Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
1.
Sci Rep ; 14(1): 18806, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138231

RESUMEN

Manipulating the rhizosphere microbiome to enhance plant stress tolerance is an environmentally friendly technology and a renewable resource to restore degraded environments. Here we suggest a sustainable bioremediation strategy on the example of Stebnyk mine tailings storage. We consider Salicornia europaea rhizosphere community, and the ability of the phytoremediation plant Salix viminalis to recruit its beneficial microbiome to mediate the pollution stress at the Stebnyk mine tailings storage. The tailings contain large amounts of brine salts and heavy metals that contaminate the ground water and surrounding areas, changing soil biogeochemistry and causing increased erosion. The species richness of the endophytic bacterial community of S. viminalis roots was assessed based on observed OTUs, Shannon-InvSimpson, and evenness index. Our results obtained using the plant-based enrichment strategy show that biodiversity was decreased across the contamination zones and that S. europaea supplementation significantly increased the species richness. Our results also indicate that the number of dominating bacteria was not changed across zones in both S. europaea-treated and untreated bacterial populations, and that the decrease in richness was mainly caused by the low abundant bacterial OTUs. The importance of selecting the bioremediation strains that are likely to harbor a reservoir of genetic traits that aid in bioremediation function from the target environment is discussed.


Asunto(s)
Biodegradación Ambiental , Biodiversidad , Chenopodiaceae , Microbiota , Rizosfera , Microbiología del Suelo , Chenopodiaceae/microbiología , Salix/microbiología , Contaminantes del Suelo/metabolismo , Raíces de Plantas/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Minería
2.
Plant Physiol Biochem ; 214: 108921, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38991594

RESUMEN

The use of halophytes in conjunction with arbuscular mycorrhizal (AM) fungi has been found to enhance the removal efficacy of heavy metals and salts in heavy metals contaminated saline soil. The mechanisms of AM fungi on promoting halophyte growth and regulating metabolism remain unclear. In this study, combinations of 0 g kg-1 NaCl and 3 mg kg-1 Cd (S0Cd3), 6 g kg-1 NaCl and 3 mg kg-1 Cd (S6Cd3), and 12 g kg-1 NaCl and 3 mg kg-1 Cd (S12Cd3) were employed to explore the impact of Funneliformis mosseae on the growth and metabolism of Suaeda salsa. The results showed that AM fungi increased the biomass and the P, K+, Ca2+, and Mg2+ accumulations, reduced the Cd and Na+ concentrations in S0Cd3 and S6Cd3, and increased the Cd concentrations in S12Cd3. AM fungi inoculation reduced the Cd and Na+ transfer factors and increased the Cd and Na+ accumulations in S6Cd3. The metabolomics of S6Cd3 showed that AM fungi upregulated the expression of 5-hydroxy-L-tryptophan and 3-indoleacid acid in tryptophan metabolism, potentially acting as crucial antioxidants enabling plants to actively cope with abiotic stresses. AM fungi upregulated the expression of arbutin in glycolysis process, enhancing the plants' osmoregulation capacity. AM fungi upregulated the expression of 2-hydroxycinnamic acid in phenylalanine metabolism and dopaquinone in tyrosine metabolism. These two metabolites help effectively remove reactive oxygen species. Correspondingly, AM fungi decreased MDA content and increased soluble sugar content. These results indicate that AM fungi improve the stress resistance of S. salsa by increasing nutrient uptake and regulating physiological and metabolic changes.


Asunto(s)
Aminoácidos , Cadmio , Chenopodiaceae , Glucólisis , Micorrizas , Reguladores del Crecimiento de las Plantas , Micorrizas/fisiología , Micorrizas/metabolismo , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Chenopodiaceae/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/metabolismo , Aminoácidos/metabolismo , Estrés Salino , Plantas Tolerantes a la Sal/metabolismo , Plantas Tolerantes a la Sal/microbiología , Hongos
3.
Chemosphere ; 362: 142918, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39043273

RESUMEN

Coastal wetlands possess significant carbon storage capabilities. However, in coastal soil-plant systems augmented with biochar and microorganisms, the mechanisms of these amendments and carbon participation remain unclear. This study utilized pot experiments to explore how Enteromorpha prolifera biochar and Arbuscular mycorrhizal fungi (AMF) affect soil organic carbon (SOC), carbon-related microbes, photosynthetic and osmotic system of Suaeda salsa. The results showed biochar reduced exchangeable sodium percentage by 6.9% through adsorption and ion exchange, and increased SOC content by 34.4%. The abundance of carbon-related microorganisms (Bacteroidota and Chloroflexi) was increased and carbon metabolizing enzyme (cellulase and sucrase) activity in the soil was enhanced. AMF significantly improved plant growth compared with CK, as evidenced by the enhanced dry weight by 2.34 times. A partial least squares pathway model (PLS-PM) and correlation analysis suggested that the combined effect of biochar and AMF could be outlined as two pathways: soil and plant. Biochar increased SOC, improved the growth of soil carbon metabolizing microorganisms, and further promoted the activity of carbon-related enzymes. Additionally, AMF facilitated nutrient absorption by plants through root symbiosis, with biochar further enhancing this process by acting as a nutrient adsorber. These combined effects of biochar and AMF at soil and plant level enhanced the photosynthetic process of Suaeda salsa. The transport of photosynthetic products to the roots can increase the carbon storage in the soil. This study provides quantitative evidence supporting the increase of carbon storage in coastal wetland soil-plant systems through a combined application of biochar and AMF.


Asunto(s)
Carbono , Carbón Orgánico , Micorrizas , Microbiología del Suelo , Suelo , Humedales , Carbón Orgánico/química , Carbono/metabolismo , Suelo/química , Micorrizas/fisiología , Chenopodiaceae/metabolismo , Chenopodiaceae/microbiología , Fotosíntesis , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología
4.
Sci Rep ; 14(1): 16737, 2024 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033227

RESUMEN

In this comprehensive investigation, we successfully isolated and characterized 40 distinct plant-associated halotolerant bacteria strains obtained from three halophytic plant species: Tamarix nilotica, Suaeda pruinosa, and Arthrocnemum macrostachyum. From this diverse pool of isolates, we meticulously selected five exceptional plant-associated halotolerant bacteria strains through a judiciously designed seed biopriming experiment and then identified molecularly. Bacillus amyloliquefaciens DW6 was isolated from A. macrostachyum. Three bacteria (Providencia rettgeri DW3, Bacillus licheniformis DW4, and Salinicoccus sesuvii DW5) were isolated for the first time from T. nilotica, S. pruinosa and S. pruinosa, respectively. Paenalcaligenes suwonensis DW7 was isolated for the first time from A. macrostachyum. These plant-associated halotolerant bacteria exhibited growth-promoting activities, including phosphate solubilization, nitrogen fixation, and production of bioactive compounds, i.e., ammonia, phytohormones, hydrogen cyanide, siderophores, and exopolysaccharides. A controlled laboratory experiment was conducted to reduce the detrimental impact of soil salinity. Vicia faba seedlings were inoculated individually or in mixtures by the five most effective plant-associated halotolerant bacteria to reduce the impact of salt stress and improve growth parameters. The growth parameters were significantly reduced due to the salinity stress in the control samples, compared to the experimental ones. The unprecedented novelty of our findings is underscored by the demonstrable efficacy of co-inoculation with these five distinct bacterial types as a pioneering bio-approach for countering the deleterious effects of soil salinity on plant growth. This study thus presents a remarkable contribution to the field of plant science and offers a promising avenue for sustainable agriculture in saline environments.


Asunto(s)
Salinidad , Vicia faba , Vicia faba/crecimiento & desarrollo , Vicia faba/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/crecimiento & desarrollo , Fijación del Nitrógeno , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Tamaricaceae/microbiología , Tamaricaceae/crecimiento & desarrollo , Chenopodiaceae/microbiología , Chenopodiaceae/crecimiento & desarrollo , Microbiología del Suelo , Tolerancia a la Sal , Fosfatos/metabolismo
5.
Huan Jing Ke Xue ; 45(7): 4177-4186, 2024 Jul 08.
Artículo en Chino | MEDLINE | ID: mdl-39022964

RESUMEN

Changes in soil organic carbon (SOC) are of great importance to the evolution of soil quality. The distribution characteristics of soil organic carbon (SOC), easily oxidizable organic carbon (EOC), dissolved organic carbon (DOC), and particulate organic carbon (POC) were investigated in the 0-50 cm soil layer of the Phragmites australis, Suaeda salsa, and Tamarix chinensis communities of the supratidal zone in the Yellow River Delta as the research subjects. Then, the composition and sources of soil dissolved organic matter (DOM) were analyzed based on the UV-vis spectroscopy, three-dimensional excitation emission matrix spectroscopy, and parallel factor analysis (PARAFAC). Finally, the key factors affecting the characteristics of soil organic carbon and DOM fractions of different plant communities were finally revealed in combination with the physicochemical properties of the soil. The results showed that: ① Comparing different communities, the S. salsa community had the highest ω(SOC) at 7.53 g·kg-1, the T. chinensis community had the highest ω(DOC) at 0.98 g·kg-1, and the P. australis community had significantly higher ω(EOC) and ω(POC) than those of the S. salsa and T. chinensis communities at 1.47 g·kg-1 and 0.65 g·kg-1, respectively. The vertical distribution showed a tendency to decrease with deeper soil layers, except for POC concentration. ② The main components of soil DOM of the P. australis, S. salsa, and T. chinensis communities were humus, protein-like substances, and fulvic acid-like substances, of which exogenous components accounted for 55.80%, 56.41%, and 52.81% in the above communities, respectively. ③ Comparing different communities, the humification degree of the P. australis community was significantly higher than that of the S. salsa and T. chinensi communities, but its aromaticity and proportion of biological sources were significantly lower than those of the T. chinensi community. On the vertical profile of the soil, DOM aromaticity and humification degree gradually increased with the deepening of the soil layer, and the deeper soils were mainly dominated by small molecular weight DOM with a lower proportion of hydrophobic fraction. ④ Redundant analysis showed that N (P<0.01), NO2--N (P<0.01), and NH4+-N (P<0.05) were the key factors affecting the changes in soil organic carbon and DOM fractions.


Asunto(s)
Carbono , Chenopodiaceae , Compuestos Orgánicos , Ríos , Suelo , Suelo/química , Carbono/análisis , China , Compuestos Orgánicos/análisis , Ríos/química , Chenopodiaceae/crecimiento & desarrollo , Poaceae/crecimiento & desarrollo , Tamaricaceae/crecimiento & desarrollo , Ecosistema , Monitoreo del Ambiente
6.
Int Immunopharmacol ; 137: 112482, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38878490

RESUMEN

Our research focused on extracting polysaccharides from Suaeda maritima (SMP) to obtain crude polysaccharides (SMP-C), which were subsequently purified into SMP-F1 and SMP-F2. SMPs were evaluated for anti-inflammatory effects and SMP-F1 showed the highest inhibitory effects on nitric oxide (NO) production. The monosaccharide composition analysis of SMP-F1 (molecular weight of 112.2 × 103 g/mol) revealed predominant levels of glucose (45.4 %), arabinose (20.5 %), mannose (14.2 %), and galactose (12.7 %). The primary backbone of SMP-F1 consisted of (1 â†’ 4)-D-glucopyranoside, (1 â†’ 4,6)-D-glucopyranoside, (1 â†’ 3)-D-mannopyranoside, (1 â†’ 3,6)-D-mannopyranoside, and (1 â†’ 5)-L-arabifuranoside. In addition, we hydrolysed SMP-F1 to SMP-H1, SMP-H2, and SMP-H3 and investigated their anti-inflammatory effects on RAW264.7 macrophages. Following SMP-F1 hydrolysis, SMP-H3 (molecular weight of 25.8 × 103 g/mol) exhibited superior anti-inflammatory properties compared to SMP-H1 and SMP-H2, demonstrating a significant decrease in NO production. SMP-H3 also demonstrated a remarkable reduction in the secretion of inflammatory mediators including NO, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), and pro-inflammatory cytokines including tumour necrosis factor-alpha (TNF-α), interleukin (IL-1ß and IL-6), while increasing IL-10 expression. Furthermore, SMP-H3 significantly inhibited LPS-stimulated cluster of differentiation (CD) 11b and CD40 expression. Our subsequent investigation unveiled the involvement of SMP-H3-activated macrophages in the nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Additionally, SMP-H3 exhibited antioxidant activity by scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide, and 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) free radicals. These findings suggest the potential of SMP-H3 as an ingredient in the development of alternative drugs or functional foods.


Asunto(s)
Antiinflamatorios , Antioxidantes , Lipopolisacáridos , Macrófagos , Óxido Nítrico , Animales , Ratones , Células RAW 264.7 , Antiinflamatorios/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Antioxidantes/farmacología , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente , Chenopodiaceae/química , Óxido Nítrico Sintasa de Tipo II/metabolismo , FN-kappa B/metabolismo , Polisacáridos/farmacología , Polisacáridos Bacterianos/farmacología , Ciclooxigenasa 2/metabolismo
7.
Int J Mol Sci ; 25(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891835

RESUMEN

Two genes of nitrate transporters SaNRT2.1 and SaNRT2.5, putative orthologs of high-affinity nitrate transporter genes AtNRT2.1 and AtNRT2.5 from Arabidopsis thaliana, were cloned from the euhalophyte Suaeda altissima. Phylogenetic bioinformatic analysis demonstrated that the proteins SaNRT2.1 and SaNRT2.5 exhibited higher levels of homology to the corresponding proteins from the plants of family Amaranthaceae; the similarity of amino acid sequences between proteins SaNRT2.1 and SaNRT2.5 was lower (54%). Both SaNRT2.1 and SaNRT2.5 are integral membrane proteins forming 12 transmembrane helices as predicted by topological modeling. An attempt to demonstrate nitrate transporting activity of SaNRT2.1 or SaNRT2.5 by heterologous expression of the genes in the yeast Hansenula (Ogataea) polymorpha mutant strain Δynt1 lacking the only yeast nitrate transporter was not successful. The expression patterns of SaNRT2.1 and SaNRT2.5 were studied in S. altissima plants that were grown in hydroponics under either low (0.5 mM) or high (15 mM) nitrate and salinity from 0 to 750 mM NaCl. The growth of the plants was strongly inhibited by low nitrogen supply while stimulated by NaCl; it peaked at 250 mM NaCl for high nitrate and at 500 mM NaCl for low nitrate. Under low nitrate supply, nitrate contents in S. altissima roots, leaves and stems were reduced but increased in leaves and stems as salinity in the medium increased. Potassium contents remained stable under salinity treatment from 250 to 750 mM NaCl. Quantitative real-time PCR demonstrated that without salinity, SaNRT2.1 was expressed in all organs, its expression was not influenced by nitrate supply, while SaNRT2.5 was expressed exclusively in roots-its expression rose about 10-fold under low nitrate. Salinity increased expression of both SaNRT2.1 and SaNRT2.5 under low nitrate. SaNRT2.1 peaked in roots at 500 mM NaCl with 15-fold increase; SaNRT2.5 peaked in roots at 500 mM NaCl with 150-fold increase. It is suggested that SaNRT2.5 ensures effective nitrate uptake by roots and functions as an essential high-affinity nitrate transporter to support growth of adult S. altissima plants under nitrogen deficiency.


Asunto(s)
Proteínas de Transporte de Anión , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Transportadores de Nitrato , Nitratos , Filogenia , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Transporte de Anión/genética , Proteínas de Transporte de Anión/metabolismo , Nitratos/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/metabolismo , Secuencia de Aminoácidos , Raíces de Plantas/metabolismo , Raíces de Plantas/genética
8.
Physiol Plant ; 176(3): e14384, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38859697

RESUMEN

The present study aims to explore the potential of a plasma-membrane localized PIP2-type aquaporin protein sourced from the halophyte Salicornia brachiata to alleviate salinity and water deficit stress tolerance in a model plant through transgenic intervention. Transgenic plants overexpressing SbPIP2 gene showed improved physio-biochemical parameters like increased osmolytes (proline, total sugar, and amino acids), antioxidants (polyphenols), pigments and membrane stability under salinity and drought stresses compared to control plants [wild type (WT) and vector control (VC) plants]. Multivariate statistical analysis showed that, under water and salinity stresses, osmolytes, antioxidants and pigments were correlated with SbPIP2-overexpressing (SbPIP2-OE) plants treated with salinity and water deficit stress, suggesting their involvement in stress tolerance. As aquaporins are also involved in CO2 transport, SbPIP2-OE plants showed enhanced photosynthesis performance than wild type upon salinity and drought stresses. Photosynthetic gas exchange (net CO2 assimilation rate, PSII efficiency, ETR, and non-photochemical quenching) were significantly higher in SbPIP2-OE plants compared to control plants (wild type and vector control plants) under both unstressed and stressed conditions. The higher quantum yield for reduction of end electron acceptors at the PSI acceptor side [Φ( R0 )] in SbPIP2-OE plants compared to control plants under abiotic stresses indicates a continued PSI functioning, leading to retained electron transport rate, higher carbon assimilation, and less ROS-mediated injuries. In conclusion, the SbPIP2 gene functionally validated in the present study could be a potential candidate for engineering abiotic stress resilience in important crops.


Asunto(s)
Sequías , Nicotiana , Fotosíntesis , Proteínas de Plantas , Plantas Modificadas Genéticamente , Estrés Fisiológico , Fotosíntesis/genética , Nicotiana/genética , Nicotiana/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Chenopodiaceae/genética , Chenopodiaceae/fisiología , Chenopodiaceae/metabolismo , Acuaporinas/genética , Acuaporinas/metabolismo , Salinidad , Regulación de la Expresión Génica de las Plantas , Antioxidantes/metabolismo
9.
Plant Physiol Biochem ; 212: 108770, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823092

RESUMEN

Cadmium (Cd) and lead (Pb) are among the most toxic heavy metals affecting human health and crop yield. Suaeda maritima (L.) Dumort is an obligate halophyte that is well adapted to saline soil. The inbuilt salinity tolerance mechanisms of halophytes help them to survive in heavy metal-contaminated rhizospheric soil. In the present study, growth and ionomic responses, reactive oxygen species (ROS) accumulation, modulations of phytochelatins, antioxidative defense, and metabolomic responses were studied in S. maritima imposed to Cd and Pb stresses with an aim to elucidate Cd and Pb tolerance mechanisms and phytoremediation potential of this halophyte. Our results showed a reduction of biomass in S. maritima, which may serve as an energy conservation strategy for survival under heavy metal stress. The increased accumulation of ROS with concomitant higher expression of various antioxidative enzymes suggests the efficient scavenging of ROS. The metabolite profiling revealed significant up-regulation of sugars, sugar alcohols, amino acids, polyphenols, and organic acids under Cd and Pb stresses suggesting their possible role in osmotic balance, ionic homeostasis, ROS scavenging, and signal transduction for stress tolerance. In S. maritima, the translocation factors (Tf) are <1 in both Cd and Pb treatments, which indicates that this halophyte has high phytostabilization potential for Cd and Pb in roots and through restricted translocation of heavy metal ions to the aboveground part. The findings of this study offer comprehensive information on Cd and Pb tolerance mechanisms in S. maritima and suggest that this halophyte can detoxify the HMs through physiological, ionic, antioxidative, and metabolic regulations.


Asunto(s)
Biodegradación Ambiental , Cadmio , Chenopodiaceae , Plomo , Especies Reactivas de Oxígeno , Plantas Tolerantes a la Sal , Cadmio/metabolismo , Cadmio/toxicidad , Chenopodiaceae/metabolismo , Chenopodiaceae/efectos de los fármacos , Plantas Tolerantes a la Sal/metabolismo , Plomo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Metabolómica , Antioxidantes/metabolismo , Metaboloma/efectos de los fármacos , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Fitoquelatinas/metabolismo
10.
Sci Total Environ ; 942: 173775, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38844238

RESUMEN

The rhizosphere environment of plants, which harbors halophilic bacterial communities, faces significant challenges in coping with environmental stressors, particularly saline soil properties. This study utilizes a high-throughput 16S rRNA gene-based amplicon sequencing to investigate the variations in bacterial community dynamics in rhizosphere soil (RH), root surface soil (RS), root endophytic bacteria (PE) compartments of Suaeda salsa roots, and adjoining soils (CK) across six locations along the eastern coast of China: Nantong (NT), Yancheng (YC), Dalian (DL), Tianjin (TJ), Dongying (DY), and Qingdao (QD), all characterized by chloride-type saline soil. Variations in the physicochemical properties of the RH compartment were also evaluated. The results revealed significant changes in pH, electrical conductivity, total salt content, and ion concentrations in RH samples from different locations. Notably, the NT location exhibited the highest alkalinity and nitrogen availability. The pH variations were linked to HCO3- accumulation in S. salsa roots, while salinity stress influenced soil pH through H+ discharge. Despite salinity stress, enzymatic activities such as catalase and urease were higher in soils from various locations. The diversity and richness of bacterial communities were higher in specific locations, with Proteobacteria dominating PE samples from the DL location. Additionally, Vibrio and Marinobacter were prevalent in RH samples. Significant correlations were found between soil pH, salinity, nutrient content, and the abundance and diversity of bacterial taxa in RH samples. Bioinformatics analysis revealed the prevalence of halophilic bacteria, such as Bacillus, Halomonas, and Streptomyces, with diverse metabolic functions, including amino acid and carbohydrate metabolisms. Essential genes, such as auxin response factor (ARF) and GTPase-encoding genes, were abundant in RH samples, suggesting adaptive strategies for harsh environments. Likewise, proline/betaine transport protein genes were enriched, indicating potential bioremediation mechanisms against high salt stress. These findings provide insight into the metabolic adaptations facilitating resilience in saline ecosystems and contribute to understanding the complex interplay between soil conditions, bacterial communities, and plant adaptation.


Asunto(s)
Bacterias , Chenopodiaceae , Raíces de Plantas , ARN Ribosómico 16S , Microbiología del Suelo , China , Chenopodiaceae/microbiología , Raíces de Plantas/microbiología , Bacterias/clasificación , Bacterias/genética , Rizosfera , Suelo/química , Salinidad , Microbiota , Secuenciación de Nucleótidos de Alto Rendimiento
11.
Nat Commun ; 15(1): 4279, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769297

RESUMEN

The identification of genes involved in salinity tolerance has primarily focused on model plants and crops. However, plants naturally adapted to highly saline environments offer valuable insights into tolerance to extreme salinity. Salicornia plants grow in coastal salt marshes, stimulated by NaCl. To understand this tolerance, we generated genome sequences of two Salicornia species and analyzed the transcriptomic and proteomic responses of Salicornia bigelovii to NaCl. Subcellular membrane proteomes reveal that SbiSOS1, a homolog of the well-known SALT-OVERLY-SENSITIVE 1 (SOS1) protein, appears to localize to the tonoplast, consistent with subcellular localization assays in tobacco. This neo-localized protein can pump Na+ into the vacuole, preventing toxicity in the cytosol. We further identify 11 proteins of interest, of which SbiSALTY, substantially improves yeast growth on saline media. Structural characterization using NMR identified it as an intrinsically disordered protein, localizing to the endoplasmic reticulum in planta, where it can interact with ribosomes and RNA, stabilizing or protecting them during salt stress.


Asunto(s)
Chenopodiaceae , Proteínas de Plantas , Tolerancia a la Sal , Chenopodiaceae/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Tolerancia a la Sal/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Vacuolas/metabolismo , Salinidad , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Retículo Endoplásmico/metabolismo , Estrés Salino , Proteómica , Nicotiana/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Transcriptoma
12.
Biopolymers ; 115(4): e23586, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38747448

RESUMEN

Cellulose nanofibers, a sustainable and promising material with widespread applications, exhibit appreciable strength and excellent mechanical and physicochemical properties. The preparation of cellulosic nanofibers from food or agricultural residue is not sustainable. Therefore, this study was designed to use three halophytic plants (Cressa cretica, Phragmites karka, and Suaeda fruticosa) to extract cellulose for the subsequent conversion to cellulosic nanofibers composites. The other extracted biomass components including lignin, hemicellulose, and pectin were also utilized to obtain industrially valuable enzymes. The maximum pectinase (31.56 IU mL-1), xylanase (35.21 IU mL-1), and laccase (15.89 IU mL-1) were produced after the fermentation of extracted pectin, hemicellulose, and lignin from S. fruticosa, P. karka, and C. cretica, respectively. Cellulose was methylated (with a degree of substitution of 2.4) and subsequently converted into a composite using polyvinyl alcohol. Scanning electron microscopy and Fourier-transform infrared spectroscopy confirmed the successful synthesis of the composites. The composites made up of cellulose from C. cretica and S. fruticosa had a high tensile strength (21.5 and 15.2 MPa) and low biodegradability (47.58% and 44.56%, respectively) after dumping for 3 months in soil, as compared with the composite from P. karka (98.79% biodegradability and 4.9 MPa tensile strength). Moreover, all the composites exhibited antibacterial activity against gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae) and gram-positive bacteria (Staphylococcus aureus). Hence, this study emphasizes the possibility for various industrial applications of biomass from halophytic plants.


Asunto(s)
Celulosa , Celulosa/química , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/metabolismo , Lignina/química , Resistencia a la Tracción , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Poligalacturonasa/metabolismo , Poligalacturonasa/química , Espectroscopía Infrarroja por Transformada de Fourier , Lacasa/metabolismo , Lacasa/química , Nanofibras/química , Pectinas/química , Pectinas/aislamiento & purificación , Pectinas/metabolismo , Chenopodiaceae/química , Chenopodiaceae/metabolismo , Polisacáridos/química , Polisacáridos/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química
13.
Microb Pathog ; 191: 106677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705217

RESUMEN

A novel endophytic Streptomyces griseorubens CIBA-NS1 was isolated from a salt marsh plant Salicornia sp. The antagonistic effect of S. griseorubens against Vibrio campbellii, was studied both in vitro and in vivo. The strain was validated for its endophytic nature and characterized through scanning electron microscopy, morphological and biochemical studies and 16SrDNA sequencing. The salinity tolerance experiment has shown that highest antibacterial activity was at 40‰ (16 ± 1.4 mm) and lowest was at 10 ‰ salinity (6.94 ± 0.51 mm). In vivo exclusion of Vibrio by S. griseorubens CIBA-NS1 was studied in Penaeus indicus post larvae and evaluated for its ability to improve growth and survival of P. indicus. After 20 days administration of S. griseorubens CIBA-NS1, shrimps were challenged with V. campbellii. The S. griseorubens CIBA-NS1 reduced Vibrio population in test group when compared to control, improved survival (60.5 ± 6.4%) and growth, as indicated by weight gain (1.8 ± 0.05g). In control group survival and growth were 48.4 ± 3.5% and 1.4 ± 0.03 g respectively. On challenge with V. campbellii, the S. griseorubens CIBA-NS1 administered group showed better survival (85.6 ± 10%) than positive control (64.3 ± 10%). The results suggested that S. griseorubens CIBA-NS1 is antagonistic to V. campbellii, reduce Vibrio population in the culture system and improve growth and survival. This is the first report on antagonistic activity of S. griseorubens isolated from salt marsh plant Salicornia sp, as a probiotic candidate to prevent V. campbellii infection in shrimps.


Asunto(s)
Chenopodiaceae , Endófitos , Probióticos , Streptomyces , Vibrio , Animales , Vibrio/efectos de los fármacos , Vibrio/fisiología , Chenopodiaceae/microbiología , Probióticos/farmacología , Endófitos/aislamiento & purificación , Endófitos/fisiología , Streptomyces/fisiología , Streptomyces/aislamiento & purificación , Streptomyces/genética , Penaeidae/microbiología , ARN Ribosómico 16S/genética , Antibiosis , Vibriosis/microbiología , Vibriosis/veterinaria , Vibriosis/prevención & control , Salinidad , Larva/microbiología , ADN Bacteriano/genética , Filogenia
14.
Environ Sci Pollut Res Int ; 31(25): 37652-37662, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38780847

RESUMEN

A huge amount of phosphogypsum (PG) wastes generated from the processing phosphate ore in Tunisia Industrial Group Area-Gabes is getting discarded into the sea. Within this framework, the basic objective of this research is to elaborate and discuss a natural-based solution focused on phytoremediation of contaminated (PG) soils and marine sediments with the halophilic plant Salicornia europaea. A significant drop of the organic matter (53.09%), moisture (26.47%), and sediment porosity with (5.88%) was detected in the rhizosphere Salicornia europaea area (RS). Removal of hazardous elements concentrations, such as Pb, Fe, Cu, Cd, and Zn, between contaminated sediment (CS) and RS displayed a significant difference, ranging from 5.33 to 50.02% of hazardous elements removal concentration, which was observed in the rhizosphere zone. The microbiota of both areas (RS and CS) were analyzed by massive sequencing. In both samples, all the sequences belong to only four phyla: Firmicutes and, to a much lower extent, Proteobacteria, Bacteroidetes, and Actinobacteria. The CS sediment seems to be heavily polluted by human activities. Most of the found genera are inhabitants of the intestine of warm-blooded animals (Escherichia, Bacteroides, Prevotella, Faecalibacterium, Ruminococcus, Enterococcus); hence, activities in this area pose a health risk. On the other hand, it may be surprising that 76.4% of the total high-quality sequences retrieved from the RS sample were affiliated to the family Bacillaceae. The salinity of the studied soil exerts a stress on the microbial populations that inhabit it, directing the selection of halotolerant species.


Asunto(s)
Biodegradación Ambiental , Chenopodiaceae , Sedimentos Geológicos , Residuos Industriales , Contaminantes Químicos del Agua , Sedimentos Geológicos/química , Agua de Mar , Túnez , Humanos , Microbiota , Contaminantes Químicos del Agua/análisis , Plantas Tolerantes a la Sal/fisiología , Chenopodiaceae/fisiología , Microbiología del Suelo , Monitoreo del Ambiente
15.
Int J Biol Macromol ; 273(Pt 1): 132712, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815939

RESUMEN

Plant polysaccharides are highly potent bioactive molecules. Clarifying the structural composition and bioactivities of plant polysaccharides will provide insights into their structure-activity relationships. Therefore, herein, we identified a polysaccharide produced by Salicornia bigelovii Torr. and analyzed the structure and anti-tumor activity of its component, SabPS-1. SabPS-1 was 3.24 × 104 Da, primarily composed of arabinose (24.96 %), galactose (30.39 %), and galacturonic acid (23.20 %), rhamnose (6.21 %), xylose (4.99 %), glucuronic acid (3.12 %), mannuronic acid (1.75 %), mannose (1.69 %), glucose (1.54 %), fucose (1.12 %), and guluronic acid (1.03 %). The backbone of SabPS-1 was a â†’ 4)-ß-D-GalpA-(1→, →5)-α-L-Araf-(1→, and→4)-ß-D-Galp-(1 â†’ molecule with a branched chain of α-L-Araf-(1 â†’ connected to sugar residues of →3,6)-ß-D-Galp-(1 â†’ in the O-3 position. SabPS-1 induced apoptosis and inhibited the growth of HepG-2 cells, with viability of 47.90 ± 4.14 (400 µg/mL), indicating anti-tumor activity. Apoptosis induced by SabPS-1 may be associated with the differential regulation of caspase 3, caspase 8, Bax, and Bcl-2. To the best of our knowledge, this is the first study to investigate the principal structures and anti-tumor biological activities of SabPS-1. Our findings demonstrated the excellent anti-tumor properties of SabPS-1, which will aid in the development of anti-tumor drugs utilizing Salicornia bigelovii Torr.


Asunto(s)
Apoptosis , Chenopodiaceae , Polisacáridos , Chenopodiaceae/química , Humanos , Polisacáridos/farmacología , Polisacáridos/química , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Plantas Tolerantes a la Sal/química , Línea Celular Tumoral , Células Hep G2 , Proliferación Celular/efectos de los fármacos , Monosacáridos/análisis , Relación Estructura-Actividad
16.
mSphere ; 9(5): e0022624, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682927

RESUMEN

Soil microbial community composition and diversity are often affected by nutrient enrichment, which may influence soil microbes to affect nutrient cycling and plant community structure. However, the response of soil bacteria to nitrogen (N) and phosphorus (P) addition and whether it is influenced by plants remains unclear. By 16S rRNA sequencing, we investigated the response of the rhizosphere and bulk soil bacterial communities of different halophytes (salt-rejecting, salt-absorbing, and salt-secreting plant) in the Yellow River Delta to short-term N and P addition. The response of rhizosphere bacterial diversity to N and P addition was opposite in Phragmites communis and Suaeda salsa. N addition increased the rhizosphere soil bacterial α-diversity of S. salsa and Aeluropus sinensis, while P addition decreased the rhizosphere bacterial α-diversity bacteria of S. salsa. The N and P addition had a weak effect on the rhizosphere bacterial community composition and a significant effect on the bulk soil bacterial community composition of halophytes. The S. salsa and P. communis bulk soil bacterial community were mainly influenced by P addition, while it was influenced by N addition in A. sinensis. N and P addition reduced the difference in bacterial community composition between the two types of soil. N and P addition increased the eutrophic taxa (Proteobacteria and Bacteroidetes) and decreased the oligotrophic taxa (Acidobacteria). Redundancy analysis showed that soil organic matter, salt, and total N content had significant effects on the bacterial community composition. The results clarify that the response of soil bacterial communities to N and P additions is inconsistent across the three halophyte soils, and the effect of plant species on the bacterial community was stronger than short-term N and P addition. IMPORTANCE: The bulk soil bacterial community was more affected by nutrient addition. Nitrogen (N) and phosphorus (P) have different effects on bacterial community. Soil organic matter is a key factor influencing the response of bacterial community to nutrient addition. N and P influence on bacterial community changes with plants.


Asunto(s)
Bacterias , Nitrógeno , Fósforo , ARN Ribosómico 16S , Rizosfera , Plantas Tolerantes a la Sal , Microbiología del Suelo , Fósforo/análisis , Fósforo/metabolismo , Nitrógeno/metabolismo , Nitrógeno/análisis , Plantas Tolerantes a la Sal/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/efectos de los fármacos , ARN Ribosómico 16S/genética , Microbiota , Chenopodiaceae/microbiología , Suelo/química , Biodiversidad
17.
J Nat Prod ; 87(4): 733-742, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38573876

RESUMEN

Nine bacteria were isolated from the episphere of Suaeda maritima (L.) Dumort. Among them, the bacterial strain YSL2 displayed the highest antimicrobial activity on agar plates and exhibited significant novelty compared with other bacteria based on 16S rRNA analysis. Consequently, Nocardiopsis maritima YSL2T was subjected to phenotypic characterization and whole-genome sequencing. Phylogenetic analysis revealed its close association with Nocardiopsis aegyptia SNG49T. Furthermore, genomic analysis of strain YSL2T revealed the presence of various gene clusters, indicating its potential for producing antimicrobial secondary metabolites. Upon cultivation on a large scale, maritiamides A and B (1 and 2) were isolated and characterized as cyclic hexapeptides based on nuclear magnetic resonance, ultraviolet, infrared, and mass spectrometric data. The absolute configurations of the amino acid residues in the maritiamides were determined through chiral derivatization, utilizing FDAA and GITC. Maritiamides 1 and 2 exhibited promising antibacterial activities against Staphylococcus epidermidis and weakly inhibited the growth of Escherichia coli and Pseudomonas fluorescens.


Asunto(s)
Antibacterianos , Nocardiopsis , Antibacterianos/farmacología , Antibacterianos/química , Chenopodiaceae/microbiología , Escherichia coli/efectos de los fármacos , Genómica , Metabolómica , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Nocardiopsis/química , Péptidos Cíclicos/química , Péptidos Cíclicos/farmacología , Filogenia , Pseudomonas/efectos de los fármacos , ARN Ribosómico 16S/genética , Staphylococcus/efectos de los fármacos
18.
Plant Cell Environ ; 47(7): 2640-2659, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38558078

RESUMEN

Cell wall is involved in plant growth and plays pivotal roles in plant adaptation to environmental stresses. Cell wall remodelling may be crucial to salt adaptation in the euhalophyte Salicornia europaea. However, the mechanism underlying this process is still unclear. Here, full-length transcriptome indicated cell wall-related genes were comprehensively regulated under salinity. The morphology and cell wall components in S. europaea shoot were largely modified under salinity. Through the weighted gene co-expression network analysis, SeXTH2 encoding xyloglucan endotransglucosylase/hydrolases, and two SeLACs encoding laccases were focused. Meanwhile, SeEXPB was focused according to expansin activity and the expression profiling. Function analysis in Arabidopsis validated the functions of these genes in enhancing salt tolerance. SeXTH2 and SeEXPB overexpression led to larger cells and leaves with hemicellulose and pectin content alteration. SeLAC1 and SeLAC2 overexpression led to more xylem vessels, increased secondary cell wall thickness and lignin content. Notably, SeXTH2 transgenic rice exhibited enhanced salt tolerance and higher grain yield. Altogether, these genes may function in the succulence and lignification process in S. europaea. This work throws light on the regulatory mechanism of cell wall remodelling in S. europaea under salinity and provides potential strategies for improving crop salt tolerance and yields.


Asunto(s)
Pared Celular , Chenopodiaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Tolerancia a la Sal , Xilema , Tolerancia a la Sal/genética , Xilema/fisiología , Xilema/genética , Xilema/metabolismo , Chenopodiaceae/genética , Chenopodiaceae/fisiología , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tamaño de la Célula , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Oryza/genética , Oryza/fisiología , Oryza/crecimiento & desarrollo , Genes de Plantas , Diferenciación Celular/genética , Lignina/metabolismo
19.
J Microbiol Biotechnol ; 34(5): 1092-1100, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38563091

RESUMEN

The global elderly population, aged 65 and over, reached approximately 10% in 2020, and this proportion is expected to continue rising. Therefore, the prevalence of neurodegenerative diseases such as Parkinson's disease (PD), which are characterized by declining memory capabilities, is anticipated to increase. In a previous study, we successfully restored the diminished memory capabilities in a fruit fly model of PD by administering an omija extract. To identify functional ingredients that can enhance memory akin to the effects of the omija extract, we conducted screenings by administering halophyte extracts to the PD model. Halophytes are plants that thrive in high-salt environments, and given Korea's geographic proximity to the sea on three sides, it serves as an optimal hub for the utilization of these plants. Upon examining the effects of the oral administration of 12 halophyte extracts, Salicornia herbacea and Calystegia soldanella emerged as potential candidates for ameliorating memory loss in PD model flies. Moreover, our findings suggested that C. soldanella, but not S. herbacea, can mitigate oxidative stress in DJ-1ß mutants.


Asunto(s)
Chenopodiaceae , Modelos Animales de Enfermedad , Memoria , Extractos Vegetales , Animales , Extractos Vegetales/farmacología , Chenopodiaceae/química , Memoria/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/tratamiento farmacológico , Plantas Tolerantes a la Sal , Drosophila melanogaster/efectos de los fármacos , Trastornos de la Memoria/tratamiento farmacológico
20.
Microbiol Spectr ; 12(6): e0005624, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38687070

RESUMEN

The Atacama Desert is the oldest and driest desert on Earth, encompassing great temperature variations, high ultraviolet radiation, drought, and high salinity, making it ideal for studying the limits of life and resistance strategies. It is also known for harboring a great biodiversity of adapted life forms. While desertification is increasing as a result of climate change and human activities, it is necessary to optimize soil and water usage, where stress-resistant crops are possible solutions. As many studies have revealed the great impact of the rhizobiome on plant growth efficiency and resistance to abiotic stress, we set up to explore the rhizospheric soils of Suaeda foliosa and Distichlis spicata desert plants. By culturing these soils and using 16S rRNA amplicon sequencing, we address community taxonomy composition dynamics, stability through time, and the ability to promote lettuce plant growth. The rhizospheric soil communities were dominated by the families Pseudomonadaceae, Bacillaceae, and Planococcaceae for S. foliosa and Porphyromonadaceae and Haloferacaceae for D. spicata. Nonetheless, the cultures were completely dominated by the Enterobacteriaceae family (up to 98%). Effectively, lettuce plants supplemented with the cultures showed greater size and biomass accumulation. We identified 12 candidates that could be responsible for these outcomes, of which 5 (Enterococcus, Pseudomonas, Klebsiella, Paenisporosarcina, and Ammoniphilus) were part of the built co-occurrence network. We aim to contribute to the efforts to characterize the microbial communities as key for the plant's survival in extreme environments and as a possible source of consortia with plant growth promotion traits aimed at agricultural applications.IMPORTANCEThe current scenario of climate change and desertification represents a series of incoming challenges for all living organisms. As the human population grows rapidly, so does the rising demand for food and natural resources; thus, it is necessary to make agriculture more efficient by optimizing soil and water usage, thus ensuring future food supplies. Particularly, the Atacama Desert (northern Chile) is considered the most arid place on Earth as a consequence of geological and climatic characteristics, such as the naturally low precipitation patterns and high temperatures, which makes it an ideal place to carry out research that seeks to aid agriculture in future conditions that are predicted to resemble these scenarios. Our main interest lies in utilizing microorganism consortia from plants thriving under extreme conditions, aiming to promote plant growth, improve crops, and render "unsuitable" soils farmable.


Asunto(s)
Bacterias , Clima Desértico , ARN Ribosómico 16S , Rizosfera , Microbiología del Suelo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Desarrollo de la Planta , Lactuca/microbiología , Lactuca/crecimiento & desarrollo , Microbiota , Suelo/química , Biodiversidad , Chenopodiaceae/microbiología , Chenopodiaceae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...