Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.400
Filtrar
1.
J Hazard Mater ; 472: 134484, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38723484

RESUMEN

To quantify the possible impact of different wood protection techniques on the aquatic environment, we applied a tiered Integrated Testing Strategy (ITS) on leachates obtained from untreated (UTW) Norway spruce (Picea abies), specimens treated with a copper-ethanolamine-based preservative solution, complying with the Use Class 3 (UC3), and specimens thermally modified (TM). Different maturation times in water were tested to verify whether toxicant leaching is time-dependent. Tier I tests, addressing acute effects on Aliivibrio fischeri, Raphidocelis subcapitata, and Daphnia magna, evidenced that TM toxicity was comparable or even lower than in UTW. Conversely, UC3 significantly affected all species compared to UTW, also after 30 days of maturation in water, and was not considered an environmentally acceptable wood preservation solution. Tier II (effects on early-life stages of Lymnea auricularia) and III (chronic effects on D. magna and L. auricularia) performed on UTW and TM confirmed the latter as an environmentally acceptable treatment, with increasing maturation times resulting in decreased adverse effects. The ITS allowed for rapid and reliable identification of potentially harmful effects due to preservation treatments, addressed the choice for a less impacting solution, and can be effective for manufacturers in identifying more environmentally friendly solutions while developing their products.


Asunto(s)
Aliivibrio fischeri , Daphnia , Picea , Madera , Madera/química , Daphnia/efectos de los fármacos , Aliivibrio fischeri/efectos de los fármacos , Animales , Picea/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Cobre/toxicidad , Cobre/química , Etanolamina/toxicidad , Etanolamina/química , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo
2.
Int J Mol Sci ; 25(10)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38791459

RESUMEN

Extracellular vesicles (EVs) are nano-sized particles involved in intercellular communications that intrinsically possess many attributes as a modern drug delivery platform. Haematococcus pluvialis-derived EVs (HpEVs) can be potentially exploited as a high-value-added bioproduct during astaxanthin production. The encapsulation of HpEV cargo is a crucial key for the determination of their biological functions and therapeutic potentials. However, little is known about the composition of HpEVs, limiting insights into their biological properties and application characteristics. This study examined the protein composition of HpEVs from three growth phases of H. pluvialis grown under high light (350 µmol·m-2·s-1) and sodium acetate (45 mM) stresses. A total of 2038 proteins were identified, the majority of which were associated with biological processes including signal transduction, cell proliferation, cell metabolism, and the cell response to stress. Comparative analysis indicated that H. pluvialis cells sort variant proteins into HpEVs at different physiological states. It was revealed that HpEVs from the early growth stage of H. pluvialis contain more proteins associated with cellular functions involved in primary metabolite, cell division, and cellular energy metabolism, while HpEVs from the late growth stage of H. pluvialis were enriched in proteins involved in cell wall synthesis and secondary metabolism. This is the first study to report and compare the protein composition of HpEVs from different growth stages of H. pluvialis, providing important information on the development and production of functional microalgal-derived EVs.


Asunto(s)
Vesículas Extracelulares , Proteoma , Acetato de Sodio , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Acetato de Sodio/metabolismo , Acetato de Sodio/farmacología , Luz , Proteómica/métodos , Estrés Fisiológico , Chlorophyceae/metabolismo , Chlorophyceae/crecimiento & desarrollo , Chlorophyta/metabolismo , Chlorophyta/crecimiento & desarrollo
3.
J Hazard Mater ; 472: 134561, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733784

RESUMEN

Steroid estrogens (SEs) have garnered global attention because of their potential hazards to human health and aquatic organisms at low concentrations (ng/L). The ecosystems of plateau freshwater lakes are fragile, the water lag time is long, and pollutants easily accumulate, making them more vulnerable to the impact of SEs. However, the knowledge of the impact of SEs on the growth and decomposition of phytoplankton communities in plateau lakes and the eutrophication process is limited. This study investigated the effects and mechanisms of SEs exposure on dominant algal communities and the expression of typical algal functional genes in Erhai Lake using indoor simulations and molecular biological methods. The results showed that phytoplankton were sensitive to 17ß-estradiol (E2ß) pollution, with a concentration of 50, and 100 ng/L E2ß exposure promoting the growth of cyanophyta and chlorophyta in the short term; this poses an ecological risk of inducing algal blooms. E2ß of 1000 ng/L exposure led to cross-effects of estrogenic effects and toxicity, with most phytoplankton being inhibited. However, small filamentous cyanobacteria and diatoms exhibited greater tolerance; Melosira sp. even exhibited "low inhibition, high promotion" behavior. Exposure to E2ß reduced the Shannon-Wiener diversity index (H'), Pielou index (J), and the number of dominant algal species (S) in phytoplankton communities, leading to instability in community succession. E2ß of 50 ng/L enhanced the expression levels of relevant functional genes, such as ftsH, psaB, atpB, and prx, related to Microcystis aeruginosa. E2ß of 50 ng/L and 5 mg/L can promote the transcription of Microcystis toxins (MC) related genes (mcyA), leading to more MC production by algal cells.


Asunto(s)
Estradiol , Eutrofización , Lagos , Fitoplancton , Contaminantes Químicos del Agua , Fitoplancton/efectos de los fármacos , Fitoplancton/genética , Estradiol/toxicidad , Contaminantes Químicos del Agua/toxicidad , Diatomeas/efectos de los fármacos , Diatomeas/genética , Diatomeas/metabolismo , Diatomeas/crecimiento & desarrollo , Cianobacterias/genética , Cianobacterias/metabolismo , Cianobacterias/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Chlorophyta/genética , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo
4.
Food Chem ; 449: 139165, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38574520

RESUMEN

Microalgae are considered as a potential source of bioactive compounds to be used in different fields including food and pharmaceutical industry. In this context, fatty acid esters of hydroxy-fatty acids (FAHFA) are emerging as a new class of compounds with anti-inflammatory and anti-diabetic properties. An existing gap in the field of algal research is the limited knowledge regarding the production of these compounds. Our research questions aimed to determine whether the microalga H. pluvialis can synthesize FAHFA and whether the production levels of these compounds are increased when cultivated in a CO2-rich environment. To answer these questions, we used a LC-QTOF/MS method for the characterization of FAHFA produced by H. pluvialis while an LC-MS/MS method was used for their quantitation. The cultivation conditions of H. pluvialis, which include the utilization of CO2, can result in a 10-50-fold increase in FAHFA production.


Asunto(s)
Dióxido de Carbono , Ácidos Grasos , Microalgas , Dióxido de Carbono/análisis , Dióxido de Carbono/metabolismo , Microalgas/química , Microalgas/metabolismo , Microalgas/crecimiento & desarrollo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Espectrometría de Masas en Tándem , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo
5.
NanoImpact ; 34: 100504, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38537806

RESUMEN

Ecotoxicity data on cellulose nanofibers (CNFs) are limited despite their wide potential applications prospects, such as structural and packaging materials, filters, coatings, foods, and cosmetics. In this study, toxicity tests of 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized CNFs (TEMPO-CNFs), which are one of the major CNF products commercially available in Japan, on the green alga Raphidocelis subcapitata were conducted. As nanomaterials are considered difficult-to-test substances, the Organisation for Economic Co-operation and Development has released a guidance document that provides considerations regarding ecotoxicity tests of nanomaterials. In the algal growth inhibition tests of TEMPO-CNFs, there were specific issues to be examined, including the effects of medium components on the characteristics of TEMPO-CNFs, CNF interference with algal density measurements, algal interference with CNF measurements, and the effects of ion concentration changes in the test medium by the addition of CNFs on algal growth. To examine these issues, we conducted preliminary studies and established a suitable test method for algal growth inhibition tests of TEMPO-CNFs. We confirmed that the components in the medium for algal growth inhibition tests had negligible effects on the characteristics (zeta-potential, viscosity, and morphology) and concentration stability of TEMPO-CNFs and that in vitro and in vivo fluorescence measurements were applicable for estimating the algal densities, without interference by TEMPO-CNFs. In contrast, we observed that the grown algae interfered with the CNF concentration measurements. Therefore, we established a method to correct the measured CNF concentrations by estimating the algal contribution. Furthermore, we found that the nutrient salt concentrations in the medium changed due to interactions with CNFs; however, this change did not affect algal growth. Based on the results of the preliminary studies, algal growth inhibition tests of TEMPO-CNFs were conducted using in vitro and in vivo fluorescence measurements, along with measurements of CNFs and ion concentrations in the test dispersions. The test results showed that no growth inhibition was observed on growth rate or yield even at the maximum CNF concentration of 100 mg/L, suggesting that the ecological effect of TEMPO-CNFs on algae was relatively low. The results of this study will be valuable for conducting ecotoxicity assessments on additional CNFs and comparable nanomaterials in future studies.


Asunto(s)
Óxidos N-Cíclicos , Nanofibras , Nanofibras/química , Óxidos N-Cíclicos/farmacología , Óxidos N-Cíclicos/química , Chlorophyta/efectos de los fármacos , Chlorophyta/crecimiento & desarrollo , Celulosa/química , Celulosa Oxidada/farmacología , Celulosa Oxidada/química , Pruebas de Toxicidad/métodos , Oxidación-Reducción
6.
Molecules ; 27(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35209036

RESUMEN

Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h-1), had biomass productivity of 33.98 ± 0.02 mg L-1 day-1. Proteins were the most abundant macromolecule in the biomass (32.83-57.94%, g g-1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.


Asunto(s)
Antiinfecciosos , Antioxidantes , Aspergillus niger/crecimiento & desarrollo , Bacterias/crecimiento & desarrollo , Biomasa , Candida/crecimiento & desarrollo , Chlorophyta , Ácidos Grasos Insaturados/química , Microalgas , Pigmentos Biológicos , Antiinfecciosos/química , Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Ácidos Grasos Insaturados/aislamiento & purificación , Ácidos Grasos Insaturados/farmacología , Microalgas/química , Microalgas/crecimiento & desarrollo , Océanos y Mares , Pigmentos Biológicos/química , Pigmentos Biológicos/aislamiento & purificación , Pigmentos Biológicos/farmacología
7.
Sci Rep ; 12(1): 2977, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35194106

RESUMEN

In this study, we explore how the Caribbean coral Orbicella faveolata recovers after bleaching, using fragments from 13 coral colonies exposed to heat stress (32 °C) for ten days. Biological parameters and coral optical properties were monitored during and after the stress. Increases in both, the excitation pressure over photosystem II (Qm) and pigment specific absorption (a*Chla) were observed in the stressed corals, associated with reductions in light absorption at the chlorophyll a red peak (De675) and symbiont population density. All coral fragments exposed to heat stress bleached but a fraction of the stressed corals recovered after removing the stress, as indicated by the reductions in Qm and increases in De675 and the symbiont population observed. This subsample of the experimentally bleached corals also showed blooms of the endolithic algae Ostreobium spp. underneath the tissue. Using a numerical model, we quantified the amount of incident light reflected by the coral, and absorbed by the different pigmented components: symbionts, host-tissue and Ostreobium spp. Our study supports the key contribution of Ostreobium spp. blooms near the skeletal surface, to coral recovery after bleaching by reducing skeleton reflectance. Endolithic blooms can thus significantly alleviate the high light stress that affects the remaining symbionts during the stress or when the coral has achieved the bleached phenotype.


Asunto(s)
Clorofila A/metabolismo , Chlorophyta/crecimiento & desarrollo , Respuesta al Choque Térmico , Animales , Antozoos/metabolismo , Región del Caribe , Blanqueamiento de los Corales
8.
Microbiol Spectr ; 9(2): e0153121, 2021 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-34668747

RESUMEN

The microbial carbon pump (MCP) provides a mechanistic illustration of transformation of recalcitrant dissolved organic matter (DOM) in the ocean. Here, we explored and demonstrated the key roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the production and transformation of carboxyl-rich alicyclic molecule (CRAM)-like DOM through a laboratory experiment involving cultures of Skeletonema dohrnii. Without the participation of the associated bacteria, CRAM-like DOM molecules were not detected via Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) in algal cultures treated with antibiotics. Similarly, CRAM-like DOM were not detected in cultures of bacteria alone. Our experimental results showed that algae-associated bacteria are important in the process of converting algal-derived organic matter into CRAM-like DOM during S. dohrnii culture. Bacteroidetes (mainly Flavobacteriia) dominated the bacterial community in the stationary and degradation phases, where the predicted metabolic pathways for bacterial assemblages were mainly involved in biosynthesis, metabolism, and degradation. Facilitated by these heterotrophic bacteria, the amount and the chemodiversity of CRAM-like DOM derived from algae varied during the growth and decomposition of algal cells, and CRAM-like DOM were enriched at the later growth stage. The properties and characteristics of these CRAM-like DOM, including molecular weight, double bond equivalent, hydrogen-carbon ratio, carbon-nitrogen ratio, carbon-sulfur ratio, and modified aromaticity index increased with the growth and decay of algal cells, indicating the transformation from active to recalcitrant DOM. In contrast, the organic matter in axenic cultures of S. dohrnii mainly existed in the form of particulate organic matters (POM), and small amounts of CRAM-like DOM were detected. This study provides the first laboratory evidence to reveal and confirm the direct involvement of algae-associated microbiomes in the production and transformation of algae-derived refractory DOM, highlighting the significance of these epiphytic bacteria in marine carbon sequestration and global carbon cycling. IMPORTANCE Dissolved organic matter (DOM) serves as a major carbon and nutrient pool in oceans, and recalcitrant DOM are the primary sources for carbon sequestration in depths. Here, we demonstrate the critical roles of algae-associated microorganisms (mainly heterotrophic bacteria) in the transformation of recalcitrant dissolved organic matter through laboratory cultures of a model diatom, Skeletonema dohrnii. Our experimental results showed that in addition to affecting the growth and the physiology of S. dohrnii, algae-associated bacteria are important in processing and converting algal DOM into CRAM-like DOM. Facilitated by the associated bacteria, the amount and the chemodiversity of DOM derived from algae varied during the growth and decomposition of algal cells, and enriched recalcitrant DOM formed in the later growth stage. The properties and diversity of DOM increased with the growth and decay of algal cells, indicating the transformation from active DOM to inert organic matter. Our results confirmed that the direct involvement of algae-associated microbes in the production of CRAM-like DOM. Detailed community structure analysis of the algae-associated bacterial community and its predicted functions confirmed the involvement of certain bacterial groups (e.g., Flavobacteriia) in biosynthesis, metabolism, and degradation.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Chlorophyta/metabolismo , Materia Orgánica Disuelta/metabolismo , Fitoplancton/microbiología , Bacterias/química , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biotransformación , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Chlorophyta/microbiología , Diatomeas/química , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Diatomeas/microbiología , Materia Orgánica Disuelta/química , Lagos/química , Lagos/microbiología , Espectrometría de Masas , Fitoplancton/química , Fitoplancton/crecimiento & desarrollo , Fitoplancton/metabolismo
9.
Ecol Appl ; 31(8): e02458, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34529311

RESUMEN

Liebig's law of the minimum (LLM) is often used to interpret empirical biological growth data and model multiple substrates co-limited growth. However, its mechanistic foundation is rarely discussed, even though its validity has been questioned since its introduction in the 1820s. Here we first show that LLM is a crude approximation of the law of mass action, the state of art theory of biochemical reactions, and the LLM model is less accurate than two other approximations of the law of mass action: the synthesizing unit model and the additive model. We corroborate this conclusion using empirical data sets of algae and plants grown under two co-limiting substrates. Based on our analysis, we show that when growth is modeled directly as a function of substrate uptake, the LLM model improperly restricts the organism to be of fixed elemental stoichiometry, making it incapable of consistently resolving biological adaptation, ecological evolution, and community assembly. When growth is modeled as a function of the cellular nutrient quota, the LLM model may obtain good results at the risk of incorrect model parameters as compared to those inferred from the more accurate synthesizing unit model. However, biogeochemical models that implement these three formulations are needed to evaluate which formulation is acceptably accurate and their impacts on predicted long-term ecosystem dynamics. In particular, studies are needed that explore the extent to which parameter calibration can rescue model performance when the mechanistic representation of a biogeochemical process is known to be deficient.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Ecosistema , Modelos Biológicos , Desarrollo de la Planta , Plantas
10.
Cells ; 10(7)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34359975

RESUMEN

Green algae are fast-growing microorganisms that are considered promising for the production of starch and neutral lipids, and the chlorococcal green alga Parachlorella kessleri is a favorable model, as it can produce both starch and neutral lipids. P. kessleri commonly divides into more than two daughter cells by a specific mechanism-multiple fission. Here, we used synchronized cultures of the alga to study the effects of supra-optimal temperature. Synchronized cultures were grown at optimal (30 °C) and supra-optimal (40 °C) temperatures and incident light intensities of 110 and 500 µmol photons m-2 s-1. The time course of cell reproduction (DNA replication, cellular division), growth (total RNA, protein, cell dry matter, cell size), and synthesis of energy reserves (net starch, neutral lipid) was studied. At 40 °C, cell reproduction was arrested, but growth and accumulation of energy reserves continued; this led to the production of giant cells enriched in protein, starch, and neutral lipids. Furthermore, we examined whether the increased temperature could alleviate the effects of deuterated water on Parachlorella kessleri growth and division; results show that supra-optimal temperature can be used in algal biotechnology for the production of protein, (deuterated) starch, and neutral lipids.


Asunto(s)
División Celular/fisiología , Microalgas/metabolismo , Almidón/metabolismo , Temperatura , Biomasa , Chlorophyta/crecimiento & desarrollo , Metabolismo de los Lípidos/fisiología , Lípidos
11.
Biomolecules ; 11(8)2021 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-34439820

RESUMEN

Cold-loving microorganisms of all three domains of life have unique and special abilities that allow them to live in harsh environments. They have acquired structural and molecular mechanisms of adaptation to the cold that include the production of anti-freeze proteins, carbohydrate-based extracellular polymeric substances and lipids which serve as cryo- and osmoprotectants by maintaining the fluidity of their membranes. They also produce a wide diversity of pigmented molecules to obtain energy, carry out photosynthesis, increase their resistance to stress and provide them with ultraviolet light protection. Recently developed analytical techniques have been applied as high-throughoutput technologies for function discovery and for reconstructing functional networks in psychrophiles. Among them, omics deserve special mention, such as genomics, transcriptomics, proteomics, glycomics, lipidomics and metabolomics. These techniques have allowed the identification of microorganisms and the study of their biogeochemical activities. They have also made it possible to infer their metabolic capacities and identify the biomolecules that are parts of their structures or that they secrete into the environment, which can be useful in various fields of biotechnology. This Review summarizes current knowledge on psychrophiles as sources of biomolecules and the metabolic pathways for their production. New strategies and next-generation approaches are needed to increase the chances of discovering new biomolecules.


Asunto(s)
Adaptación Fisiológica/genética , Antibacterianos/biosíntesis , Proteínas Anticongelantes/biosíntesis , Bacterias/metabolismo , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Redes y Vías Metabólicas/genética , Proteínas Anticongelantes/genética , Regiones Árticas , Bacterias/genética , Bacterias/crecimiento & desarrollo , Biotecnología/métodos , Chlorophyta/genética , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Frío , Biología Computacional/métodos , Diatomeas/genética , Diatomeas/crecimiento & desarrollo , Diatomeas/metabolismo , Matriz Extracelular de Sustancias Poliméricas/genética , Hongos/genética , Hongos/crecimiento & desarrollo , Hongos/metabolismo , Humanos , Lípidos/biosíntesis , Lípidos/genética , Fluidez de la Membrana , Metagenoma , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/genética
12.
Protein Expr Purif ; 188: 105954, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34416360

RESUMEN

Hydrogen atoms are at the limit of visibility in X-ray structures even at high resolution. Neutron macromolecular crystallography (NMX) is an unambiguous method to locate hydrogens and study the significance of hydrogen bonding interactions in biological systems. Since NMX requires very large crystals, very few neutron structures of proteins have been determined yet. In addition, the most common hydrogen isotope 1H gives rise to significant background due to its large incoherent scattering cross-section. Therefore, it is advantageous to substitute as many hydrogens as possible with the heavier isotope 2H (deuterium) to reduce the sample volume requirement. While the solvent exchangeable hydrogens can be substituted by dissolving the protein in heavy water, complete deuterium labelling - perdeuteration - requires the protein to be expressed in heavy water with a deuterated carbon source. In this work, we developed an optimized method for large scale production of deuterium-labelled bacterial outer membrane protein F (OmpF) for NMX. OmpF was produced using deuterated media with different carbon sources. Mass spectrometry verified the integrity and level of deuteration of purified OmpF. Perdeuterated OmpF crystals diffracted X-rays to a resolution of 1.9 Å. This work lays the foundation for structural studies of membrane protein by neutron diffraction in future.


Asunto(s)
Deuterio/química , Escherichia coli/genética , Difracción de Neutrones/métodos , Neutrones , Porinas/química , Difracción de Rayos X/métodos , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Clonación Molecular , Mezclas Complejas/química , Cristalografía por Rayos X/métodos , Medios de Cultivo/química , Medios de Cultivo/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Porinas/genética , Porinas/aislamiento & purificación , Porinas/metabolismo , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
13.
Biomolecules ; 11(6)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203860

RESUMEN

Multiple fission is a cell cycle variation leading to the production of more than two daughter cells. Here, we used synchronized cultures of the chlorococcal green alga Parachlorella kessleri to study its growth and pattern of cell division under varying light intensities. The time courses of DNA replication, nuclear and cellular division, cell size, total RNA, protein content, dry matter and accumulation of starch were observed at incident light intensities of 110, 250 and 500 µmol photons m-2s-1. Furthermore, we studied the effect of deuterated water on Parachlorella kessleri growth and division, to mimic the effect of stress. We describe a novel multiple fission cell cycle pattern characterized by multiple rounds of DNA replication leading to cell polyploidization. Once completed, multiple nuclear divisions were performed with each of them, immediately followed by protoplast fission, terminated by the formation of daughter cells. The multiple fission cell cycle was represented by several consecutive doublings of growth parameters, each leading to the start of a reproductive sequence. The number of growth doublings increased with increasing light intensity and led to division into more daughter cells. This study establishes the baseline for cell cycle research at the molecular level as well as for potential biotechnological applications, particularly directed synthesis of (deuterated) starch and/or neutral lipids as carbon and energy reserves.


Asunto(s)
Técnicas de Cultivo de Célula , Ciclo Celular , Chlorophyta/crecimiento & desarrollo , Luz
14.
Plant J ; 107(4): 1228-1242, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34160095

RESUMEN

MADS-box transcription factors (TFs) have not been functionally delineated in microalgae. In this study, the role of CsubMADS1 from microalga Coccomyxa subellipsoidea C-169 has been explored. Unlike Type II MADS-box proteins of seed plants with MADS, Intervening, K-box, and C domains, CsubMADS1 only has MADS and Intervening domains. It forms a group with MADS TFs from algae in the phylogenetic tree within the Type II MIKCC clade. CsubMADS1 is expressed strongly in the lag phase of growth. The CsubMADS1 monomer does not have a specific localization in the nucleus, and it forms homodimers to localize exclusively in the nucleus. The monomer has two nuclear localization signals (NLSs): an N-terminal NLS and an internal NLS. The internal NLS is functional, and the homodimer requires two NLSs for specific nuclear localization. Overexpression (OX) of CsubMADS1 slows down the growth of the culture and leads to the creation of giant polyploid multinucleate cells, resembling autospore mother cells. This implies that the release of autospores from autospore mother cells may be delayed. Thus, in wild-type (WT) cells, CsubMADS1 may play a crucial role in slowing down growth during the lag phase. Due to starvation in 2-month-old colonies on solid media, the WT colonies produce mucilage, whereas OX colonies produce significantly less mucilage. Thus, CsubMADS1 also negatively regulates stress-induced mucilage production and probably plays a role in stress tolerance during the lag phase. Taken together, our results reveal that CsubMADS1 is a key TF involved in the development and stress tolerance of this polar microalga.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Chlorophyta/citología , Chlorophyta/genética , Regulación de la Expresión Génica , Microalgas/genética , Señales de Localización Nuclear , Filogenia , Mucílago de Planta/metabolismo , Poliploidía , Dominios Proteicos , Multimerización de Proteína , Estrés Fisiológico , Factores de Transcripción/genética
15.
Sci Rep ; 11(1): 11649, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079003

RESUMEN

With fast growth rates, broad halotolerance and the ability to thrive at high temperatures, algae in the genus Picochlorum are emerging as promising biomass producers. Recently, we isolated a remarkably productive strain, Picochlorum celeri, that attains > 40 g m-2 day-1 productivities using simulated outdoor light. To test outdoor productivities, Picochlorum celeri was cultivated in 820 L raceway ponds at the Arizona Center for Algae Technology and Innovation. Picochlorum celeri demonstrated the highest outdoor biomass productivities reported to date at this testbed averaging ~ 31 g m-2 day-1 over four months with a monthly (August) high of ~ 36 g m-2 day-1. Several single day productivities were > 40 g m-2 day-1. Importantly for sustainability, Picochlorum celeri achieved these productivities in saline water ranging from seawater to 50 parts per thousand sea salts, without any biocides or pond crashes, for over 143 days. Lastly, we report robust genetic engineering tools for future strain improvements.


Asunto(s)
Proteínas Algáceas/genética , Chlorophyta/crecimiento & desarrollo , Ingeniería Genética/métodos , Tolerancia a la Sal/genética , Proteínas Algáceas/metabolismo , Biomasa , Biotecnología/métodos , Chlorophyta/genética , Chlorophyta/metabolismo , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Luz , Estanques , Agua de Mar/química
16.
Environ Toxicol Pharmacol ; 85: 103649, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33812013

RESUMEN

With the increasing demand for typical hazardous and noxious substances (HNS) in chemical industry, there is an increased leakage risk of these HNS during transportation by vessel and storage nearby seashore. In this study, the acute toxicity of nonylphenol, butyl acrylate and 1, 2-dichloroethane to Phaeodactylum tricornutum (P. tricornutum) and Platymonas subcordiformis (P. subcordiformis), was investigated to assess their ecological risk. The results showed that the three kinds of HNS showed significant time- and dose-dependent patterns on the growth inhibition of two marine microalgae. The 96 h-EC50 of nonylphenol, butyl acrylate and 1, 2-dichloroethane on P. tricornutum was 1.088, 45.908 and 396 mg L-1, respectively, and the 96 h-EC50 of that on P. subcordiformis was 0.851, 52.621 and 389 mg L-1, respectively. It was a common method to evaluate the harm of pollutants to organisms by calculating HC5 value (the minimum pollutant concentration value harmful to 95 % of the studied species, which was no-effect concentration) with Species Sensitivity Distribution (SSD). On the basis of EC50, the ecological risk assessment was further carried out, and HC5 value of nonylphenol and 1, 2-dichloroethane to aquatic organism was 0.079 and 44 mg L-1, respectively.


Asunto(s)
Acrilatos/toxicidad , Chlorophyta/efectos de los fármacos , Dicloruros de Etileno/toxicidad , Microalgas/efectos de los fármacos , Fenoles/toxicidad , Contaminantes Químicos del Agua/toxicidad , Chlorophyta/crecimiento & desarrollo , Microalgas/crecimiento & desarrollo , Medición de Riesgo
17.
Sci Rep ; 11(1): 7368, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33811231

RESUMEN

Algal biofuel research aims to make a renewable, carbon-neutral biofuel by using oil-producing microalgae. The freshwater microalga Botryococcus braunii has received much attention due to its ability to accumulate large amounts of petroleum-like hydrocarbons but suffers from slow growth. We performed a large-scale screening of fast-growing strains with 180 strains isolated from 22 ponds located in a wide geographic range from the tropics to cool-temperate. A fast-growing strain, Showa, which recorded the highest productivities of algal hydrocarbons to date, was used as a benchmark. The initial screening was performed by monitoring optical densities in glass tubes and identified 9 wild strains with faster or equivalent growth rates to Showa. The biomass-based assessments showed that biomass and hydrocarbon productivities of these strains were 12-37% and 11-88% higher than that of Showa, respectively. One strain, OIT-678 established a new record of the fastest growth rate in the race B strains with a doubling time of 1.2 days. The OIT-678 had 36% higher biomass productivity, 34% higher hydrocarbon productivity, and 20% higher biomass density than Showa at the same cultivation conditions, suggesting the potential of the new strain to break the record for the highest productivities of hydrocarbons.


Asunto(s)
Chlorophyta/metabolismo , Hidrocarburos/metabolismo , Microalgas/metabolismo , Biocombustibles , Biomasa , Chlorophyta/química , Chlorophyta/crecimiento & desarrollo , Agua Dulce , Ensayos Analíticos de Alto Rendimiento , Humanos , Hidrocarburos/aislamiento & purificación , Microalgas/química , Microalgas/crecimiento & desarrollo , Microalgas/aislamiento & purificación
18.
Environ Toxicol Pharmacol ; 85: 103635, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33716093

RESUMEN

Lumefantrine is used to treat uncomplicated malaria caused by pure or mixed Plasmodium falciparum infections and as a prophylactic against recrudescence following artemether therapy. However, the pharmaceutical is released into the aquatic environment from industrial effluents, hospital discharges, and human excretion. This study assessed the effects of lumefantrine on the growth and physiological responses of the microalgae Chlorella vulgaris and Raphidocelis subcapitata (formerly known as Selenastrum capricornutum and Pseudokirchneriella subcapitata) and the aquatic macrophyte Lemna minor. The microalgae and macrophyte were exposed to 200-10000 µg l-1 and 16-10000 µg l-1 lumefantrine, respectively. Lumefantrine had a variable effect on the growth of the aquatic plants investigated. There was a decline in the growth of R. subcapitata and L. minor post-exposure to the drug. Contrarily, there was stimulation in the growth of Chlorella vulgaris. All experimental plants had a significant increase in lipid peroxidation, which was accompanied by an increase in malondialdehyde content. Peroxidase activity of L. minor increased only at low lumefantrine concentrations, while the opposite occurred at higher levels of the drug. Incubation in lumefantrine contaminated medium significantly up-regulated the activity of R. subcapitata cultures. Glutathione S-transferase of L. minor exposed to lumefantrine treatments had substantially higher activities than the controls. Our findings suggest lumefantrine could have adverse but variable effects on the growth and physiology of the studied aquatic plants.


Asunto(s)
Antimaláricos/toxicidad , Araceae/efectos de los fármacos , Chlorella vulgaris/efectos de los fármacos , Chlorophyta/efectos de los fármacos , Lumefantrina/toxicidad , Microalgas/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Araceae/crecimiento & desarrollo , Araceae/metabolismo , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/metabolismo , Clorofila/metabolismo , Chlorophyta/crecimiento & desarrollo , Chlorophyta/metabolismo , Glutatión Transferasa/metabolismo , Peroxidación de Lípido , Malondialdehído/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Proteínas de Plantas/metabolismo
19.
PLoS One ; 16(2): e0247426, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33606832

RESUMEN

Aquatic organisms have been used to investigate the safety of chemicals worldwide. One such assessment is an algal growth inhibition test. Algal growth inhibition tests are commonly performed using a growth chamber with fluorescent lamps as the lighting source, as test guidelines require continuous uniform fluorescent illumination. However, fluorescent lamps contain mercury, which has been identified as hazardous to humans and other organisms. The Minamata Convention (adopted in 2013) requires reduction or prohibition of products containing mercury. On the other hand, light-emitting diodes do not contain mercury and provide a photosynthetically effective wavelength range of 400-700 nm which is an adequate light intensity for algal growth. Light-emitting diodes are thus preferable to fluorescent lamps as a potential light source in algal growth inhibition tests. In this study, we investigated if light-emitting diodes could be substituted for fluorescent lamps in growth inhibition studies with green alga (Pseudokirchneriella subcapitata), diatom (Navicula pelliculosa), and cyanobacteria (Anabaena flos-aquae). Algal growth inhibition tests were performed using five different chemicals known to have different modes of action and are assigned as reference substances in the test guidelines. The results of each algal test showed similar values between light-emitting diodes and fluorescent lamps in terms of conditions for the growth inhibition rate and percent inhibition in yield of each chemical. It was therefore concluded that using light-emitting diodes instead of fluorescent lamps as a lighting source had no effect on the algal growth inhibition test results.


Asunto(s)
Chlorophyta/crecimiento & desarrollo , Cianobacterias/crecimiento & desarrollo , Diatomeas/crecimiento & desarrollo , Luz/efectos adversos , Cloruro de Cadmio/farmacología , Clorofenoles/farmacología , Fluorescencia , Técnicas Microbiológicas , Presión Osmótica/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Pentaclorofenol/farmacología , Fotosíntesis/efectos de los fármacos , Dicromato de Potasio/farmacología , Cloruro de Sodio/farmacología
20.
Cells ; 10(1)2021 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-33401566

RESUMEN

Photosynthetic energy conversion and the resulting photoautotrophic growth of green algae can only occur in daylight, but DNA replication, nuclear and cellular divisions occur often during the night. With such a light/dark regime, an algal culture becomes synchronized. In this study, using synchronized cultures of the green alga Desmodesmus quadricauda, the dynamics of starch, lipid, polyphosphate, and guanine pools were investigated during the cell cycle by two independent methodologies; conventional biochemical analyzes of cell suspensions and confocal Raman microscopy of single algal cells. Raman microscopy reports not only on mean concentrations, but also on the distribution of pools within cells. This is more sensitive in detecting lipids than biochemical analysis, but both methods-as well as conventional fluorescence microscopy-were comparable in detecting polyphosphates. Discrepancies in the detection of starch by Raman microscopy are discussed. The power of Raman microscopy was proven to be particularly valuable in the detection of guanine, which was traceable by its unique vibrational signature. Guanine microcrystals occurred specifically at around the time of DNA replication and prior to nuclear division. Interestingly, guanine crystals co-localized with polyphosphates in the vicinity of nuclei around the time of nuclear division.


Asunto(s)
Ciclo Celular , Chlorophyta/citología , Guanina/análisis , Lípidos/análisis , Microscopía , Polifosfatos/análisis , Espectrometría Raman , Almidón/análisis , Tamaño de la Célula , Pared Celular/química , Chlorophyta/crecimiento & desarrollo , Gotas Lipídicas/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA