroblastoma-like tissues within the cerebellum primordium during early embryogenesis. This outcome can be attributed to alterations in expression patterns of polar molecules Cdc42 and ß-catenin following early deletion of LGL1, resulting in loss of cell polarity among neuroepithelial cells and subsequent formation of tumor-like tissues. However, further histological examination demonstrated that these tumor-like tissues disappear from embryonic day 15.5 onwards within the cerebellar primordium of Pax2-LGL1 -/- mice due to apoptosis-mediated cellular compensation. Our data emphasize the importance of LGL1 in maintaining neuroepithelial cell polarity and reveal a novel role for LGL1 in regulating tumorigenesis and ablation in the cerebellar primordium.


Asunto(s)
Apoptosis , Cerebelo , Glicoproteínas , Animales , Ratones , Carcinogénesis , Cerebelo/metabolismo , Glicoproteínas/metabolismo , Mamíferos/metabolismo , Ratones Noqueados
19.
Cell Tissue Res ; 396(2): 255-267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38502237

RESUMEN

Joubert syndrome (JS) is a recessively inherited congenital ataxia characterized by hypotonia, psychomotor delay, abnormal ocular movements, intellectual disability, and a peculiar cerebellar and brainstem malformation, the "molar tooth sign." Over 40 causative genes have been reported, all encoding for proteins implicated in the structure or functioning of the primary cilium, a subcellular organelle widely present in embryonic and adult tissues. In this paper, we developed an in vitro neuronal differentiation model using patient-derived induced pluripotent stem cells (iPSCs), to evaluate possible neurodevelopmental defects in JS. To this end, iPSCs from four JS patients harboring mutations in distinct JS genes (AHI1, CPLANE1, TMEM67, and CC2D2A) were differentiated alongside healthy control cells to obtain mid-hindbrain precursors and cerebellar granule cells. Differentiation was monitored over 31 days through the detection of lineage-specific marker expression by qRT-PCR, immunofluorescence, and transcriptomics analysis. All JS patient-derived iPSCs, regardless of the mutant gene, showed a similar impairment to differentiate into mid-hindbrain and cerebellar granule cells when compared to healthy controls. In addition, analysis of primary cilium count and morphology showed notable ciliary defects in all differentiating JS patient-derived iPSCs compared to controls. These results confirm that patient-derived iPSCs are an accessible and relevant in vitro model to analyze cellular phenotypes connected to the presence of JS gene mutations in a neuronal context.


Asunto(s)
Anomalías Múltiples , Diferenciación Celular , Cerebelo , Cerebelo/anomalías , Anomalías del Ojo , Células Madre Pluripotentes Inducidas , Enfermedades Renales Quísticas , Neuronas , Retina , Retina/anomalías , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Anomalías del Ojo/genética , Anomalías del Ojo/patología , Cerebelo/patología , Cerebelo/metabolismo , Neuronas/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Retina/metabolismo , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/patología , Enfermedades Renales Quísticas/metabolismo , Masculino , Femenino , Mutación/genética , Cilios/metabolismo
20.
Cells ; 13(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38474350

RESUMEN

Fetal alcohol spectrum disorders (FASD) caused by developmental ethanol exposure lead to cerebellar impairments, including motor problems, decreased cerebellar weight, and cell death. Alterations in the sole output of the cerebellar cortex, Purkinje cells, and central nervous system immune cells, microglia, have been reported in animal models of FASD. To determine how developmental ethanol exposure affects adult cerebellar microglia and Purkinje cells, we used a human third-trimester binge exposure model in which mice received ethanol or saline from postnatal (P) days 4-9. In adolescence, cerebellar cranial windows were implanted and mice were aged to young adulthood for examination of microglia and Purkinje cells in vivo with two-photon imaging or in fixed tissue. Ethanol had no effect on microglia density, morphology, dynamics, or injury response. However, Purkinje cell linear frequency was reduced by ethanol. Microglia-Purkinje cell interactions in the Purkinje Cell Layer were altered in females compared to males. Overall, developmental ethanol exposure had few effects on cerebellar microglia in young adulthood and Purkinje cells appeared to be more susceptible to its effects.


Asunto(s)
Etanol , Trastornos del Espectro Alcohólico Fetal , Embarazo , Masculino , Humanos , Femenino , Animales , Ratones , Adulto Joven , Adulto , Anciano , Etanol/farmacología , Células de Purkinje , Trastornos del Espectro Alcohólico Fetal/etiología , Trastornos del Espectro Alcohólico Fetal/metabolismo , Microglía/metabolismo , Cerebelo/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA