Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(31): e2201096119, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-35895683

RESUMEN

Cilium formation and regeneration requires new protein synthesis, but the underlying cytosolic translational reprogramming remains largely unknown. Using ribosome footprinting, we performed global translatome profiling during cilia regeneration in Chlamydomonas and uncovered that flagellar genes undergo an early transcriptional activation but late translational repression. This pattern guided our identification of sphingolipid metabolism enzymes, including serine palmitoyltransferase (SPT), as essential regulators for ciliogenesis. Cryo-electron tomography showed that ceramide loss abnormally increased the membrane-axoneme distance and generated bulged cilia. We found that ceramides interact with intraflagellar transport (IFT) particle proteins that IFT motors transport along axoneme microtubules (MTs), suggesting that ceramide-IFT particle-IFT motor-MT interactions connect the ciliary membrane with the axoneme to form rod-shaped cilia. SPT-deficient vertebrate cells were defective in ciliogenesis, and SPT mutations from patients with hereditary sensory neuropathy disrupted cilia, which could be restored by sphingolipid supplementation. These results reveal a conserved role of sphingolipid in cilium formation and link compromised sphingolipid production with ciliopathies.


Asunto(s)
Axonema , Chlamydomonas , Cilios , Flagelos , Regeneración , Esfingolípidos , Axonema/química , Axonema/metabolismo , Ceramidas/metabolismo , Chlamydomonas/fisiología , Cilios/fisiología , Flagelos/fisiología , Transporte de Proteínas , Esfingolípidos/metabolismo
2.
Photosynth Res ; 151(3): 235-250, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34609708

RESUMEN

Under environmental stress, plants and algae employ a variety of strategies to protect the photosynthetic apparatus and maintain photostasis. To date, most studies on stress acclimation have focused on model organisms which possess limited to no tolerance to stressful extremes. We studied the ability of the Antarctic alga Chlamydomonas sp. UWO 241 (UWO 241) to acclimate to low temperature, high salinity or high light. UWO 241 maintained robust growth and photosynthetic activity at levels of temperature (2 °C) and salinity (700 mM NaCl) which were nonpermissive for a mesophilic sister species, Chlamydomonas raudensis SAG 49.72 (SAG 49.72). Acclimation in the mesophile involved classic mechanisms, including downregulation of light harvesting and shifts in excitation energy between photosystem I and II. In contrast, UWO 241 exhibited high rates of PSI-driven cyclic electron flow (CEF) and a larger capacity for nonphotochemical quenching (NPQ). Furthermore, UWO 241 exhibited constitutively high activity of two key ascorbate cycle enzymes, ascorbate peroxidase and glutathione reductase and maintained a large ascorbate pool. These results matched the ability of the psychrophile to maintain low ROS under short-term photoinhibition conditions. We conclude that tight control over photostasis and ROS levels are essential for photosynthetic life to flourish in a native habitat of permanent photooxidative stress. We propose to rename this organism Chlamydomonas priscuii.


Asunto(s)
Chlamydomonas , Aclimatación , Chlamydomonas/fisiología , Electrones , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo
3.
Plant Cell Environ ; 45(1): 156-177, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664276

RESUMEN

The Antarctic green alga Chlamydomonas sp. UWO241 is an obligate psychrophile that thrives in the cold (4-6°C) but is unable to survive at temperatures ≥18°C. Little is known how exposure to heat affects its physiology or whether it mounts a heat stress response in a manner comparable to mesophiles. Here, we dissect the responses of UWO241 to temperature stress by examining its growth, primary metabolome and transcriptome under steady-state low temperature and heat stress conditions. In comparison with Chlamydomonas reinhardtii, UWO241 constitutively accumulates metabolites and proteins commonly considered as stress markers, including soluble sugars, antioxidants, polyamines, and heat shock proteins to ensure efficient protein folding at low temperatures. We propose that this results from life at extreme conditions. A shift from 4°C to a non-permissive temperature of 24°C alters the UWO241 primary metabolome and transcriptome, but growth of UWO241 at higher permissive temperatures (10 and 15°C) does not provide enhanced heat protection. UWO241 also fails to induce the accumulation of HSPs when exposed to heat, suggesting that it has lost the ability to fine-tune its heat stress response. Our work adds to the growing body of research on temperature stress in psychrophiles, many of which are threatened by climate change.


Asunto(s)
Chlamydomonas/fisiología , Chlorophyta/fisiología , Proteínas de Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Regiones Antárticas , Chlamydomonas/crecimiento & desarrollo , Chlamydomonas reinhardtii/crecimiento & desarrollo , Chlamydomonas reinhardtii/fisiología , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/metabolismo , Metaboloma/fisiología , Familia de Multigenes , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura
4.
Elife ; 102021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34936552

RESUMEN

In algae, it is well established that the pyrenoid, a component of the carbon-concentrating mechanism (CCM), is essential for efficient photosynthesis at low CO2. However, the signal that triggers the formation of the pyrenoid has remained elusive. Here, we show that, in Chlamydomonas reinhardtii, the pyrenoid is strongly induced by hyperoxia, even at high CO2 or bicarbonate levels. These results suggest that the pyrenoid can be induced by a common product of photosynthesis specific to low CO2 or hyperoxia. Consistent with this view, the photorespiratory by-product, H2O2, induced the pyrenoid, suggesting that it acts as a signal. Finally, we show evidence for linkages between genetic variations in hyperoxia tolerance, H2O2 signaling, and pyrenoid morphologies.


Asunto(s)
Chlamydomonas/fisiología , Peróxido de Hidrógeno/metabolismo , Fotosíntesis , Transducción de Señal , Anaerobiosis
5.
Plant Physiol ; 187(3): 1653-1678, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34618070

RESUMEN

Increasing industrial and anthropogenic activities are producing and releasing more and more pollutants in the environment. Among them, toxic metals are one of the major threats for human health and natural ecosystems. Because photosynthetic organisms play a critical role in primary productivity and pollution management, investigating their response to metal toxicity is of major interest. Here, the green microalga Chlamydomonas (Chlamydomonas reinhardtii) was subjected to short (3 d) or chronic (6 months) exposure to 50 µM cadmium (Cd), and the recovery from chronic exposure was also examined. An extensive phenotypic characterization and transcriptomic analysis showed that the impact of Cd on biomass production of short-term (ST) exposed cells was almost entirely abolished by long-term (LT) acclimation. The underlying mechanisms were initiated at ST and further amplified after LT exposure resulting in a reversible equilibrium allowing biomass production similar to control condition. This included modification of cell wall-related gene expression and biofilm-like structure formation, dynamics of metal ion uptake and homeostasis, photosynthesis efficiency recovery and Cd acclimation through metal homeostasis adjustment. The contribution of the identified coordination of phosphorus and iron homeostasis (partly) mediated by the main phosphorus homeostasis regulator, Phosphate Starvation Response 1, and a basic Helix-Loop-Helix transcription factor (Cre05.g241636) was further investigated. The study reveals the highly dynamic physiological plasticity enabling algal cell growth in an extreme environment.


Asunto(s)
Aclimatación , Adaptación Fisiológica , Cadmio/metabolismo , Chlamydomonas/efectos de los fármacos , Biomasa , Chlamydomonas/fisiología , Factores de Tiempo
6.
Cells ; 10(9)2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34572139

RESUMEN

Eutrophication is a leading problem in water bodies all around the world in which nitrate is one of the major contributors. The present study was conducted to study the effects of various concentrations of nitrate on two eukaryotic green microalgae, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360. For this purpose, both microalgae were grown in a modified tris-acetate-phosphate medium (TAP-M) with three different concentrations of sodium nitrate, i.e., 5 mM (TAP-M5), 10 mM (TAP-M10) and 15 mM (TAP-M15), for 6 days and it was observed that both microalgae were able to remove nitrate completely from the TAP-M5 medium. Total amount of pigments decreased with the increasing concentration of nitrate, whereas protein and carbohydrate contents remained unaffected. High nitrate concentration (15 mM) led to an increase in lipids in Chlamydomonas sp. MACC-216, but not in Chlorella sp. MACC-360. Furthermore, Chlamydomonas sp. MACC-216 and Chlorella sp. MACC-360 were cultivated for 6 days in synthetic wastewater (SWW) with varying concentrations of nitrate where both microalgae grew well and showed an adequate nitrate removal capacity.


Asunto(s)
Chlamydomonas/fisiología , Chlorella/fisiología , Restauración y Remediación Ambiental , Nitratos/aislamiento & purificación , Aguas Residuales/química , Contaminantes Químicos del Agua/aislamiento & purificación , Nitratos/análisis , Contaminantes Químicos del Agua/análisis
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33875586

RESUMEN

Coordinated beating is crucial for the function of multiple cilia. However, the molecular mechanism is poorly understood. Here, we characterize a conserved ciliary protein CYB5D1 with a heme-binding domain and a cordon-bleu ubiquitin-like domain. Mutation or knockdown of Cyb5d1 in zebrafish impaired coordinated ciliary beating in the otic vesicle and olfactory epithelium. Similarly, the two flagella of an insertional mutant of the CYB5D1 ortholog in Chlamydomonas (Crcyb5d1) showed an uncoordinated pattern due to a defect in the cis-flagellum. Biochemical analyses revealed that CrCYB5D1 is a radial spoke stalk protein that binds heme only under oxidizing conditions. Lack of CrCYB5D1 resulted in a reductive shift in flagellar redox state and slowing down of the phototactic response. Treatment of Crcyb5d1 with oxidants restored coordinated flagellar beating. Taken together, these data suggest that CrCYB5D1 may integrate environmental and intraciliary signals and regulate the redox state of cilia, which is crucial for the coordinated beating of multiple cilia.


Asunto(s)
Cilios/metabolismo , Cilios/fisiología , Citocromos b5/metabolismo , Animales , Axonema/metabolismo , Chlamydomonas/metabolismo , Chlamydomonas/fisiología , Citocromos b5/fisiología , Dineínas/metabolismo , Flagelos/metabolismo , Flagelos/fisiología , Proteínas de Unión al Hemo/metabolismo , Proteínas de Unión al Hemo/fisiología , Microtúbulos/metabolismo , Mutación , Pez Cebra/metabolismo
9.
PLoS Genet ; 17(3): e1009388, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33661892

RESUMEN

Ciliary beating requires the coordinated activity of numerous axonemal complexes. The protein composition and role of radial spokes (RS), nexin links (N-DRC) and dyneins (ODAs and IDAs) is well established. However, how information is transmitted from the central apparatus to the RS and across other ciliary structures remains unclear. Here, we identify a complex comprising the evolutionarily conserved proteins Ccdc96 and Ccdc113, positioned parallel to N-DRC and forming a connection between RS3, dynein g, and N-DRC. Although Ccdc96 and Ccdc113 can be transported to cilia independently, their stable docking and function requires the presence of both proteins. Deletion of either CCDC113 or CCDC96 alters cilia beating frequency, amplitude and waveform. We propose that the Ccdc113/Ccdc96 complex transmits signals from RS3 and N-DRC to dynein g and thus regulates its activity and the ciliary beat pattern.


Asunto(s)
Proteínas Portadoras/metabolismo , Cilios/fisiología , Dineínas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas de Plantas/metabolismo , Axonema/metabolismo , Proteínas Portadoras/química , Chlamydomonas/fisiología , Cilios/ultraestructura , Flagelos/fisiología , Flagelos/ultraestructura , Técnica del Anticuerpo Fluorescente , Proteínas Asociadas a Microtúbulos/química , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Transporte de Proteínas , Relación Estructura-Actividad , Tetrahymena thermophila/fisiología
10.
Plant J ; 106(1): 23-40, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33368770

RESUMEN

Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.


Asunto(s)
Hojas de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiología , Camellia/genética , Camellia/metabolismo , Camellia/fisiología , Chlamydomonas/genética , Chlamydomonas/metabolismo , Chlamydomonas/fisiología , Hojas de la Planta/genética , Biología de Sistemas/métodos , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/fisiología
11.
EMBO J ; 40(5): e105781, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33368450

RESUMEN

The intraflagellar transport (IFT) machinery consists of the anterograde motor kinesin-II, the retrograde motor IFT dynein, and the IFT-A and -B complexes. However, the interaction among IFT motors and IFT complexes during IFT remains elusive. Here, we show that the IFT-B protein IFT54 interacts with both kinesin-II and IFT dynein and regulates anterograde IFT. Deletion of residues 342-356 of Chlamydomonas IFT54 resulted in diminished anterograde traffic of IFT and accumulation of IFT motors and complexes in the proximal region of cilia. IFT54 directly interacted with kinesin-II and this interaction was strengthened for the IFT54Δ342-356 mutant in vitro and in vivo. The deletion of residues 261-275 of IFT54 reduced ciliary entry and anterograde traffic of IFT dynein with accumulation of IFT complexes near the ciliary tip. IFT54 directly interacted with IFT dynein subunit D1bLIC, and deletion of residues 261-275 reduced this interaction. The interactions between IFT54 and the IFT motors were also observed in mammalian cells. Our data indicate a central role for IFT54 in binding the IFT motors during anterograde IFT.


Asunto(s)
Proteínas Algáceas/metabolismo , Chlamydomonas/fisiología , Cilios/fisiología , Dineínas/metabolismo , Flagelos/fisiología , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Algáceas/genética , Dineínas/genética , Cinesinas/genética , Proteínas Asociadas a Microtúbulos/genética
14.
J Biochem ; 169(2): 139-145, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33035312

RESUMEN

Mammalian cells have a tiny hair-like protrusion on their surface called a primary cilium. Primary cilia are thought to be the antennae for the cells, receiving signals from the environment. In some studies, extracellular vesicles (EVs) were found attached to the surface of the primary cilium. An idea for the phenomenon is that the primary cilium is the receptor for receiving the EVs. Meanwhile, a unicellular organism, Chlamydomonas, which has two long cilia, usually called flagella, release EVs termed ectosomes from the surface of the flagella. Accumulating evidence suggests that the primary cilium also functions as the 'emitter' of EVs. Physiological and pathological impacts are also elucidated for the release of EVs from primary cilia. However, the roles of released cilia-derived EVs remain to be clarified. This review introduces the historical background of the relationship between EVs and cilia, and recent progresses in the research field.


Asunto(s)
Micropartículas Derivadas de Células/fisiología , Cilios/fisiología , Vesículas Extracelulares/fisiología , Animales , Chlamydomonas/fisiología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/patología , Humanos
15.
Philos Trans A Math Phys Eng Sci ; 378(2179): 20190523, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32762429

RESUMEN

The persistent motility of individual constituents in microbial suspensions represents a prime example of the so-called active matter systems. Cells consume energy, exert forces and move, overall releasing the constraints of equilibrium statistical mechanics of passive elements and allowing for complex spatio-temporal patterns to emerge. Moreover, when subject to physico-chemical stimuli their collective behaviour often drives large-scale instabilities of a hydrodynamic nature, with implications for biomixing in natural environments and incipient industrial applications. In turn, our ability to exert external control of these driving stimuli could be used to govern the emerging patterns. Light, being easily manipulable and, at the same time, an important stimulus for a wide variety of microorganisms, is particularly well suited to this end. In this paper, we will discuss the current state, developments and some of the emerging advances in the fundamentals and applications of light-induced bioconvection with a focus on recent experimental realizations and modelling efforts. This article is part of the theme issue 'Stokes at 200 (part 2)'.


Asunto(s)
Luz , Microbiota/fisiología , Microbiota/efectos de la radiación , Modelos Biológicos , Fototaxis/fisiología , Fenómenos Biofísicos , Chlamydomonas/fisiología , Chlamydomonas/efectos de la radiación , Hidrodinámica , Conceptos Matemáticos
16.
Curr Biol ; 30(17): 3330-3341.e7, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32619486

RESUMEN

The unicellular green alga Chlamydomonas sp. ICE-L thrives in polar sea ice, where it tolerates extreme low temperatures, high salinity, and broad seasonal fluctuations in light conditions. Despite the high interest in biotechnological uses of this species, little is known about the adaptations that allow it to thrive in this harsh and complex environment. Here, we assembled a high-quality genome sequence of ∼542 Mb and found that retrotransposon proliferation contributed to the relatively large genome size of ICE-L when compared to other chlorophytes. Genomic features that may support the extremophilic lifestyle of this sea ice alga include massively expanded gene families involved in unsaturated fatty acid biosynthesis, DNA repair, photoprotection, ionic homeostasis, osmotic homeostasis, and reactive oxygen species detoxification. The acquisition of multiple ice binding proteins through putative horizontal gene transfer likely contributed to the origin of the psychrophilic lifestyle in ICE-L. Additional innovations include the significant upregulation under abiotic stress of several expanded ICE-L gene families, likely reflecting adaptive changes among diverse metabolic processes. Our analyses of the genome, transcriptome, and functional assays advance general understanding of the Antarctic green algae and offer potential explanations for how green plants adapt to extreme environments.


Asunto(s)
Adaptación Fisiológica , Proteínas Algáceas/genética , Chlamydomonas/fisiología , Ambientes Extremos , Regulación de la Expresión Génica , Genoma , Transcriptoma , Proteínas Algáceas/metabolismo , Regiones Antárticas , Chlamydomonas/genética , Cubierta de Hielo , Filogenia , Salinidad , Secuenciación Completa del Genoma
17.
Structure ; 28(6): 674-689.e11, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32375023

RESUMEN

Centrioles are cylindrical assemblies whose peripheral microtubule array displays a 9-fold rotational symmetry that is established by the scaffolding protein SAS6. Centriole symmetry can be broken by centriole-associated structures, such as the striated fibers in Chlamydomonas that are important for ciliary function. The conserved protein CCDC61/VFL3 is involved in this process, but its exact role is unclear. Here, we show that CCDC61 is a paralog of SAS6. Crystal structures of CCDC61 demonstrate that it contains two homodimerization interfaces that are similar to those found in SAS6, but result in the formation of linear filaments rather than rings. Furthermore, we show that CCDC61 binds microtubules and that residues involved in CCDC61 microtubule binding are important for ciliary function in Chlamydomonas. Together, our findings suggest that CCDC61 and SAS6 functionally diverged from a common ancestor while retaining the ability to scaffold the assembly of basal body-associated structures or centrioles, respectively.


Asunto(s)
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Chlamydomonas/fisiología , Cilios/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Línea Celular , Chlamydomonas/clasificación , Cristalografía por Rayos X , Células HEK293 , Humanos , Microtúbulos/metabolismo , Modelos Moleculares , Filogenia , Conformación Proteica , Dominios Proteicos , Multimerización de Proteína
18.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32348466

RESUMEN

Mutations in the channel protein PKD2 cause autosomal dominant polycystic kidney disease, but the function of PKD2 in cilia remains unclear. Here, we show that PKD2 targets and anchors mastigonemes, filamentous polymers of the glycoprotein MST1, to the extracellular surface of Chlamydomonas cilia. PKD2-mastigoneme complexes physically connect to the axonemal doublets 4 and 8, positioning them perpendicular to the plane of ciliary beating. pkd2 mutant cilia lack mastigonemes, and mutant cells swim with reduced velocity, indicating a motility-related function of the PKD2-mastigoneme complex. Association with both the axoneme and extracellular structures supports a mechanosensory role of Chlamydomonas PKD2. We propose that PKD2-mastigoneme arrays, on opposing sides of the cilium, could perceive forces during ciliary beating and transfer these signals to locally regulate the response of the axoneme.


Asunto(s)
Chlamydomonas/metabolismo , Cilios/metabolismo , Glicoproteínas/metabolismo , Polímeros/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Axonema/metabolismo , Movimiento Celular/genética , Movimiento Celular/fisiología , Chlamydomonas/genética , Chlamydomonas/fisiología , Mutación , Canales de Potencial de Receptor Transitorio/genética
19.
J Oleo Sci ; 69(4): 359-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32249263

RESUMEN

Biodiesel production from microalgae is still not commercially realized due to the high cost of production. High light-tolerance has been suggested as a desirable phenotype for efficient cultivation in large scale production systems under fluctuating outdoor conditions. Nevertheless, it has not been shown if algae with such a phenotype would have better efficiency for lipid production. To determine lipid productivity in high light-tolerant mutants, and to understand the pathways involved in high light-tolerant phenotype, two very high light-tolerant mutants of the green alga Chlamydomonas reinhardtii - CAL028_01_28 and CAL034_01_48 - were selected from eighteen high light-tolerant mutants from the CAL collection. Under high light intensity conditions, and the presence of reactive oxygen species, which are conditions constantly experienced by algae growing in open-pond environments, these strains exhibited higher photosynthetic efficiency and improved survival. The physiological characterization of these mutants revealed that the detoxification of ROS by carotenoids and antioxidant enzymes is crucial for their growth under high light conditions. Neither mutant was affected in terms of its ability to accumulate lipid under nitrogen-depleted condition. More importantly, lipid productivity under high light conditions increased twofold in these mutants compared to that of the wild-type. Taken together, very high light-tolerant mutants confer a high potential for biofuel production under outdoor conditions, and their improved ability to survive under oxidative stress is an important key for efficient growth under outdoor conditions.


Asunto(s)
Adaptación Ocular/genética , Chlamydomonas/genética , Chlamydomonas/metabolismo , Lípidos/biosíntesis , Mutación , Fotofobia/genética , Biocombustibles , Chlamydomonas/fisiología , Estrés Oxidativo , Fenotipo , Especies Reactivas de Oxígeno/metabolismo
20.
Proc Natl Acad Sci U S A ; 117(15): 8315-8325, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32217737

RESUMEN

Motile cilia are widespread across the animal and plant kingdoms, displaying complex collective dynamics central to their physiology. Their coordination mechanism is not generally understood, with previous work mainly focusing on algae and protists. We study here the entrainment of cilia beat in multiciliated cells from brain ventricles. The response to controlled oscillatory external flows shows that flows at a similar frequency to the actively beating cilia can entrain cilia oscillations. We find that the hydrodynamic forces required for this entrainment strongly depend on the number of cilia per cell. Cells with few cilia (up to five) can be entrained at flows comparable to cilia-driven flows, in contrast with what was recently observed in Chlamydomonas Experimental trends are quantitatively described by a model that accounts for hydrodynamic screening of packed cilia and the chemomechanical energy efficiency of the flagellar beat. Simulations of a minimal model of cilia interacting hydrodynamically show the same trends observed in cilia.


Asunto(s)
Cilios/fisiología , Mamíferos/fisiología , Animales , Encéfalo/fisiología , Chlamydomonas/química , Chlamydomonas/fisiología , Hidrodinámica , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...