Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuromolecular Med ; 22(1): 139-149, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31595404

RESUMEN

Optogenetic stimulation of neural stem cells (NSCs) enables their activity-dependent photo-modulation. This provides a spatio-temporal tool for studying activity-dependent neurogenesis and for regulating the differentiation of the transplanted NSCs. Currently, this is mainly driven by viral transfection of channelrhodopsin-2 (ChR2) gene, which requires high irradiance and complex in vivo/vitro stimulation systems. Additionally, despite the extensive application of optogenetics in neuroscience, the transcriptome-level changes induced by optogenetic stimulation of NSCs have not been elucidated yet. Here, we made transformed NSCs (SFO-NSCs) stably expressing one of the step-function opsin (SFO)-variants of chimeric channelrhodopsins, ChRFR(C167A), which is more sensitive to blue light than native ChR2, via a non-viral transfection system using piggyBac transposon. We set up a simple low-irradiance optical stimulation (OS)-incubation system that induced c-fos mRNA expression, which is activity-dependent, in differentiating SFO-NSCs. More neuron-like SFO-NCSs, which had more elongated axons, were differentiated with daily OS than control cells without OS. This was accompanied by positive/negative changes in the transcriptome involved in axonal remodeling, synaptic plasticity, and microenvironment modulation with the up-regulation of several genes involved in the Ca2+-related functions. Our approach could be applied for stem cell transplantation studies in tissue with two strengths: lower carcinogenicity and less irradiance needed for tissue penetration.


Asunto(s)
Células-Madre Neurales/efectos de la radiación , Neurogénesis/efectos de la radiación , Optogenética , Señalización del Calcio , Línea Celular Transformada , Channelrhodopsins/biosíntesis , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Elementos Transponibles de ADN , Regulación de la Expresión Génica/efectos de la radiación , Ontología de Genes , Genes Reporteros , Genes fos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Células-Madre Neurales/citología , Plasticidad Neuronal/efectos de la radiación , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Transcriptoma/efectos de la radiación , Regulación hacia Arriba/efectos de la radiación
2.
eNeuro ; 6(5)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31444226

RESUMEN

Optogenetics is widely used to control diverse cellular functions with light, requiring experimenters to expose cells to bright light. Because extended exposure to visible light can be toxic to cells, it is important to characterize the effects of light stimulation on cellular function in the absence of optogenetic proteins. Here we exposed mouse cortical cultures with no exogenous optogenetic proteins to several hours of flashing blue, red, or green light. We found that exposing these cultures to as short as 1 h of blue light, but not red or green light, results in an increase in the expression of neuronal activity-regulated genes. Our findings suggest that blue light stimulation is ill suited to long-term optogenetic experiments, especially those that measure transcription, and they emphasize the importance of performing light-only control experiments in samples without optogenetic proteins.


Asunto(s)
Channelrhodopsins/biosíntesis , Channelrhodopsins/efectos de la radiación , Luz , Neuronas/efectos de la radiación , Optogenética/métodos , Estimulación Luminosa/métodos , Animales , Células Cultivadas , Channelrhodopsins/genética , Femenino , Expresión Génica , Masculino , Ratones , Neuronas/metabolismo
3.
Sci Rep ; 9(1): 6466, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015550

RESUMEN

Despite extensive research on primate cognitive function, understanding how anatomical connectivity at a neural circuit level relates to information transformation across different cortical areas remains primitive. New technology is needed to visualize inter-areal anatomical connectivity in living monkeys and to tie this directly to neurophysiological function. Here, we developed a novel method to investigate this structure-function relationship, by combining optical intrinsic signal imaging (OISI) with optogenetic stimulation in living monkeys (opto-OISI). The method involves expressing channelrhodophsin-2 in one area (source) followed by optical imaging of optogenetic activations in the other area (target). We successfully demonstrated the potential of the method with interhemispheric columnar projection patterns between V1/V2 border regions. Unlike the combination of optogenetics and functional magnetic resonance imaging (opto-fMRI), opto-OISI has the advantage of enabling us to detect responses of small clusters of neurons, even if the clusters are sparsely distributed. We suggest that opto-OISI can be a powerful approach to understanding cognitive function at the neural circuit level, directly linking inter-areal circuitry to fine-scale structure and function.


Asunto(s)
Corteza Cerebral , Conectoma , Imagen por Resonancia Magnética , Neuronas , Imagen Óptica , Optogenética , Animales , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/metabolismo , Channelrhodopsins/biosíntesis , Macaca mulatta , Masculino , Neuronas/citología , Neuronas/metabolismo
4.
EMBO J ; 37(24)2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30396994

RESUMEN

Optogenetic tools, providing non-invasive control over selected cells, have the potential to revolutionize sensory prostheses for humans. Optogenetic stimulation of spiral ganglion neurons (SGNs) in the ear provides a future alternative to electrical stimulation used in cochlear implants. However, most channelrhodopsins do not support the high temporal fidelity pertinent to auditory coding because they require milliseconds to close after light-off. Here, we biophysically characterized the fast channelrhodopsin Chronos and revealed a deactivation time constant of less than a millisecond at body temperature. In order to enhance neural expression, we improved its trafficking to the plasma membrane (Chronos-ES/TS). Following efficient transduction of SGNs using early postnatal injection of the adeno-associated virus AAV-PHPB into the mouse cochlea, fiber-based optical stimulation elicited optical auditory brainstem responses (oABR) with minimal latencies of 1 ms, thresholds of 5 µJ and 100 µs per pulse, and sizable amplitudes even at 1,000 Hz of stimulation. Recordings from single SGNs demonstrated good temporal precision of light-evoked spiking. In conclusion, efficient virus-mediated expression of targeting-optimized Chronos-ES/TS achieves ultrafast optogenetic control of neurons.


Asunto(s)
Channelrhodopsins/biosíntesis , Dependovirus , Expresión Génica , Neuronas/metabolismo , Optogenética , Ganglio Espiral de la Cóclea/metabolismo , Transducción Genética , Animales , Tronco Encefálico/metabolismo , Channelrhodopsins/genética , Potenciales Evocados Auditivos , Células HEK293 , Humanos , Ratones , Ratas , Ratas Wistar
5.
J Neurosci ; 38(33): 7351-7363, 2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29959235

RESUMEN

Inputs from the ventral hippocampus (vHPC) to the prefrontal cortex (PFC) play a key role in working memory and emotional control. However, little is known about how excitatory inputs from the vHPC engage different populations of neurons in the PFC. Here we use optogenetics and whole-cell recordings to study the cell-type specificity of synaptic connections in acute slices from the mouse PFC. We first show that vHPC inputs target pyramidal neurons whose cell bodies are located in layer (L)2/3 and L5 of infralimbic (IL) PFC, but only in L5 of prelimbic (PL) PFC, and not L6 of either IL or PL. We then compare connections onto different classes of projection neurons located in these layers and subregions of PFC. We establish vHPC inputs similarly contact corticocortical (CC) and cortico-amygdala neurons in L2/3 of IL, but preferentially target CC neurons over cortico-pontine neurons in L5 of both IL and PL. Of all these neurons, we determine that vHPC inputs are most effective at driving action potential (AP) firing of CC neurons in L5 of IL. We also show this connection exhibits frequency-dependent facilitation, with repetitive activity enhancing AP firing of IL L5 CC neurons, even in the presence of feedforward inhibition. Our findings reveal how vHPC inputs engage defined populations of projection neurons in the PFC, allowing preferentially activation of the intratelencephalic network.SIGNIFICANCE STATEMENT We examined the impact of connections from the ventral hippocampus (vHPC) onto different projection neurons in the mouse prefrontal cortex (PFC). We found vHPC inputs were strongest at corticocortical neurons in layer 5 of infralimbic PFC, where they robustly evoked action potential firing, including during repetitive activity with intact feedforward inhibition.


Asunto(s)
Vías Aferentes/fisiología , Hipocampo/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Potenciales de Acción , Amígdala del Cerebelo/citología , Animales , Transporte Axonal , Channelrhodopsins/biosíntesis , Channelrhodopsins/genética , Channelrhodopsins/efectos de la radiación , Femenino , Genes Reporteros , Hipocampo/citología , Interneuronas/fisiología , Masculino , Ratones , Optogenética , Especificidad de Órganos , Técnicas de Placa-Clamp , Puente/citología , Corteza Prefrontal/citología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica
6.
Am J Physiol Gastrointest Liver Physiol ; 314(3): G448-G457, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29351398

RESUMEN

In vivo optogenetics identifies brain circuits controlling behaviors in conscious animals by using light to alter neuronal function and offers a novel tool to study the brain-gut axis. Using adenoviral-mediated expression, we aimed to investigate whether photoactivation with channelrhodopsin (ChR2) or photoinhibition with halorhodopsin (HR3.0) of fibers originating from the central nucleus of the amygdala (CeA) at the bed nucleus of the stria terminalis (BNST) had any effect on colonic sensitivity. We also investigated whether there was any deleterious effect of the adenovirus on the neuronal population or the neuronal phenotype within the CeA-BNST circuitry activated during the optogenetic stimulation. In male rats, the CeA was infected with vectors expressing ChR2 or HR3.0 and fiber optic cannulae were implanted on the BNST. After 8-10 wk, the response to graded, isobaric colonic distension was measured with and without laser stimulation of CeA fibers at the BNST. Immunohistochemistry and histology were used to evaluate vector expression, neuronal integrity, and neurochemical phenotype. Photoactivation of CeA fibers at the BNST with ChR2 induced colonic hypersensitivity, whereas photoinhibition of CeA fibers at the BNST with HR3.0 had no effect on colonic sensitivity. Control groups treated with virus expressing reporter proteins showed no abnormalities in neuronal morphology, neuronal number, or neurochemical phenotype following laser stimulation. Our experimental findings reveal that optogenetic activation of discrete brain nuclei can be used to advance our understanding of complex visceral nociceptive circuitry in a freely moving rat model. NEW & NOTEWORTHY Our findings reveal that optogenetic technology can be employed as a tool to advance understanding of the brain-gut axis. Using adenoviral-mediated expression of opsins, which were activated by laser light and targeted by fiber optic cannulae, we examined central nociceptive circuits mediating visceral pain in a freely moving rat. Photoactivation of amygdala fibers in the stria terminalis with channelrhodopsin induced colonic hypersensitivity, whereas inhibition of the same fibers with halorhodopsin did not alter colonic sensitivity.


Asunto(s)
Dolor Abdominal/etiología , Amígdala del Cerebelo/fisiopatología , Colon/inervación , Optogenética , Dolor Visceral/etiología , Dolor Abdominal/genética , Dolor Abdominal/metabolismo , Dolor Abdominal/fisiopatología , Adenoviridae/genética , Amígdala del Cerebelo/metabolismo , Animales , Channelrhodopsins/biosíntesis , Channelrhodopsins/genética , Estado de Conciencia , Modelos Animales de Enfermedad , Neuronas GABAérgicas/metabolismo , Vectores Genéticos , Halorrodopsinas/biosíntesis , Halorrodopsinas/genética , Láseres de Estado Sólido , Masculino , Mecanotransducción Celular , Inhibición Neural , Vías Nerviosas/fisiopatología , Optogenética/instrumentación , Presión , Ratas Endogámicas F344 , Dolor Visceral/genética , Dolor Visceral/metabolismo , Dolor Visceral/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...