Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 676, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830954

RESUMEN

TRiC/CCT is a chaperonin complex required for the folding of cytoplasmic proteins. Although mutations in each subunit of TRiC/CCT are associated with various human neurodegenerative diseases, their impact in mammalian models has not yet been examined. A compound heterozygous mutation in CCT2 (p.[Thr400Pro]; p.[Arg516His]) is causal for Leber congenital amaurosis. Here, we generate mice carrying each mutation and show that Arg516His (R516H) homozygosity causes photoreceptor degeneration accompanied by a significant depletion of TRiC/CCT substrate proteins in the retina. In contrast, Thr400Pro (T400P) homozygosity results in embryonic lethality, and the compound heterozygous mutant (T400P/R516H) mouse showed aberrant cone cell lamination and died 2 weeks after birth. Finally, CCDC181 is identified as a interacting protein for CCTß protein, and its localization to photoreceptor connecting cilia is compromised in the mutant mouse. Our results demonstrate the distinct impact of each mutation in vivo and suggest a requirement for CCTß in ciliary maintenance.


Asunto(s)
Chaperonina con TCP-1 , Modelos Animales de Enfermedad , Amaurosis Congénita de Leber , Animales , Amaurosis Congénita de Leber/genética , Amaurosis Congénita de Leber/metabolismo , Amaurosis Congénita de Leber/patología , Ratones , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Mutación , Heterocigoto , Ratones Endogámicos C57BL
3.
Cancer Lett ; 590: 216844, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38582394

RESUMEN

Proper protein folding relies on the assistance of molecular chaperones post-translation. Dysfunctions in chaperones can cause diseases associated with protein misfolding, including cancer. While previous studies have identified CCT2 as a chaperone subunit and an autophagy receptor, its specific involvement in glioblastoma remains unknown. Here, we identified CCT2 promote glioblastoma progression. Using approaches of coimmunoprecipitation, mass spectrometry and surface plasmon resonance, we found CCT2 directly bound to KRAS leading to increased stability and upregulated downstream signaling of KRAS. Interestingly, we found that dihydroartemisinin, a derivative of artemisinin, exhibited therapeutic effects in a glioblastoma animal model. We further demonstrated direct binding between dihydroartemisinin and CCT2. Treatment with dihydroartemisinin resulted in decreased KRAS expression and downstream signaling. Highlighting the significance of CCT2, CCT2 overexpression rescued the inhibitory effect of dihydroartemisinin on glioblastoma. In conclusion, the study demonstrates that CCT2 promotes glioblastoma progression by directly binding to and enhancing the stability of the KRAS protein. Additionally, dihydroartemisinin inhibits glioblastoma by targeting the CCT2 and the following KRAS signaling. Our findings overcome the challenge posed by the undruggable nature of KRAS and offer potential therapeutic strategies for glioblastoma treatment.


Asunto(s)
Chaperonina con TCP-1 , Glioblastoma , Estabilidad Proteica , Proteínas Proto-Oncogénicas p21(ras) , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Glioblastoma/metabolismo , Glioblastoma/genética , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Animales , Chaperonina con TCP-1/metabolismo , Chaperonina con TCP-1/genética , Línea Celular Tumoral , Estabilidad Proteica/efectos de los fármacos , Artemisininas/farmacología , Progresión de la Enfermedad , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/genética , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Ratones , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proliferación Celular/efectos de los fármacos
4.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167054, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38360074

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is a serious threat to human health; thus, early diagnosis and adequate treatment are essential. However, there are still great challenges in identifying the tipping point and detecting early warning signals of early HCC. In this study, we aimed to identify the tipping point (critical state) of and key molecules involved in hepatocarcinogenesis based on time series transcriptome expression data of HCC patients. The phase from veHCC (very early HCC) to eHCC (early HCC) was identified as the critical state in HCC progression, with 143 genes identified as key candidate molecules by combining the DDRTree (dimensionality reduction via graph structure learning) and DNB (dynamic network biomarker) methods. Then, we ranked the candidate genes to verify their mRNA levels using the diethylnitrosamine (DEN)-induced HCC mouse model and identified five early warning signals, namely, CCT3, DSTYK, EIF3E, IARS2 and TXNRD1; these signals can be regarded as the potential early warning signals for the critical state of HCC. We identified CCT3 as an independent prognostic factor for HCC, and functions of CCT3 involving in the "MYCtargets_V1" and "E2F-Targets" are closely related to the progression of HCC. The predictive method combining the DDRTree and DNB methods can not only identify the key critical state before cancer but also determine candidate molecules of critical state, thus providing new insight into the early diagnosis and preemptive treatment of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Biomarcadores , Transcriptoma , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
5.
Taiwan J Obstet Gynecol ; 63(1): 46-56, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38216268

RESUMEN

OBJECTIVE: Despite continuous progress in treatment, recurrence and metastasis limit further improvement in the prognosis of breast cancer (BC) patients. Our aim was to search for a crucial prognostic biomarker of BC. MATERIALS AND METHODS: Patient data were selected from The Cancer Genome Atlas (TCGA) and GTEx databases. Several online public databases, including Gene Expression Profiling Interactive Analysis (GEPIA), miRWalk, miRDB, and LncBase Predicted v.2, were used to identify potential upstream miRNAs and lncRNAs. These findings were validated through in vitro experiments. RESULTS: A total of 1, 097 invasive BC samples and 572 normal breast tissues (including 113 samples from TCGA and 459 samples from GTEx) were collected for the study. CCT4 was not only significantly overexpressed in BC compared with normal breast tissues but also had important prognostic significance (P < 0.001). By intersecting miRWalk and miRDB and conducting correlation analysis, hsa-miR-30c-2-3p was identified as the most probable upstream miRNA of CCT4. Following an extensive assessment that included survival analysis, correlation analysis, and common binding-site prediction, LINC01234 was chosen as the most likely upstream lncRNA. In vitro experiments showed that LINC01234-siRNA inhibited the proliferation, invasion, and migration abilities of BC cells. Western blot analysis further confirmed that LINC01234 promoted malignant behaviors of BC cells via the CCT4/mTOR signaling pathway. CONCLUSION: The LINC01234/hsa-miR-30c-2-3p/CCT4/mTOR axis was identified as a potential ceRNA regulatory mechanism in BC. These findings established the foundation for systematically unveiling the pathological mechanisms of BC and provided new insights for targeted therapy of BC patients.


Asunto(s)
Neoplasias de la Mama , MicroARNs , ARN Largo no Codificante , Humanos , Femenino , MicroARNs/genética , Pronóstico , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Regulación Neoplásica de la Expresión Génica , Proliferación Celular/genética , Línea Celular Tumoral , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
6.
Ir J Med Sci ; 193(1): 85-93, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37523068

RESUMEN

OBJECTIVE: Chaperonin-containing tailless complex polypeptide 1 subunit 6A (CCT6A) involves several solid cancers' development and progression, while its clinical utility in prostate cancer management is rarely revealed. Consequently, the present study intended to investigate the linkage of CCT6A with disease features, treatment information, and prognosis of surgical prostate cancer patients. METHODS: CCT6A in 220 surgical prostate cancer patients was determined via immunohistochemistry. Additionally, survival analyses on data from the public databases were performed to validate the prognostic value of CCT6A further. RESULTS: CCT6A expression was upregulated in tumor tissue than in adjacent tissue (P < 0.001). Increased CCT6A was related to elevated Gleason score (P < 0.001) and pathological T stage (P = 0.029). CCT6A was increased in patients with positive surgical margin status (vs. negative) (P = 0.029) and patients with adjuvant external-beam radiation therapy (vs. no) (P = 0.001). Concerning the prognostic value, high tumor CCT6A was linked with shortened disease-free survival (DFS) (P = 0.009), which was also validated through further Cox's proportional hazard regression model analyses (hazard ratio: 2.695, 95% CI: 1.086-6.683, P = 0.032), whereas CCT6A was not correlated with overall survival (OS) (P > 0.050). Additionally, the Gene Expression Profiling Interactive Analysis database indicated that high tumor CCT6A was related to shortened DFS (P = 0.036), but it was not associated with OS (P > 0.050); meanwhile, the Human Protein Atlas database suggested that high tumor CCT6A was linked with reduced OS (P = 0.048). CONCLUSION: Tumor CCT6A high expression correlates with the elevated Gleason score, pathological T stage, and shortened DFS in surgical prostate cancer patients.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Pronóstico , Neoplasias de la Próstata/patología , Análisis de Supervivencia , Supervivencia sin Enfermedad , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
7.
BMC Cancer ; 23(1): 977, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833621

RESUMEN

This study surveyed circular RNA CCT3 in bladder cancer (BCa). We recruited 85 BCa patients and 40 normal controls (Normal) and collected clinical specimens for analysis. circRNA CCT3 expression was analyzed by RT-qPCR, diagnostic accuracy was calculated by ROC curves, and survival outcomes were evaluated by survival curves. CircRNA CCT3 was overexpressed or knocked down in cells, thereafter to observe the changes in cell malignant phenotypes. The downstream molecules of circRNA CCT3 were detected. Our data suggest that circRNA CCT3 was upregulated in human BCa and was associated with poor survival outcomes of BCa patients. In cell experiments, overexpressing circRNA CCT3 promoted BCa cell malignancy, whereas silencing circRNA CCT3 did the opposite. In addition, circRNA CCT3 modulated PP2A expression by miR-135a-5p. This study demonstrates that circRNA CCT3 is a diagnostic and prognostic biomarker in BCa patients and is a tumor promoter in BCa.


Asunto(s)
MicroARNs , Neoplasias de la Vejiga Urinaria , Humanos , ARN Circular/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias de la Vejiga Urinaria/diagnóstico , Neoplasias de la Vejiga Urinaria/genética , Neoplasias de la Vejiga Urinaria/patología , MicroARNs/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Movimiento Celular/genética , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
8.
Int J Oncol ; 63(3)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37539774

RESUMEN

Due to concealment, high invasiveness and a lack of indicators, malignant tumors have emerged as one of the deadliest diseases worldwide and their incidence is rising yearly. Research has revealed that the chaperonin family member, chaperonin containing TCP­1 (CCT), serves a crucial role in malignant tumors. CCT is involved in the growth of numerous malignant tumors such as lung cancer, breast cancer, hepatocellular carcinoma and colorectal cancer and assists the folding of a number of proteins linked to cancer, such as KRAS, p53 and STAT3. According to clinical data, CCT is highly expressed in a range of tumor cells and is associated with poor patient prognosis. In addition, through controlling the cell cycle or interacting with other proteins (including YAP1, HoXB2 and SMAD2), CCT has an effect on the proliferation, invasion and migration of cancer cells. As a result, it is possible that CCT will become a new tumor marker or therapeutic target, which will provide some guidance for early tumor screening or late tumor prognosis. In the present review, the molecular properties of CCT are introduced, alongside a summary of its interactions with other cancer­related proteins and a discussion of its function in common malignant tumors. It is expected that the present review will offer fresh approaches to the treatment of cancer.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Biomarcadores de Tumor/genética , Carcinoma Hepatocelular/patología , Pronóstico , Neoplasias Hepáticas/patología
9.
Crit Rev Eukaryot Gene Expr ; 33(6): 17-28, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37522542

RESUMEN

The chaperonin-containing TCP1 complex subunit 3 (CCT3) has been reported to be involved in the development and prognosis of many tumors, including cervical cancer (CC). This study aimed to analyze the expression and prognostic value of CCT3 in CC by bioinformatics and retrospective study. CCT3 gene expression profiles and clinical information in CC were downloaded from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. CCT3 expression was verified by quantitative real-time polymerase chain reaction (RT-qPCR), Western blot, and immunohistochemistry (IHC). Logistic regression and chi-square testing were used to analyze the relationship between CCT3 expression and the clinical characteristics of CC. Kaplan-Meier and Cox analyses were used to evaluate whether CCT3 affects the prognosis of CC. Nomogram and calibration curves were used to test the predictive value of CCT3. The expression of CCT3 in CC tissues was significantly upregulated compared with that in adjacent benign tissues, and was related to HPV16/18 infection, grade, and positive lymph nodes. High expression of CCT3 is associated with poor prognosis of CC and can be used as an independent risk factor for CC. The prognostic model based on CCT3 and CC clinical features has good predictive ability. CCT3 is overexpressed in CC, which is related to poor prognosis and expected to become a biomarker for CC.


Asunto(s)
Neoplasias del Cuello Uterino , Femenino , Humanos , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/genética , Pronóstico , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Estudios Retrospectivos , Papillomavirus Humano 18/metabolismo , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
10.
Cells ; 12(8)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37190091

RESUMEN

Breast cancer (BC) is a heterogeneous disease, which is primarily classified according to hormone receptors and HER2 expression. Despite the many advances in BC diagnosis and management, the identification of novel actionable therapeutic targets expressed by cancerous cells has always been a daunting task due to the large heterogeneity of the disease and the presence of non-cancerous cells (i.e., immune cells and stromal cells) within the tumor microenvironment. In the current study, we employed computational algorithms to decipher the cellular composition of estrogen receptor-positive (ER+), HER2+, ER+HER2+, and triple-negative BC (TNBC) subtypes from a total of 49,899 single cells' publicly available transcriptomic data derived from 26 BC patients. Restricting the analysis to EPCAM+Lin- tumor epithelial cells, we identified the enriched gene sets in each BC molecular subtype. Integration of single-cell transcriptomic with CRISPR-Cas9 functional screen data identified 13 potential therapeutic targets for ER+, 44 potential therapeutic targets for HER2+, and 29 potential therapeutic targets for TNBC. Interestingly, several of the identified therapeutic targets outperformed the current standard of care for each BC subtype. Given the aggressive nature and lack of targeted therapies for TNBC, elevated expression of ENO1, FDPS, CCT6A, TUBB2A, and PGK1 predicted worse relapse-free survival (RFS) in basal BC (n = 442), while elevated expression of ENO1, FDPS, CCT6A, and PGK1 was observed in the most aggressive BLIS TNBC subtype. Mechanistically, targeted depletion of ENO1 and FDPS halted TNBC cell proliferation, colony formation, and organoid tumor growth under 3-dimensional conditions and increased cell death, suggesting their potential use as novel therapeutic targets for TNBC. Differential expression and gene set enrichment analysis in TNBC revealed enrichment in the cycle and mitosis functional categories in FDPShigh, while ENO1high was associated with numerous functional categories, including cell cycle, glycolysis, and ATP metabolic processes. Taken together, our data are the first to unravel the unique gene signatures and to identify novel dependencies and therapeutic vulnerabilities for each BC molecular subtype, thus setting the foundation for the future development of more effective targeted therapies for BC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Análisis de Expresión Génica de una Sola Célula , Recurrencia Local de Neoplasia , Perfilación de la Expresión Génica , Transcriptoma/genética , Microambiente Tumoral/genética , Chaperonina con TCP-1/genética
11.
Epigenetics ; 18(1): 2204772, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37092305

RESUMEN

Background: Circular RNA (circRNA) plays a critical role in tumour progression. Circ-CCT3, a particularly abundant circRNA, was proposed to be involved in tumorigenesis. However, the role of circ-CCT3 in hepatocellular carcinoma remains elusive.Methods: Here, circ-CCT3 (a circRNA derived from exons 3, 4 and 5 of the CCT3 gene, hsa_circ_0004680) was identified by circRNA microarray and validated by qRT-PCR. RNA immunoprecipitation (RIP) was performed to confirm the binding between ALKBH5 along with METTL3 and circ-CCT3. Methylated RNA Immunoprecipitation (MeRIP) was used to detect the N6-methyladenosine (m 2A) levels of circ-CCT3. CircRNAs in vivo precipitation, luciferase reporter assay, biotin-coupled microRNA capture, and fluorescence in situ hybridization were conducted to assess the interaction between circ-CCT3 and miR-378a-3p. The functions of circ-CCT3 in HCC were evaluated both in vitro and in vivo.Results: We demonstrated that circ-CCT3 was highly expressed in HCC which indicated the poor prognosis. Circ-CCT3 expression served as an independent risk factor for overall survival in patients with HCC. Knocking-down of circ-CCT3 inhibited the proliferation, invasion and migration of HCC cells, and angiogenesis of HUVEC. Mechanistically, ALKBH5 and METTL3 could bind and regulate m A-modification of circ-CCT3. Further, circ-CCT3 upregulated the expression of FLT-1 by sponging miR-378a-3p.Conclusions: Circ-CCT3 was significantly up-regulated in HCC and promoted liver cancer development via miR-378a-3p-FLT1 axis. It was also found that circ-CCT3 was under m A-modification mediated by ALKBH5 and METTL3. Our study highlights circ-CCT3 as a potential therapeutic target of HCC treatment, which provides a novel understanding on mechanisms of circRNAs in HCC progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular/genética , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Hibridación Fluorescente in Situ , Neoplasias Hepáticas/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética
12.
BMC Cancer ; 23(1): 241, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36918801

RESUMEN

BACKGROUND: Chaperonin-containing tailless complex polypeptide 1 (TCP1) subunit 3 (CCT3) has tumor-promoting effects in lung adenocarcinoma (LUAD). This study aims to investigate the molecular mechanisms of CCT3 in LUAD oncogenesis. METHODS: The UALCAN databases, Human Protein Atlas (HPA) and The Cancer Genome Atlas (TCGA) data were used to analyze CCT3 expression in LUAD. Both the Wilcoxon rank-sum test and the regression model were used to investigate the connection between clinicopathologic characteristics of LUAD patients and CCT3 expression. The prognostic value of CCT3 was determined by Cox regression models, the Kaplan-Meier method and Nomogram prediction. Next, we identified the most related genes with CCT3 via GeneMANIA and String databases, and the association between CCT3 and infiltrated immune cells using single-sample Gene Set Enrichment Analysis (ssGSEA). CCT3-related pathway enrichment analysis was investigated by GSEA. Finally, CCT3 roles in cell proliferation and apoptosis of LUAD A549 cells was verified by siRNA (small interfering RNA) mediated CCT3 knockdown. RESULTS: CCT3 was upregulated in LUAD both in mRNA and protein levels. CCT3 overexpression was associated with clinicopathological characteristics including sex, smoking, T- and N-categories, pathological staging, and a poor prognosis of LUAD patients. GeneMANIA and String databases found a set of CCT3-related genes that are connected to the assembly and stability of proteins involved in proteostasis of cytoskeletal filaments, DNA repair and protein methylation. Furthermore, CCT3 was found to be positively correlated with the infiltrating Th2 cells (r = 0.442, p < 0.01) while negatively correlated with mast cells (r = -0.49, p < 0.01) and immature dendritic cells (iDCs, r = -0.401, p < 0.001) according to ssGSEA analyzes. The pathway analysis based on GSEA method showed that the cell cycle pathway, the protein export pathway, the proteasome pathway and the ribosome pathway are enriched in CCT3 high group, whereas the JAK/STAT pathway, B cell receptor pathway, T cell receptor pathway and toll like receptor pathway were enriched in CCT3 low group. Finally, CCT3 knockdown substantially inhibited proliferation while promoted apoptosis of A549 cells. CONCLUSION: Integrated analyzes identify CCT3 as a modulator to shape immunosuppressive tumor microenvironment in LUAD and therefore, a prognostic factor for LUAD.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Quinasas Janus , Microambiente Tumoral/genética , Factores de Transcripción STAT , Transducción de Señal , Adenocarcinoma del Pulmón/genética , Inmunosupresores , Neoplasias Pulmonares/genética , Pronóstico , Chaperonina con TCP-1/genética
13.
Int J Mol Sci ; 24(3)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36768350

RESUMEN

Mutations in genes encoding molecular chaperones, for instance the genes encoding the subunits of the chaperonin CCT (chaperonin containing TCP-1, also known as TRiC), are associated with rare neurodegenerative disorders. Using a classical molecular dynamics approach, we investigated the occurrence of conformational changes and differences in physicochemical properties of the CCT5 mutations His147Arg and Leu224Val associated with a sensory and a motor distal neuropathy, respectively. The apical domain of both variants was substantially but differently affected by the mutations, although these were in other domains. The distribution of hydrogen bonds and electrostatic potentials on the surface of the mutant subunits differed from the wild-type molecule. Structural and dynamic analyses, together with our previous experimental data, suggest that genetic mutations may cause different changes in the protein-binding capacity of CCT5 variants, presumably within both hetero- and/or homo-oligomeric complexes. Further investigations are necessary to elucidate the molecular pathogenic pathways of the two variants that produce the two distinct phenotypes. The data and clinical observations by us and others indicate that CCT chaperonopathies are more frequent than currently believed and should be investigated in patients with neuropathies.


Asunto(s)
Chaperonina con TCP-1 , Chaperonas Moleculares , Simulación de Dinámica Molecular , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/química , Chaperoninas/genética , Chaperoninas/metabolismo , Chaperonas Moleculares/metabolismo , Mutación
14.
FASEB J ; 37(2): e22757, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36607310

RESUMEN

Vesicle trafficking is a fundamental cellular process that controls the transport of various proteins and cargos between cellular compartments in eukaryotes. Using a combination of genome-wide CRISPR screening in mammalian cells and RNAi screening in Caenorhabditis elegans, we identify chaperonin containing TCP-1 subunit 4 (CCT4) as a critical regulator of protein secretion and vesicle trafficking. In C. elegans, deficiency of cct-4 as well as other CCT subunits impairs the trafficking of endocytic markers in intestinal cells, and this defect resembles that of dyn-1 RNAi worms. Consistent with these findings, the silencing of CCT4 in human cells leads to defective endosomal trafficking, and this defect can be rescued by the dynamin activator Ryngo 1-23. These results suggest that the cytosolic chaperonin CCT may regulate vesicle trafficking by promoting the folding of dynamin in addition to its known substrate tubulin. Our findings establish an essential role for the CCT chaperonin in regulating vesicle trafficking, and provide new insights into the regulation of vesicle trafficking and the cellular function of the cytosolic chaperonin.


Asunto(s)
Caenorhabditis elegans , Chaperonina con TCP-1 , Animales , Humanos , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Chaperoninas/genética , Chaperoninas/metabolismo , Tubulina (Proteína)/metabolismo , Citosol/metabolismo , Pliegue de Proteína , Mamíferos/metabolismo
15.
PLoS One ; 17(12): e0279851, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36584147

RESUMEN

We assessed the role of the protein-coding gene chaperonin-containing TCP1 subunit 6A (CCT6A) in osteosarcoma, as this is currently unknown. Using data from the R2 online genomic analysis and visualization application, we found that CCT6A messenger ribonucleic acid (RNA) expression is increased in osteosarcoma tissue and cells. Transfection of CCT6A small interfering RNA into cultured osteosarcoma cells revealed that CCT6A knockdown attenuates cell growth, cell viability, cell survival, and induced apoptosis and cell cycle progression at the G0/G1 phases. Moreover, CCT6A knockdown downregulated phospho-protein kinase B (p-Akt), cyclinD1 and B-cell lymphoma-2, whereas upregulated Bcl-2-associated X-protein expression. Thus, CCT6A knockdown inhibits cell proliferation, induces cell apoptosis, and suppresses the Akt pathway.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proliferación Celular/genética , Ciclo Celular , Fase G1 , Osteosarcoma/genética , Osteosarcoma/metabolismo , Línea Celular Tumoral , Apoptosis/genética , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo
16.
Vet Microbiol ; 274: 109574, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36126504

RESUMEN

Porcine parvovirus (PPV) is an important pathogen causing reproductive disorders in first pregnant sows. The non-structure protein NS1 of PPV is a multifunctional protein playing a key role in viral replication. Chaperonin-containing T-complex polypeptide complex (CCT), containing CCT1-CCT8 subunits, belongs to the type II chaperones that interact with proteins to help in folding and maintaining. In this study, CCT5, for the first time, was found to be one of the host interacting proteins of PPV NS1, and CCT5 was directly bound with NS1. Interference of CCT5 expression by specific siRNA and knockout of CCT5 expression by CRISPR/Cas9 suppressed PPV replication, while overexpression of CCT5 promoted PPV replication in PK-15 cells. The interaction of CCT5 and PPV NS1 was dependent on the 36-42 aa motif at the N-terminal end of NS1. More importantly, CCT5 was also found interacting with COPƐ, which has previously been demonstrated to promote PPV replication by regulating type I interferon. Interference and knockout of CCT5 expression significantly reduced the interaction of PPV NS1 and host protein COPƐ, and promoted the IFN-ß expression. These results show that CCT5 mediates the interaction of PPV NS1 and COPƐ to regulate viral replication, providing new insight into the mechanism of PPV replication.


Asunto(s)
Parvovirus Porcino , Embarazo , Porcinos , Animales , Femenino , Parvovirus Porcino/genética , Proteínas no Estructurales Virales/metabolismo , ARN Interferente Pequeño , Replicación Viral , Chaperonina con TCP-1/genética , Interferón beta
17.
Mol Carcinog ; 61(11): 1043-1055, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36102200

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is a common human malignancy characterized by late-stage diagnosis, metastasis, and poor prognosis. Cisplatin (DDP)-based chemotherapy has been the most predominant treatment for patients with ESCC. However, the high rate of DDP resistance and toxicity seriously hinder its clinical application. Then, the optimized strategy and mechanisms for ESCC to enhance DDP sensitivity are in great demand. Accumulating evidence have shown that chaperone proteins are closely related to the tumorigenesis and drug resistance of cancers. Chaperonin containing TCP1 complex 4 (CCT4) is a recent identified member of the family. However, its expression and function in ESCC have not been well illustrated. In this study, we found that CCT4 was highly expressed in human ESCC tissues and cell lines, and closely related to the poor prognosis. Moreover, CCT4 silence raised oxidative stress and inhibited glycolysis of ESCC cells, which significantly inhibited cell proliferation and migration, promoted apoptosis and caused cell cycle arrest in ESCC cells. Interestingly, CCT4 knockdown enhanced the sensitivity of KYSE150 cells to DDP by regulating AMPK/AKT/Nrf2 signaling pathway and inhibiting glycolysis ability. Taken together, our results indicate that targeting CCT4 may be a therapeutic target in ESCC patients, which provides a theoretical basis to enhance the sensitivity of DDP in ESCC.


Asunto(s)
Carcinoma de Células Escamosas , Chaperonina con TCP-1 , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Chaperonina con TCP-1/genética , Chaperoninas/metabolismo , Chaperoninas/uso terapéutico , Cisplatino/farmacología , Neoplasias Esofágicas/tratamiento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/genética , Regulación Neoplásica de la Expresión Génica , Glucólisis , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
18.
Microb Pathog ; 169: 105616, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35680007

RESUMEN

T-complex protein-1 (TCP1) is a group II chaperonin, known to fold various proteins like actin and tubulin. In Leishmania donovani only one subunit that is gamma subunit (LdTCP1γ) has been functionally characterized as a homo-oligomeric complex that exhibits ATP-dependent protein folding. The gene is essential for the survival and infectivity of the parasite. Leishmania parasite releases extracellular vesicles (EVs) containing numerous virulence factors, which play an essential role in parasite pathogenesis and modulate host immune cell signaling. The present study demonstrates that LdTCP1γ is secreted in the EVs and modulates host macrophage functions. EVs isolated from LdTCP1γ single-allele-replacement mutants significantly upregulate the microbicidal function of LPS-induced macrophage as evident by increased levels of proinflammatory cytokines (TNF-α, IL-6), iNOS and NO production. Further, the comparative proteomics of wild-type and single-allele-replacement mutant EVs showed that out of 876 identified proteins, 207 were significantly modulated. Among them, the top 50 modulated and abundantly secreted proteins constitute ∼40% of the total identified protein intensity and include virulence factors such as GP63, peroxiredoxin, enolase, HSP70, elongation factor 2, amastin, eukaryotic translation initiation factor and α-tubulin. The comparative proteomic analysis revealed that the proteome enrichment of the EVs from LdTCP1γ single-allele replacement mutants significantly differs from wild-type EVs, which may be responsible for the altered host microbicidal responses. Thus, our data provide new insight into the role of LdTCP1γ in EVs-mediated host-parasite interactions.


Asunto(s)
Vesículas Extracelulares , Leishmania donovani , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Regulación hacia Abajo , Vesículas Extracelulares/metabolismo , Leishmania donovani/genética , Macrófagos , Proteómica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Tubulina (Proteína)/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
BMC Mol Cell Biol ; 23(1): 25, 2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35773623

RESUMEN

BACKGROUND: Chaperonin containing TCP1 subunit 3 (CCT3) acts as an oncogene in cancers, whereas its role and underlying mechanisms in lung adenocarcinoma (LUAD) are poorly understood. This study investigated the clinical relevance and function of CCT3 in LUAD. METHODS: Clinical relevance of CCT3 in LUAD and lung squamous cell carcinoma (LUSC) was analyzed based on TCGA database. qRT-PCR and Western blot were used to detect mRNA and protein expression, respectively. CCK8 and colony formation were performed to measure cell viability. PI and PI/Annexin V-FITC assay kit was used to determine cell cycle and cell death, respectively. Luciferase activity was performed to check whether CCT3 regulated slc7a11's transcription activity. Ferroptosis was determined by incubating the cells with ferroptosis and apoptosis inducer, their inhibitor and autophagy inhibitor, followed by cell viability examination. RESULTS: We found that CCT3 was overexpressed in LUAD and LUSC tissues. Overexpression of CCT3 predicted the poor prognosis of LUAD patients. Loss-of-function and gain-of-function experiments demonstrated that CCT3 promoted the proliferation and colony formation of LUAD cells. In addition, CCT3 promoted cell cycle progression and suppressed slc7a11-mediated cell ferroptosis, but not apoptosis. We also found that CCT3 activated AKT. MK2206 significantly reduced the viability of CCT3 overexpressed LUAD cells, while had smaller inhibitory effect on the proliferation of control cells, suggesting that CCT3 dictates the sensitivity of LUAD cells to AKT inhibition. CONCLUSION: Our study demonstrates that CCT3 contributes to the proliferation and growth of LUAD cells through inhibition of ferroptosis and activation of AKT.


Asunto(s)
Adenocarcinoma del Pulmón , Chaperonina con TCP-1 , Ferroptosis , Neoplasias Pulmonares , Proteínas Proto-Oncogénicas c-akt , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Adenocarcinoma del Pulmón/patología , Línea Celular Tumoral , Proliferación Celular/genética , Chaperonina con TCP-1/genética , Chaperonina con TCP-1/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Regulación hacia Arriba
20.
Mol Med Rep ; 25(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35315492

RESUMEN

Colon cancer has a high mortality rate, thus there is an urgent need to develop novel therapeutic options for clinical management of the disease. Studies have revealed that chaperonin containing TCP1 subunit 6A (CCT6A) promoted the development of multiple types of cancer, and dataset analysis revealed that homeobox B2 (HOXB2) has the potential to modulate the expression of CCT6A. However, whether HOXB2 affects the proliferation, migration and invasion of colon cancer cells remains to be determined. A CCT6A knockdown colon cancer cell line was established and colony formation, wound healing and Transwell invasion assays were performed to assess proliferation, migration and invasion of the altered colon cancer cells. Subsequently, luciferase reporter gene assays and chromatin immunoprecipitation assays were performed to detect the relationship between HOXB2 and CCT6A. A HOXB2 overexpression colon cancer cell line was established and the proliferation, migration and invasion of these cells was determined using the same methods. Knockdown of CCT6A reduced the proliferation, migration and invasion of colon cancer cells. HOXB2 enhanced the expression of CCT6A in colon cancer cells by binding to the promoter of CCT6A. Overexpression of HOXB2 abolished the inhibitory effect of CCT6A knockdown on the proliferation, migration and invasion of colon cancer cells. HOXB2 increased the proliferation and invasiveness of colon cancer cells by increasing the expression of CCT6A.


Asunto(s)
Neoplasias del Colon , Genes Homeobox , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Chaperonina con TCP-1/genética , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Invasividad Neoplásica/genética , Factores de Transcripción/genética , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA