Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105584, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38141761

RESUMEN

Protein phosphatase 2A (PP2A) is an essential tumor suppressor, with its activity often hindered in cancer cells by endogenous PP2A inhibitory proteins like SE translocation (SET). SET/PP2A axis plays a pivotal role in the colony-formation ability of cancer cells and the stabilization of c-Myc and E2F1 proteins implicated in this process. However, in osteosarcoma cell line HOS, SET knock-down (KD) suppresses the colony-formation ability without affecting c-Myc and E2F1. This study aimed to unravel the molecular mechanism through which SET enhances the colony-formation ability of HOS cells and determine if it is generalized to other cancer cells. Transcriptome analysis unveiled that SET KD suppressed mTORC1 signaling. SET KD inhibited Akt phosphorylation, an upstream kinase for mTORC1. PP2A inhibitor blocked SET KD-mediated decrease in phosphorylation of Akt and a mTORC1 substrate p70S6K. A constitutively active Akt restored decreased colony-formation ability by SET KD, indicating the SET/PP2A/Akt/mTORC1 axis. Additionally, enrichment analysis highlighted that Bmi-1, a polycomb group protein, is affected by SET KD. SET KD decreased Bmi-1 protein by Akt inhibition but not by mTORC1 inhibition, and exogenous Bmi-1 expression rescued the reduced colony formation by SET KD. Four out of eight cancer cell lines exhibited decreased Bmi-1 by SET KD. Further analysis of these cell lines revealed that Myc activity plays a role in SET KD-mediated Bmi-1 degradation. These findings provide new insights into the molecular mechanism of SET-regulated colony-formation ability, which involved Akt-mediated activation of mTORC1/p70S6K and Bmi-1 signaling.


Asunto(s)
Proteínas de Unión al ADN , Inhibidores Enzimáticos , Chaperonas de Histonas , Diana Mecanicista del Complejo 1 de la Rapamicina , Neoplasias , Complejo Represivo Polycomb 1 , Proteína Fosfatasa 2 , Proteínas Proto-Oncogénicas c-akt , Humanos , Inhibidores Enzimáticos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Fosforilación , Complejo Represivo Polycomb 1/metabolismo , Proteína Fosfatasa 2/antagonistas & inhibidores , Proteína Fosfatasa 2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Transducción de Señal , Activación Enzimática , Línea Celular Tumoral
2.
Nat Commun ; 12(1): 3450, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34103504

RESUMEN

The epigenetic mechanisms coordinating the maintenance of adult cellular lineages and the inhibition of alternative cell fates remain poorly understood. Here we show that targeted ablation of the histone chaperone HIRA in myogenic cells leads to extensive transcriptional modifications, consistent with a role in maintaining skeletal muscle cellular identity. We demonstrate that conditional ablation of HIRA in muscle stem cells of adult mice compromises their capacity to regenerate and self-renew, leading to tissue repair failure. Chromatin analysis of Hira-deficient cells show a significant reduction of histone variant H3.3 deposition and H3K27ac modification at regulatory regions of muscle genes. Additionally, we find that genes from alternative lineages are ectopically expressed in Hira-mutant cells via MLL1/MLL2-mediated increase of H3K4me3 mark at silent promoter regions. Therefore, we conclude that HIRA sustains the chromatin landscape governing muscle cell lineage identity via incorporation of H3.3 at muscle gene regulatory regions, while preventing the expression of alternative lineage genes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Chaperonas de Histonas/metabolismo , Músculo Esquelético/patología , Factores de Transcripción/metabolismo , Acetilación , Animales , Proteínas de Ciclo Celular/deficiencia , Línea Celular , Linaje de la Célula/genética , Sitios Genéticos , Chaperonas de Histonas/deficiencia , Histonas/metabolismo , Lisina/metabolismo , Ratones , Desarrollo de Músculos/genética , Músculo Esquelético/lesiones , Músculo Esquelético/fisiopatología , Regeneración , Secuencias Reguladoras de Ácidos Nucleicos/genética , Células Satélite del Músculo Esquelético/metabolismo , Factores de Transcripción/deficiencia
3.
Hum Genet ; 140(6): 885-896, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33417013

RESUMEN

The 22q11.2 deletion syndrome (22q11DS) is associated with a wide spectrum of cognitive and psychiatric symptoms. Despite the considerable work performed over the past 20 years, the genetic etiology of the neurodevelopmental phenotype remains speculative. Here, we report de novo heterozygous truncating variants in the HIRA (Histone cell cycle regulation defective, S. Cerevisiae, homolog of, A) gene associated with a neurodevelopmental disorder in two unrelated patients. HIRA is located within the commonly deleted region of the 22q11DS and encodes a histone chaperone that regulates neural progenitor proliferation and neurogenesis, and that belongs to the WD40 Repeat (WDR) protein family involved in brain development and neuronal connectivity. To address the specific impact of HIRA haploinsufficiency in the neurodevelopmental phenotype of 22q11DS, we combined Hira knock-down strategies in developing mouse primary hippocampal neurons, and the direct study of brains from heterozygous Hira+/- mice. Our in vitro analyses revealed that Hira gene is mostly expressed during neuritogenesis and early dendritogenesis stages in mouse total brain and in developing primary hippocampal neurons. Moreover, shRNA knock-down experiments showed that a twofold decrease of endogenous Hira expression level resulted in an impaired dendritic growth and branching in primary developing hippocampal neuronal cultures. In parallel, in vivo analyses demonstrated that Hira+/- mice displayed subtle neuroanatomical defects including a reduced size of the hippocampus, the fornix and the corpus callosum. Our results suggest that HIRA haploinsufficiency would likely contribute to the complex pathophysiology of the neurodevelopmental phenotype of 22q11DS by impairing key processes in neurogenesis and by causing neuroanatomical defects during cerebral development.


Asunto(s)
Proteínas de Ciclo Celular/genética , Síndrome de DiGeorge/genética , Haploinsuficiencia , Chaperonas de Histonas/genética , Trastornos del Neurodesarrollo/genética , Plasticidad Neuronal/genética , Neuronas/metabolismo , Factores de Transcripción/genética , Animales , Secuencia de Bases , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Niño , Preescolar , Cuerpo Calloso/metabolismo , Cuerpo Calloso/patología , Síndrome de DiGeorge/metabolismo , Síndrome de DiGeorge/patología , Femenino , Fórnix/metabolismo , Fórnix/patología , Expresión Génica , Heterocigoto , Hipocampo/metabolismo , Hipocampo/patología , Chaperonas de Histonas/antagonistas & inhibidores , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/metabolismo , Humanos , Ratones , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Neurogénesis/genética , Neuronas/patología , Cultivo Primario de Células , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/deficiencia , Factores de Transcripción/metabolismo
4.
Nucleic Acids Res ; 48(16): 9161-9180, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32797166

RESUMEN

FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.


Asunto(s)
Proteína BRCA1/genética , Proteínas de Unión al ADN/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Inestabilidad Genómica/genética , Chaperonas de Histonas/genética , ARN Helicasas/genética , Recombinasa Rad51/genética , Inestabilidad Cromosómica/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/deficiencia , Técnicas de Inactivación de Genes , Células HeLa , Chaperonas de Histonas/deficiencia , Humanos , Mitomicina/farmacología , Reparación del ADN por Recombinación/genética
5.
J Cell Sci ; 130(15): 2551-2563, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28600325

RESUMEN

Nucleosome assembly proceeds through DNA replication-coupled or replication-independent mechanisms. For skeletal myocytes, whose nuclei have permanently exited the cell cycle, replication-independent assembly is the only mode available for chromatin remodeling. For this reason, any nucleosome composition alterations accompanying transcriptional responses to physiological signals must occur through a DNA replication-independent pathway. HIRA is the histone chaperone primarily responsible for replication-independent incorporation of histone variant H3.3 across gene bodies and regulatory regions. Thus, HIRA would be expected to play an important role in epigenetically regulating myocyte gene expression. The objective of this study was to determine the consequence of eliminating HIRA from mouse skeletal myocytes. At 6 weeks of age, myofibers lacking HIRA showed no pathological abnormalities; however, genes involved in transcriptional regulation were downregulated. By 6 months of age, myofibers lacking HIRA exhibited hypertrophy, sarcolemmal perforation and oxidative damage. Genes involved in muscle growth and development were upregulated, but those associated with responses to cellular stresses were downregulated. These data suggest that elimination of HIRA produces a hypertrophic response in skeletal muscle and leaves myofibers susceptible to stress-induced degeneration.


Asunto(s)
Proteínas de Ciclo Celular/deficiencia , Chaperonas de Histonas/deficiencia , Músculo Esquelético/metabolismo , Enfermedades Musculares/metabolismo , Estrés Oxidativo , Factores de Transcripción/deficiencia , Animales , Hipertrofia , Ratones , Ratones Transgénicos , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/patología
6.
Oncotarget ; 8(25): 40958-40966, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28402964

RESUMEN

Trichloroethylene (TCE) is an occupational and environmental chemical that can cause severe hepatotoxicity. While our previous studies showed that the phosphatase inhibitor SET is a key mediator of TCE-induced liver cell apoptosis, the molecular mechanisms remain elusive. Using quantitative phosphoproteomic analysis, we report here that nucleolin is a SET-regulated phosphoprotein in human liver HL-7702 cells. Functional analysis suggested that SET promoted dephosphorylation of nucleolin, decreased its binding to its transcriptional activator, c-myc, and upregulated nucleolin expression in TCE-treated cells. Importantly, TCE-induced hepatocyte apoptosis was significantly attenuated when nucleolin was downregulated with specific siRNAs. These findings indicate that TCE may induce hepatocyte apoptosis via SET-mediated dephosphorylation and overexpression of nucleolin.


Asunto(s)
Chaperonas de Histonas/metabolismo , Hígado/efectos de los fármacos , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Tricloroetileno/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Proteínas de Unión al ADN , Técnicas de Silenciamiento del Gen , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/genética , Humanos , Hígado/metabolismo , Hígado/patología , Fosfoproteínas/biosíntesis , Fosfoproteínas/genética , Fosforilación , Proteómica , Proteínas de Unión al ARN/biosíntesis , Proteínas de Unión al ARN/genética , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Regulación hacia Arriba , Nucleolina
7.
Dis Model Mech ; 9(3): 335-45, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26935106

RESUMEN

HIRA is the histone chaperone responsible for replication-independent incorporation of histone variant H3.3 within gene bodies and regulatory regions of actively transcribed genes, and within the bivalent promoter regions of developmentally regulated genes. The HIRA gene lies within the 22q11.2 deletion syndrome critical region; individuals with this syndrome have multiple congenital heart defects. Because terminally differentiated cardiomyocytes have exited the cell cycle, histone variants should be utilized for the bulk of chromatin remodeling. Thus, HIRA is likely to play an important role in epigenetically defining the cardiac gene expression program. In this study, we determined the consequence of HIRA deficiency in cardiomyocytes in vivo by studying the phenotype of cardiomyocyte-specific Hira conditional-knockout mice. Loss of HIRA did not perturb heart development, but instead resulted in cardiomyocyte hypertrophy and susceptibility to sarcolemmal damage. Cardiomyocyte degeneration gave way to focal replacement fibrosis and impaired cardiac function. Gene expression was widely altered in Hira conditional-knockout hearts. Significantly affected pathways included responses to cellular stress, DNA repair and transcription. Consistent with heart failure, fetal cardiac genes were re-expressed in the Hira conditional knockout. Our results suggest that transcriptional regulation by HIRA is crucial for cardiomyocyte homeostasis.


Asunto(s)
Cardiomegalia/metabolismo , Cardiomegalia/patología , Proteínas de Ciclo Celular/deficiencia , Chaperonas de Histonas/deficiencia , Miocitos Cardíacos/metabolismo , Sarcolema/metabolismo , Sarcolema/patología , Factores de Transcripción/deficiencia , Animales , Apoptosis/genética , Cardiomegalia/genética , Cardiomegalia/fisiopatología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Daño del ADN/genética , Reparación del ADN/genética , Feto/metabolismo , Regulación de la Expresión Génica , Pruebas de Función Cardíaca , Chaperonas de Histonas/metabolismo , Ratones Noqueados , Miocitos Cardíacos/patología , Especificidad de Órganos , Estrés Oxidativo/genética , Reproducibilidad de los Resultados , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Transcriptoma/genética
8.
Proc Natl Acad Sci U S A ; 111(37): 13337-42, 2014 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-25197097

RESUMEN

The binding of chromatin-associated proteins and incorporation of histone variants correlates with alterations in gene expression. These changes have been particularly well analyzed at the mammalian ß-globin locus, where transcription factors such as erythroid Krüppel-like factor (EKLF), which is also known as Krüppel-like factor 1 (KLF1), play a coordinating role in establishing the proper chromatin structure and inducing high-level expression of adult ß-globin. We had previously shown that EKLF preferentially interacts with histone H3 and that the H3.3 variant is differentially recruited to the ß-globin promoter. We now find that a novel interaction between EKLF and the histone cell cycle regulation defective homolog A (HIRA) histone chaperone accounts for these effects. HIRA is not only critical for ß-globin expression but is also required for activation of the erythropoietic regulators EKLF and GATA binding protein 1 (GATA1). Our results provide a mechanism by which transcription factor-directed recruitment of a generally expressed histone chaperone can lead to tissue-restricted changes in chromatin components, structure, and transcription at specific genomic sites during differentiation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica , Chaperonas de Histonas/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/metabolismo , Globinas beta/genética , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/deficiencia , Diferenciación Celular/genética , Células Madre Embrionarias/metabolismo , Células Eritroides/metabolismo , Eritropoyesis , Chaperonas de Histonas/química , Chaperonas de Histonas/deficiencia , Factores de Transcripción de Tipo Kruppel/química , Ratones , Regiones Promotoras Genéticas , Unión Proteica , Estructura Terciaria de Proteína , Eliminación de Secuencia , Factores de Transcripción/química , Factores de Transcripción/deficiencia , Activación Transcripcional/genética , Dedos de Zinc , Globinas beta/metabolismo
9.
Biochem J ; 460(3): 387-97, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24707933

RESUMEN

Htz1 (histone 2A Z1) deposition at promoters is involved in the transcriptional activation of quiescent genes. Chz1 [chaperone for Htz1 (or H2A)-H2B dimer] is an Htz1-H2B-specific chaperone that delivers histone H2A.Z that substitutes for H2A. Spt16 (suppressor of Ty) functions in transcription elongation and also possesses a histone chaperone activity. However, the links among Chz1, Htz1 and Spt16 remain unknown. In the present study, we determined the genomic binding profiling of Htz1, Pol II (RNA polymerase II) and Spt16 using ChIP microarray experiments and sequenced nucleosomal DNA using a next-generation sequencing technique in wild-type and chz1-deletion strains of Saccharomyces cerevisiae. The results of the present study revealed that Spt16 and Pol II are associated, bind at nucleosome-depleted regions, and are positively correlated with the transcription rate. Importantly, Spt16 disfavours the Htz1-bound genes, and this discrimination is impaired upon the deletion of chz1. The negative correlation between the binding profiles of Spt16 and Htz1 at promoters is not an intrinsic repulsion, but is probably due to a requirement for transcription initiation. We showed that chz1 deletion decreases Htz1 binding at promoters and telomeres. Also, in the chz1-deletion mutant, Spt16 binding at ribosomal genes was lost. The results of the present study suggest that the discrimination of Spt16 to Htz1-bound genes is due to the priority of Chz1 over Spt16 in binding to the Htz1-bound genomic regions. Chz1-escorted Htz1 therefore impairs Spt16 binding at chromatin.


Asunto(s)
Chaperonas de Histonas/genética , Histonas/metabolismo , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Elongación Transcripcional/genética , Cromatina/metabolismo , Chaperonas de Histonas/deficiencia , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Transcripción Genética , Factores de Elongación Transcripcional/metabolismo
10.
PLoS One ; 6(2): e17036, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21347226

RESUMEN

Approximately 10% of cancers use recombination-mediated Alternative Lengthening of Telomeres (ALT) instead of telomerase to prevent telomere shortening. A characteristic of cells that utilize ALT is the presence of ALT-associated PML nuclear bodies (APBs) containing (TTAGGG)n DNA, telomere binding proteins, DNA recombination proteins, and heterochromatin protein 1 (HP1). The function of APBs is unknown and it is possible that they are functionally heterogeneous. Most ALT cells lack functional p53, and restoration of the p53/p21 pathway in these cells results in growth arrest/senescence and a substantial increase in the number of large APBs that is dependent on two HP1 isoforms, HP1α and HP1γ. Here we investigated the mechanism of HP1-mediated APB formation, and found that histone chaperones, HIRA and ASF1a, are present in APBs following activation of the p53/p21 pathway in ALT cells. HIRA and ASF1a were also found to colocalize inside PML bodies in normal fibroblasts approaching senescence, providing evidence for the existence of a senescence-associated ASF1a/HIRA complex inside PML bodies, consistent with a role for these proteins in induction of senescence in both normal and ALT cells. Moreover, knockdown of HIRA but not ASF1a significantly reduced p53-mediated induction of large APBs, with a concomitant reduction of large HP1 foci. We conclude that HIRA, in addition to its physical and functional association with ASF1a, plays a unique, ASF1a-independent role, which is required for the localization of HP1 to PML bodies and thus for APB formation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Chaperonas de Histonas/metabolismo , Homeostasis del Telómero , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Animales , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/genética , Nucléolo Celular/metabolismo , Senescencia Celular , Homólogo de la Proteína Chromobox 5 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Chaperonas de Histonas/deficiencia , Chaperonas de Histonas/genética , Humanos , Chaperonas Moleculares , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...