Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
Más filtros













Intervalo de año de publicación
1.
Appl Microbiol Biotechnol ; 108(1): 332, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734756

RESUMEN

Histone acetylation modifications in filamentous fungi play a crucial role in epigenetic gene regulation and are closely linked to the transcription of secondary metabolite (SM) biosynthetic gene clusters (BGCs). Histone deacetylases (HDACs) play a pivotal role in determining the extent of histone acetylation modifications and act as triggers for the expression activity of target BGCs. The genus Chaetomium is widely recognized as a rich source of novel and bioactive SMs. Deletion of a class I HDAC gene of Chaetomium olivaceum SD-80A, g7489, induces a substantial pleiotropic effect on the expression of SM BGCs. The C. olivaceum SD-80A ∆g7489 strain exhibited significant changes in morphology, sporulation ability, and secondary metabolic profile, resulting in the emergence of new compound peaks. Notably, three polyketides (A1-A3) and one asterriquinone (A4) were isolated from this mutant strain. Furthermore, our study explored the BGCs of A1-A4, confirming the function of two polyketide synthases (PKSs). Collectively, our findings highlight the promising potential of molecular epigenetic approaches for the elucidation of novel active compounds and their biosynthetic elements in Chaetomium species. This finding holds great significance for the exploration and utilization of Chaetomium resources. KEY POINTS: • Deletion of a class I histone deacetylase activated secondary metabolite gene clusters. • Three polyketides and one asterriquinone were isolated from HDAC deleted strain. • Two different PKSs were reported in C. olivaceum SD-80A.


Asunto(s)
Chaetomium , Histona Desacetilasas , Familia de Multigenes , Policétidos , Metabolismo Secundario , Chaetomium/genética , Chaetomium/enzimología , Chaetomium/metabolismo , Metabolismo Secundario/genética , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Policétidos/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Vías Biosintéticas/genética , Epigénesis Genética
2.
Cell Rep ; 42(12): 113567, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38118441

RESUMEN

Atg15 (autophagy-related 15) is a vacuolar phospholipase essential for the degradation of cytoplasm-to-vacuole targeting (Cvt) bodies and autophagic bodies, hereinafter referred to as intravacuolar/intralysosomal autophagic compartments (IACs), but it remains unknown if Atg15 directly disrupts IAC membranes. Here, we show that the recombinant Chaetomium thermophilum Atg15 lipase domain (CtAtg15(73-475)) possesses phospholipase activity. The activity of CtAtg15(73-475) was markedly elevated by limited digestion. We inserted the human rhinovirus 3C protease recognition sequence and found that cleavage between S159 and V160 was important to activate CtAtg15(73-475). Our molecular dynamics simulation suggested that the cleavage facilitated conformational change around the active center of CtAtg15, resulting in an exposed state. We confirmed that CtAtg15 could disintegrate S. cerevisiae IAC in vivo. Further, both mitochondria and IAC of S. cerevisiae were disintegrated by CtAtg15. This study suggests Atg15 plays a role in disrupting any organelle membranes delivered to vacuoles by autophagy.


Asunto(s)
Proteínas Fúngicas , Membranas Intracelulares , Fosfolipasas , Chaetomium/enzimología , Chaetomium/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fosfolipasas/química , Fosfolipasas/genética , Fosfolipasas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dominios Proteicos , Simulación de Dinámica Molecular , Mitocondrias/metabolismo , Membranas Intracelulares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Estructura Terciaria de Proteína , Modelos Moleculares , Activación Enzimática
3.
Protein Expr Purif ; 190: 106006, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34742913

RESUMEN

l-asparaginase is a chemotherapeutic drug used in the treatment of acute lymphoblastic leukemia, a malignant disorder in children. l-asparaginase helps in removing acrylamide found in fried and baked foods which is carcinogenic in nature. The search for new therapeutic enzymes is of great interest in both medical and food applications. The present work aims to isolate the intracellular l-asparaginase from endophytic fungi Chaetomium sp. The intracellular enzyme was partially purified by chromatographic techniques. Molecular weight of enzyme was found to be ~66 kDa by SDS PAGE analysis. The enzyme is highly specific for l-asparagine and did not show glutaminase and urease activity. Maximum enzyme activity was found to be 58 ± 5 U/mL at 40 °C, pH 7.0 with 2 µg of protein. Intracellular l-asparaginase from Chaetomium sp. exhibited anticancer activity on human blood cancer (MOLT-4) cells.


Asunto(s)
Antineoplásicos , Asparaginasa , Chaetomium/enzimología , Proteínas Fúngicas , Glutaminasa/química , Ureasa/química , Antineoplásicos/química , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Asparaginasa/química , Asparaginasa/aislamiento & purificación , Asparaginasa/farmacología , Línea Celular Tumoral , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/farmacología , Humanos
4.
Nat Commun ; 12(1): 6933, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836937

RESUMEN

Found across all kingdoms of life, 2-keto acid dehydrogenase complexes possess prominent metabolic roles and form major regulatory sites. Although their component structures are known, their higher-order organization is highly heterogeneous, not only across species or tissues but also even within a single cell. Here, we report a cryo-EM structure of the fully active Chaetomium thermophilum pyruvate dehydrogenase complex (PDHc) core scaffold at 3.85 Å resolution (FSC = 0.143) from native cell extracts. By combining cryo-EM with macromolecular docking and molecular dynamics simulations, we resolve all PDHc core scaffold interfaces and dissect the residing transacetylase reaction. Electrostatics attract the lipoyl domain to the transacetylase active site and stabilize the coenzyme A, while apolar interactions position the lipoate in its binding cleft. Our results have direct implications on the structural determinants of the transacetylase reaction and the role of flexible regions in the context of the overall 10 MDa PDHc metabolon architecture.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Complejo Piruvato Deshidrogenasa/ultraestructura , Proteínas Bacterianas/metabolismo , Sitios de Unión , Chaetomium/enzimología , Coenzima A/metabolismo , Coenzima A/ultraestructura , Microscopía por Crioelectrón , Pruebas de Enzimas , Redes y Vías Metabólicas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Complejo Piruvato Deshidrogenasa/metabolismo
5.
Int J Biol Macromol ; 191: 222-229, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34508724

RESUMEN

Exoglucanase (CBH) is the rate limiting enzyme in the process of cellulose degradation. The carbohydrate binding module (CBM) can improve the accessibility of cellulase to substrate, thereby promoting the enzymatic hydrolysis of cellulase. In this study, the influence of CBM on the properties of GH6 exoglucanase from Chaetomium thermophilum (CtCBH) is systematically explored from three perspectives: the fusion of exogenous CBM, the exogenous CBM replacement of its own CBM, and the deletion of its own CBM. The parental and reconstructed CtCBH presented the same optimum pH (6.0) and temperature (60 °C) for maximum activity. Fusion of exogenous CBM increased the binding capacity of CtCBH to Avicel by 8% and 9%, respectively, but it had no significant effect on its catalytic activity. The exogenous CBM replacement of its own CBM resulted in a 12% reduction in the binding ability of CtCBH to Avicel, and a 26% reduction in the catalytic activity of Avicel. The deletion of its own CBM significantly reduced the binding ability of CtCBH to Avicel by approximately 53%, but its catalytic activity was not obviously reduced. These observations suggest that binding ability of CBM is not necessary for the catalysis of CtCBH.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Chaetomium/enzimología , Proteínas Fúngicas/química , Sitios de Unión , Celulosa/química , Celulosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidrólisis , Unión Proteica
6.
Acta Crystallogr D Struct Biol ; 77(Pt 6): 755-775, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34076590

RESUMEN

The FAD-dependent oxidoreductase from Chaetomium thermophilum (CtFDO) is a novel thermostable glycoprotein from the glucose-methanol-choline (GMC) oxidoreductase superfamily. However, CtFDO shows no activity toward the typical substrates of the family and high-throughput screening with around 1000 compounds did not yield any strongly reacting substrate. Therefore, protein crystallography, including crystallographic fragment screening, with 42 fragments and 37 other compounds was used to describe the ligand-binding sites of CtFDO and to characterize the nature of its substrate. The structure of CtFDO reveals an unusually wide-open solvent-accessible active-site pocket with a unique His-Ser amino-acid pair putatively involved in enzyme catalysis. A series of six crystal structures of CtFDO complexes revealed five different subsites for the binding of aryl moieties inside the active-site pocket and conformational flexibility of the interacting amino acids when adapting to a particular ligand. The protein is capable of binding complex polyaromatic substrates of molecular weight greater than 500 Da.


Asunto(s)
Chaetomium/enzimología , Proteínas Fúngicas/química , Modelos Moleculares , Oxidorreductasas/química , Sitios de Unión , Flavina-Adenina Dinucleótido/química , Conformación Proteica
7.
PLoS One ; 16(5): e0251261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33970942

RESUMEN

Chl1 is a member of the XPD family of 5'-3' DNA helicases, which perform a variety of roles in genome maintenance and transmission. They possess a variety of unique structural features, including the presence of a highly variable, partially-ordered insertion in the helicase domain 1. Chl1 has been shown to be required for chromosome segregation in yeast due to its role in the formation of persistent chromosome cohesion during S-phase. Here we present structural and biochemical data to show that Chl1 has the same overall domain organisation as other members of the XPD family, but with some conformational alterations. We also present data suggesting the insert domain in Chl1 regulates its DNA binding.


Asunto(s)
Chaetomium/enzimología , ADN Helicasas/química , Proteína de la Xerodermia Pigmentosa del Grupo D/química , Chaetomium/química , Chaetomium/genética , Cristalografía por Rayos X , ADN Helicasas/genética , ADN Helicasas/metabolismo , Conformación Proteica , Fase S/fisiología , Intercambio de Cromátides Hermanas , Proteína de la Xerodermia Pigmentosa del Grupo D/genética , Proteína de la Xerodermia Pigmentosa del Grupo D/metabolismo
8.
Protein J ; 40(4): 504-511, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33999303

RESUMEN

Genetic manipulation of Escherichia coli influences the regulation of bacterial metabolism, which could be useful for the production of different targeted products. The RpoZ gene encodes for the ω subunit of the RNA polymerase (RNAP) and is involved in the regulation of the relA gene pathway. RelA is responsible for the production of guanosine pentaphosphate (ppGpp), which is a major alarmone in the stringent response. Expression of relA is reduced in the early hours of growth of RpoZ mutant E. coli. In the absence of the ω subunit, ppGpp affinity to RNAP is decreased; thus, rpoZ gene deleted E. coli strains show a modified stringent response. We used the E. coli K-12 MG1655 strain that lacks rpoZ (JEN202) to investigate the effect of the modified stringent response on recombinant protein production. However, the absence of the ω subunit results in diminished stability of the RNA polymerase at the promoter site. To avoid this, we used a deactivated CRISPR system that targets the ω subunit to upstream of the promoter site in the expression plasmid. The expression plasmid encodes for Chaetomium thermophilum formate dehydrogenase (CtFDH), a valuable enzyme for cofactor regeneration and CO2 reduction. A higher amount of CtFDH from the soluble fraction was purified from the JEN202 strain compared to the traditional BL21(DE3) method, thus offering a new strategy for batch-based recombinant enzyme production.


Asunto(s)
Sistemas CRISPR-Cas , Chaetomium/genética , Formiato Deshidrogenasas , Proteínas Fúngicas , Expresión Génica , Chaetomium/enzimología , Escherichia coli K12/genética , Escherichia coli K12/metabolismo , Formiato Deshidrogenasas/biosíntesis , Formiato Deshidrogenasas/genética , Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética
9.
Acta Crystallogr D Struct Biol ; 77(Pt 4): 496-509, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33825710

RESUMEN

Noncoding intron sequences present in precursor mRNAs need to be removed prior to translation, and they are excised via the spliceosome, a multimegadalton molecular machine composed of numerous protein and RNA components. The DEAH-box ATPase Prp2 plays a crucial role during pre-mRNA splicing as it ensures the catalytic activation of the spliceosome. Despite high structural similarity to other spliceosomal DEAH-box helicases, Prp2 does not seem to function as an RNA helicase, but rather as an RNA-dependent ribonucleoprotein particle-modifying ATPase. Recent crystal structures of the spliceosomal DEAH-box ATPases Prp43 and Prp22, as well as of the related RNA helicase MLE, in complex with RNA have contributed to a better understanding of how RNA binding and processivity might be achieved in this helicase family. In order to shed light onto the divergent manner of function of Prp2, an N-terminally truncated construct of Chaetomium thermophilum Prp2 was crystallized in the presence of ADP-BeF3- and a poly-U12 RNA. The refined structure revealed a virtually identical conformation of the helicase core compared with the ADP-BeF3-- and RNA-bound structure of Prp43, and only a minor shift of the C-terminal domains. However, Prp2 and Prp43 differ in the hook-loop and a loop of the helix-bundle domain, which interacts with the hook-loop and evokes a different RNA conformation immediately after the 3' stack. On replacing these loop residues in Prp43 by the Prp2 sequence, the unwinding activity of Prp43 was abolished. Furthermore, a putative exit tunnel for the γ-phosphate after ATP hydrolysis could be identified in one of the Prp2 structures.


Asunto(s)
ARN Helicasas DEAD-box , ARN , Chaetomium/enzimología , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , Conformación Molecular , Unión Proteica , ARN/química , ARN/metabolismo , Empalme del ARN
10.
Protein Pept Lett ; 28(9): 1043-1053, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33726638

RESUMEN

BACKGROUND: Thermophilic fungi have recently emerged as a promising source of thermostable enzymes. Superoxide dismutases are key antioxidant metalloenzymes with promising therapeutic effects in various diseases, both acute and chronic. However, structural heterogeneity and low thermostability limit their therapeutic efficacy. OBJECTIVE: Although several studies from hypethermophilic superoxide dismutases (SODs) have been reported, information about Cu,Zn-SODs from thermophilic fungi is scarce. Chaetomium thermophilum is a thermophilic fungus that could provide proteins with thermophilic properties. METHODS: The enzyme was expressed in Pichia pastoris cells and crystallized using the vapor-diffusion method. X-ray data were collected, and the structure was determined and refined to 1.56 Å resolution. Structural analysis and comparisons were carried out. RESULTS: The presence of 8 molecules (A through H) in the asymmetric unit resulted in four different interfaces. Molecules A and F form the typical homodimer which is also found in other Cu,Zn- SODs. Zinc was present in all subunits of the structure while copper was found in only four subunits with reduced occupancy (C, D, E and F). CONCLUSION: The ability of the enzyme to form oligomers and the elevated Thr:Ser ratio may be contributing factors to its thermal stability. Two hydrophobic residues that participate in interface formation and are not present in other CuZn-SODs may play a role in the formation of new interfaces and the oligomerization process. The CtSOD crystal structure reported here is the first Cu,Zn-SOD structure from a thermophilic fungus.


Asunto(s)
Chaetomium/enzimología , Cobre/química , Proteínas Fúngicas/química , Superóxido Dismutasa/química , Zinc/química , Chaetomium/genética , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas Fúngicas/genética , Dominios Proteicos , Superóxido Dismutasa/genética
11.
Cell Rep ; 34(6): 108727, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33567276

RESUMEN

The pyruvate dehydrogenase complex (PDHc) is a giant enzymatic assembly involved in pyruvate oxidation. PDHc components have been characterized in isolation, but the complex's quaternary structure has remained elusive due to sheer size, heterogeneity, and plasticity. Here, we identify fully assembled Chaetomium thermophilum α-keto acid dehydrogenase complexes in native cell extracts and characterize their domain arrangements utilizing mass spectrometry, activity assays, crosslinking, electron microscopy (EM), and computational modeling. We report the cryo-EM structure of the PDHc core and observe unique features of the previously unknown native state. The asymmetric reconstruction of the 10-MDa PDHc resolves spatial proximity of its components, agrees with stoichiometric data (60 E2p:12 E3BP:∼20 E1p: ≤ 12 E3), and proposes a minimum reaction path among component enzymes. The PDHc shows the presence of a dynamic pyruvate oxidation compartment, organized by core and peripheral protein species. Our data provide a framework for further understanding PDHc and α-keto acid dehydrogenase complex structure and function.


Asunto(s)
Chaetomium/enzimología , Proteínas Fúngicas , Modelos Moleculares , Complejo Piruvato Deshidrogenasa , Extractos Celulares/química , Microscopía por Crioelectrón , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Estructura Cuaternaria de Proteína , Complejo Piruvato Deshidrogenasa/química , Complejo Piruvato Deshidrogenasa/aislamiento & purificación
12.
Commun Biol ; 4(1): 2, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33398031

RESUMEN

N-terminal acetylation is one of the most common protein modifications in eukaryotes and is carried out by N-terminal acetyltransferases (NATs). It plays important roles in protein homeostasis, localization, and interactions and is linked to various human diseases. NatB, one of the major co-translationally active NATs, is composed of the catalytic subunit Naa20 and the auxiliary subunit Naa25, and acetylates about 20% of the proteome. Here we show that NatB substrate specificity and catalytic mechanism are conserved among eukaryotes, and that Naa20 alone is able to acetylate NatB substrates in vitro. We show that Naa25 increases the Naa20 substrate affinity, and identify residues important for peptide binding and acetylation activity. We present the first Naa20 crystal structure in complex with the competitive inhibitor CoA-Ac-MDEL. Our findings demonstrate how Naa20 binds its substrates in the absence of Naa25 and support prospective endeavors to derive specific NAT inhibitors for drug development.


Asunto(s)
Chaetomium/enzimología , Acetiltransferasa B N-Terminal/metabolismo , Chaetomium/genética , Proteínas Fúngicas/metabolismo , Estructura Molecular , Acetiltransferasa B N-Terminal/genética , Especificidad por Sustrato
13.
Structure ; 29(4): 357-370.e9, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33352114

RESUMEN

UDP-glucose:glycoprotein glucosyltransferase (UGGT) flags misfolded glycoproteins for ER retention. We report crystal structures of full-length Chaetomium thermophilum UGGT (CtUGGT), two CtUGGT double-cysteine mutants, and its TRXL2 domain truncation (CtUGGT-ΔTRXL2). CtUGGT molecular dynamics (MD) simulations capture extended conformations and reveal clamping, bending, and twisting inter-domain movements. We name "Parodi limit" the maximum distance on the same glycoprotein between a site of misfolding and an N-linked glycan that can be reglucosylated by monomeric UGGT in vitro, in response to recognition of misfold at that site. Based on the MD simulations, we estimate the Parodi limit as around 70-80 Å. Frequency distributions of distances between glycoprotein residues and their closest N-linked glycosylation sites in glycoprotein crystal structures suggests relevance of the Parodi limit to UGGT activity in vivo. Our data support a "one-size-fits-all adjustable spanner" UGGT substrate recognition model, with an essential role for the UGGT TRXL2 domain.


Asunto(s)
Proteínas Fúngicas/química , Glucosiltransferasas/química , Simulación de Dinámica Molecular , Dominio Catalítico , Chaetomium/enzimología , Proteínas Fúngicas/metabolismo , Glucosiltransferasas/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Células HEK293 , Humanos , Pliegue de Proteína
14.
Int J Biol Macromol ; 168: 223-232, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-33309660

RESUMEN

A novel thermostable xylanase gene from Chaetomium sp. CQ31 was cloned and codon-optimized (CsXynBop). The deduced protein sequence of the gene shared the highest similarity of 75% with the glycoside hydrolase (GH) family 10 xylanase from Achaetomium sp. Xz-8. CsXynBop was over-expressed in Pichia pastoris GS115 by high-cell density fermentation, with the highest xylanase yield of 10,017 U/mL. The recombinant xylanase (CsXynBop) was purified to homogeneity and biochemically characterized. CsXynBop was optimally active at pH 6.5 and 85 °C, respectively, and stable over a broad pH range of 5.0-9.5 and up to 60 °C. The enzyme exhibited strict substrate specificity towards oat-spelt xylan (2, 489 U/mg), beechwood xylan (1522 U/mg), birchwood xylan (1067 U/mg), and showed relatively high activity towards arabinoxylan (1208 U/mg), but exhibited no activity on other tested polysaccharides. CsXynBop hydrolyzed different xylans to yield mainly xylooligosaccharides (XOSs) with degree of polymerization (DP) 2-5. The application of CsXynBop (200 U/g malt) in malt mashing substantially decreased the filtration time and viscosity of malt by 42.3% and 8.6%, respectively. These excellent characteristics of CsXynBop may make it a good candidate in beer industry.


Asunto(s)
Chaetomium/enzimología , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Secuencia de Aminoácidos , Cerveza/microbiología , Chaetomium/genética , Chaetomium/metabolismo , Clonación Molecular/métodos , Estabilidad de Enzimas , Glucuronatos , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Cinética , Peso Molecular , Oligosacáridos , Especificidad por Sustrato , Xilanos/química , Xilanos/metabolismo
15.
Chem Biodivers ; 18(1): e2000797, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33245200

RESUMEN

The microbial production of dextranase using cheap carbon sources is beneficial to solve the economic loss caused by the accumulation of dextran in syrup. A food-grade microbial cell factory was constructed by introducing the dextranase encoding gene DEX from Chaetomium gracile to the chromosome of Bacillus subtilis, and the antibiotic resistance marker gene was subsequently deleted via the Cre/loxP strategy. The dual-promoter system with a sequentially arranged constitutive P43 promoter resulted in an 85 % increase in DEX expression. Under the optimal fermentation conditions of 10 g/L maltose, 15 g/L casein, 1 g/L Na2 HPO4 , 1 g/L FeSO4 and 8 g/L NaCl, DEX activity was increased from 2.625 to 64.34 U/mL. Recombinant DEX was purified 5.98-fold with a recovery ratio of 26.67 % and specific activity of 3935.02 U/mg. Enzyme activity was optimal at 55 °C and pH 5.0 and remained 80.34 % and 71.36 % of the initial activity at 55 °C and pH 4.0 after 60 min, respectively. The enzyme possessed high activity in the presence of Co2+ , while Ag+ showed the strongest inhibition ability. The optimal substrate was 20 g/L dextran T-2000. The findings could facilitate the low-cost, large-scale production of food-grade DEX for use in the sugar industry.


Asunto(s)
Chaetomium/enzimología , Dextranasa/metabolismo , Proteínas Fúngicas/metabolismo , Cobalto/química , Dextranasa/antagonistas & inhibidores , Dextranasa/genética , Jugos de Frutas y Vegetales/análisis , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Concentración de Iones de Hidrógeno , Cinética , Estabilidad Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Plata/química , Especificidad por Sustrato , Temperatura
16.
Int J Mol Sci ; 21(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339113

RESUMEN

Glycerol is an organic compound that can be utilized as an alternative source of carbon by various organisms. One of the ways to assimilate glycerol by the cell is the phosphorylative catabolic pathway in which its activation is catalyzed by glycerol kinase (GK) and glycerol-3-phosphate (G3P) is formed. To date, several GK crystal structures from bacteria, archaea, and unicellular eukaryotic parasites have been solved. Herein, we present a series of crystal structures of GK from Chaetomium thermophilum (CtGK) in apo and glycerol-bound forms. In addition, we show the feasibility of an ADP-dependent glucokinase (ADPGK)-coupled enzymatic assay to measure the CtGK activity. New structures described in our work provide structural insights into the GK catalyzed reaction in the filamentous fungus and set the foundation for understanding the glycerol metabolism in eukaryotes.


Asunto(s)
Chaetomium/enzimología , Proteínas Fúngicas/química , Glicerol Quinasa/química , Dominio Catalítico , Estabilidad de Enzimas , Proteínas Fúngicas/metabolismo , Glicerol Quinasa/metabolismo , Simulación de Dinámica Molecular
17.
Proc Natl Acad Sci U S A ; 117(43): 26739-26748, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33055219

RESUMEN

Cyclin-dependent kinase 7 (CDK7), Cyclin H, and the RING-finger protein MAT1 form the heterotrimeric CDK-activating kinase (CAK) complex which is vital for transcription and cell-cycle control. When associated with the general transcription factor II H (TFIIH) it activates RNA polymerase II by hyperphosphorylation of its C-terminal domain (CTD). In the absence of TFIIH the trimeric complex phosphorylates the T-loop of CDKs that control cell-cycle progression. CAK holds a special position among the CDK branch due to this dual activity and the dependence on two proteins for activation. We solved the structure of the CAK complex from the model organism Chaetomium thermophilum at 2.6-Å resolution. Our structure reveals an intricate network of interactions between CDK7 and its two binding partners MAT1 and Cyclin H, providing a structural basis for the mechanism of CDK7 activation and CAK activity regulation. In vitro activity measurements and functional mutagenesis show that CDK7 activation can occur independent of T-loop phosphorylation and is thus exclusively MAT1-dependent by positioning the CDK7 T-loop in its active conformation.


Asunto(s)
Ciclina H , Quinasas Ciclina-Dependientes , Ciclo Celular , Chaetomium/química , Chaetomium/enzimología , Ciclina H/química , Ciclina H/metabolismo , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Fosforilación , Transcripción Genética , Quinasa Activadora de Quinasas Ciclina-Dependientes
18.
Int J Biol Macromol ; 164: 3361-3368, 2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-32888988

RESUMEN

Endoglucanases provide an attractive avenue for the bioconversion of lignocellulosic materials into fermentable sugars to supply cellulosic feedstock for biofuels and other value-added chemicals. Thermostable endoglucanases with high catalytic activity are preferred in practical processes. To improve the thermostability and activity of the thermostable ß-1,4-endoglucanase CTendo45 isolated from the thermophilic fungus Chaetomium thermophilum, structure-based rational design was performed by using site-directed mutagenesis. When inactivated mutation of the unique N-glycosylation sequon (N88-E89-T90) was implemented and the conserved Y173 residue was substituted with phenylalanine, a double mutant T90A/Y173F demonstrated enzymatic activity that dramatically increased 2.12- and 1.82-fold towards CMC-Na and ß-D-glucan, respectively. Additionally, T90A/Y173F exhibited extraordinary heat endurance after 300 min of incubation at elevated temperatures. This study provides a valid approach to the improvement of enzyme redesign protocols and the properties of this endoglucanase mutant distinguish it as an excellent candidate enzyme for industrial biomass conversion.


Asunto(s)
Celulasa/aislamiento & purificación , Chaetomium/enzimología , Ingeniería de Proteínas/métodos , Secuencia de Aminoácidos/genética , Biocombustibles , Catálisis , Celulasa/metabolismo , Chaetomium/aislamiento & purificación , Estabilidad de Enzimas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/aislamiento & purificación , Glicosilación , Calor , Hidrólisis , Mutagénesis Sitio-Dirigida/métodos , Especificidad por Sustrato/genética
19.
Biotechnol Lett ; 42(11): 2251-2262, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32557118

RESUMEN

OBJECTIVES: Formate dehydrogenases (FDHs) are NAD(P)H-dependent enzymes that catalyse the reversible oxidation of formate to CO2. The main goal was to use directed evolution to obtain variants of the FDH from Chaetomium thermophilum (CtFDH) with enhanced reduction activity in the conversion of CO2 into formic acid. RESULTS: Four libraries were constructed targeting five residues in the active site. We identified two variants (G93H/I94Y and R259C) with enhanced reduction activity which were characterised in the presence of both aqueous CO2(g) and HCO3-. The A1 variant (G93H/I94Y) showed a 5.4-fold increase in catalytic efficiency (kcat/KM) compared to that of the wild-type for HCO3- reduction. The improved biocatalysts were also applied as a coupled cofactor recycling system in the enantioselective oxidation of 4-phenyl-2-propanol catalysed by the alcohol dehydrogenase from Streptomyces coelicolor A3 (ScADH). Conversions in these reactions increased from 56 to 91% when the A1 variant was used instead of wild-type CtFDH. CONCLUSIONS: Two variants presenting up to five-fold increase in catalytic efficiency and kcat were obtained and characterised. They constitute a promising enzymatic alternative for CO2 utilization and will serve as scaffolds to be further developed in order to meet industrial requirements.


Asunto(s)
Dióxido de Carbono/metabolismo , Chaetomium/enzimología , Formiato Deshidrogenasas/genética , Formiato Deshidrogenasas/metabolismo , Mutación , Alcohol Deshidrogenasa/metabolismo , Biocatálisis , Dominio Catalítico , Chaetomium/genética , Evolución Molecular Dirigida , Formiato Deshidrogenasas/química , Formiatos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oxidación-Reducción , Propanoles/metabolismo , Ingeniería de Proteínas , Streptomyces coelicolor/enzimología
20.
Enzyme Microb Technol ; 137: 109552, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32423672

RESUMEN

Nowadays, the use of formate dehydrogenase (FDH, EC 1.17.1.9) is well established as a means of NADH regeneration from NAD+ via the coupled conversion of formate into carbon dioxide. Recent studies have been reported that specifically Chaetomium thermophilum FDH (CtFDH) is the most efficient FDH catalyzing this reaction in reverse (i.e. using CO2 as a substrate to produce formate, and thereby regenerating NAD+). However, to date the production of active CtFDH at high protein expression levels has received relatively little attention. In this study, we have tested the effect of batch and high cell density fermentation (HCDF) strategies in a small stirred fermenter, as well as the effect of supplementing the medium with casamino acids, on the expressed level of secreted CtFDH using P. pastoris. We have established that the amount of expressed CtFDH was indeed enhanced via a HCDF strategy and that extracellular protease activity was eliminated via the addition of casamino acids into the fermentation medium. On this basis, secreted CtFDH in an active form can be easily separated from the fermentation and can be used for subsequent biotechnological applications.


Asunto(s)
Chaetomium/enzimología , Formiato Deshidrogenasas/biosíntesis , Pichia/metabolismo , Aminoácidos/química , Catálisis , Chaetomium/genética , Medios de Cultivo/química , Fermentación , Oxidación-Reducción , Pichia/genética , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA