RESUMEN
The anaphase-promoting complex/cyclosome (APC/C) is an E3 ubiquitin ligase and critical regulator of cell cycle progression. Despite its vital role, it has remained challenging to globally map APC/C substrates. By combining orthogonal features of known substrates, we predicted APC/C substrates in silico. This analysis identified many known substrates and suggested numerous candidates. Unexpectedly, chromatin regulatory proteins are enriched among putative substrates, and we show experimentally that several chromatin proteins bind APC/C, oscillate during the cell cycle, and are degraded following APC/C activation, consistent with being direct APC/C substrates. Additional analysis revealed detailed mechanisms of ubiquitylation for UHRF1, a key chromatin regulator involved in histone ubiquitylation and DNA methylation maintenance. Disrupting UHRF1 degradation at mitotic exit accelerates G1-phase cell cycle progression and perturbs global DNA methylation patterning in the genome. We conclude that APC/C coordinates crosstalk between cell cycle and chromatin regulatory proteins. This has potential consequences in normal cell physiology, where the chromatin environment changes depending on proliferative state, as well as in disease.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Cromatina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Cromatina/genética , Simulación por Computador , Células HEK293 , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , UbiquitinaciónRESUMEN
Accurate division of cells into two daughters is a process that is vital to propagation of life. Protein phosphorylation and selective degradation have emerged as two important mechanisms safeguarding the delicate choreography of mitosis. Protein phosphatases catalyze dephosphorylation of thousands of sites on proteins, steering the cells through establishment of the mitotic phase and exit from it. A large E3 ubiquitin ligase, the anaphase-promoting complex/cyclosome (APC/C) becomes active during latter stages of mitosis through G1 and marks hundreds of proteins for destruction. Recent studies have revealed the complex interregulation between these two classes of enzymes. In this review, we highlight the direct and indirect mechanisms by which phosphatases and the APC/C mutually influence each other to ensure accurate spatiotemporal and orderly progression through mitosis, with a particular focus on recent insights and conceptual advances.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Proteína Quinasa CDC2/fisiología , Mitosis/fisiología , Monoéster Fosfórico Hidrolasas/fisiología , Animales , Línea Celular Tumoral , Humanos , Fosforilación/fisiología , Ubiquitinación/fisiologíaRESUMEN
The separation of sister chromatids at anaphase, which is regulated by an E3 ubiquitin ligase called the anaphase-promoting complex/cyclosome (APC/C), is arguably the most important irrevocable event during the cell cycle. The APC/C and cyclin-dependent kinase 1 (Cdk1) are just two of the many significant cell cycle regulators and exert control through ubiquitylation and phosphorylation, respectively. The temporal and spatial regulation of the APC/C is achieved by multiple mechanisms, including phosphorylation, interaction with the structurally related co-activators Cdc20 and Cdh1, loading of distinct E2 ubiquitin-conjugating enzymes, binding with inhibitors and differential affinities for various substrates. Since the discovery of APC/C 25 years ago, intensive studies have uncovered many aspects of APC/C regulation, but we are still far from a full understanding of this important cellular machinery. Recent high-resolution cryogenic electron microscopy analysis and reconstitution of the APC/C have greatly advanced our understanding of molecular mechanisms underpinning the enzymatic properties of APC/C. In this review, we will examine the historical background and current understanding of APC/C regulation.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Anafase , Animales , Proteínas Cdc20/fisiología , Proteínas Cdh1/fisiología , Humanos , Saccharomycetales , XenopusRESUMEN
The mitotic checkpoint ensures accurate chromosome segregation through assembly of the mitotic checkpoint complex (MCC), a soluble inhibitor of the anaphase-promoting complex/cyclosome (APC/C) produced by unattached kinetochores. MCC is also assembled during interphase by Mad1/Mad2 bound at nuclear pores, thereby preventing premature mitotic exit prior to kinetochore maturation and checkpoint activation. Using degron tagging to rapidly deplete the AAA+ ATPase TRIP13, we show that its catalytic activity is required to maintain a pool of open-state Mad2 for MCC assembly, thereby supporting mitotic checkpoint activation, but is also required for timely mitotic exit through catalytic disassembly of MCC. Strikingly, combining TRIP13 depletion with elimination of APC15-dependent Cdc20 ubiquitination/degradation results in a complete inability to exit mitosis, even when MCC assembly at unattached kinetochores is prevented. Thus, mitotic exit requires MCC produced either in interphase or mitosis to be disassembled by TRIP13-catalyzed removal of Mad2 or APC15-driven ubiquitination/degradation of its Cdc20 subunit.
Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/fisiología , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Proteínas de Ciclo Celular/fisiología , Cinetocoros/fisiología , Puntos de Control de la Fase M del Ciclo Celular , Mitosis/fisiología , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/genética , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Proteínas Cdc20/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Interfase , Proteínas Mad2/metabolismoRESUMEN
Cdc20 and Cdh1 activate the anaphase-promoting complex/cyclosome, a master cell cycle regulator. Although cell cycle modifications occur during differentiation of stem cells, a role for the anaphase-promoting complex/cyclosome on stem cell fate has not been established in embryonic or adult human tissues. We found that differentiated human primary keratinocytes from the skin express extremely low levels of Cdc20 compared with human primary keratinocyte stem cells (holoclones). In agreement with this, staining of human skin biopsies showed that Cdc20 is expressed in occasional cells from the basal and epibasal layers of the epidermis and is absent from the differentiated layers. Conversely, Cdh1 is preferentially expressed in differentiated cells. Interestingly, partial silencing of Cdc20 enhanced differentiation, indicating that loss of Cdc20 might be a cause rather than a consequence of terminal differentiation. By contrast, Cdh1 silencing induced the opposite cellular phenotype, which was characterized by an increase in stemness, cellular proliferation, and loss of differentiation markers. These data pinpoint the anaphase-promoting complex/cyclosome as a key regulator of adult stem cell fate. They also demonstrate the critical and opposing roles of Cdc20 and Cdh1 in controlling the balance between human primary keratinocyte proliferation and differentiation, and therefore in regulating skin homeostasis.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Diferenciación Celular/fisiología , Queratinocitos/fisiología , Células Madre/fisiología , Células 3T3 , Adulto , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proliferación Celular/fisiología , Niño , Epidermis/fisiología , Femenino , Citometría de Flujo , Voluntarios Sanos , Humanos , Masculino , Ratones , Cultivo Primario de CélulasRESUMEN
During a single human lifetime, nearly one quintillion chromosomes separate from their sisters and transit to their destinations in daughter cells. Unlike DNA replication, chromosome segregation has no template, and, unlike transcription, errors frequently lead to a total loss of cell viability. Rapid progress in recent years has shown how kinetochores enable faithful execution of this process by connecting chromosomal DNA to microtubules. These findings have transformed our idea of kinetochores from cytological features to immense molecular machines and now allow molecular interpretation of many long-appreciated kinetochore functions. In this review we trace kinetochore protein connectivity from chromosomal DNA to microtubules, relating new findings to important points of regulation and function.
Asunto(s)
Cinetocoros/fisiología , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Animales , Proteínas de Ciclo Celular/fisiología , Segregación Cromosómica/fisiología , Humanos , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Modelos Biológicos , Unión Proteica , Complejos de Ubiquitina-Proteína Ligasa/fisiologíaRESUMEN
Double-strand breaks (DSBs) are repaired through two major pathways, homology-directed recombination (HDR) and non-homologous end joining (NHEJ). While HDR can only occur in S/G2, NHEJ can happen in all cell cycle phases (except mitosis). How then is the repair choice made in S/G2 cells? Here we provide evidence demonstrating that APCCdh1 plays a critical role in choosing the repair pathways in S/G2 cells. Our results suggest that the default for all DSBs is to recruit 53BP1 and RIF1. BRCA1 is blocked from being recruited to broken ends because its recruitment signal, K63-linked poly-ubiquitin chains on histones, is actively destroyed by the deubiquitinating enzyme USP1. We show that the removal of USP1 depends on APCCdh1 and requires Chk1 activation known to be catalysed by ssDNA-RPA-ATR signalling at the ends designated for HDR, linking the status of end processing to RIF1 or BRCA1 recruitment.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Daño del ADN , Reparación del ADN/fisiología , Ubiquitina/metabolismo , Animales , Línea Celular , Roturas del ADN de Doble Cadena , Inestabilidad Genómica , Células HEK293 , Células HeLa , Humanos , Ratones , Modelos Genéticos , Transducción de SeñalRESUMEN
Proteins are the cell's functional entities. Rather than operating independently, they interact with other proteins. Capturing in vivo protein complexes is therefore crucial to gain understanding of the function of a protein in a cellular context. Affinity purification coupled to mass spectrometry has proven to yield a wealth of information about protein complex constitutions for a broad range of organisms. For Oryza sativa, the technique has been initiated in callus and shoots, but has not been optimized ever since. We translated an optimized tandem affinity purification (TAP) approach from Arabidopsis thaliana toward Oryza sativa, and demonstrate its applicability in a variety of rice tissues. A list of non-specific and false positive interactors is presented, based on re-occurrence over more than 170 independent experiments, to filter bona fide interactors. We demonstrate the sensitivity of our approach by isolating the complexes for the rice ANAPHASE PROMOTING COMPLEX SUBUNIT 10 (APC10) and CYCLIN-DEPENDENT KINASE D (CDKD) proteins from the proliferation zone of the emerging fourth leaf. Next to APC10 and CDKD, we tested several additional baits in the different rice tissues and reproducibly retrieved at least one interactor for 81.4 % of the baits screened for in callus tissue and T1 seedlings. By transferring an optimized TAP tag combined with state-of-the-art mass spectrometry, our TAP protocol enables the discovery of interactors for low abundance proteins in rice and opens the possibility to capture complex dynamics by comparing tissues at different stages of a developing rice organ.
Asunto(s)
Oryza/fisiología , Proteínas de Plantas/aislamiento & purificación , Ciclosoma-Complejo Promotor de la Anafase/aislamiento & purificación , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Clonación Molecular , Quinasas Ciclina-Dependientes/aislamiento & purificación , Quinasas Ciclina-Dependientes/fisiología , Espectrometría de Masas , Oryza/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Proteínas de Plantas/fisiología , Proteínas Recombinantes/metabolismo , Plantones/metabolismo , Plantones/fisiologíaRESUMEN
Warsaw breakage syndrome (WABS) is caused by defective DDX11, a DNA helicase that is essential for chromatid cohesion. Here, a paired genome-wide siRNA screen in patient-derived cell lines reveals that WABS cells do not tolerate partial depletion of individual APC/C subunits or the spindle checkpoint inhibitor p31(comet). A combination of reduced cohesion and impaired APC/C function also leads to fatal mitotic arrest in diploid RPE1 cells. Moreover, WABS cell lines, and several cancer cell lines with cohesion defects, display a highly increased response to a new cell-permeable APC/C inhibitor, apcin, but not to the spindle poison paclitaxel. Synthetic lethality of APC/C inhibition and cohesion defects strictly depends on a functional mitotic spindle checkpoint as well as on intact microtubule pulling forces. This indicates that the underlying mechanism involves cohesion fatigue in response to mitotic delay, leading to spindle checkpoint re-activation and lethal mitotic arrest. Our results point to APC/C inhibitors as promising therapeutic agents targeting cohesion-defective cancers.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Intercambio de Cromátides Hermanas/fisiología , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Segregación Cromosómica , Humanos , Mitosis/fisiología , Morfolinas/farmacología , Nocodazol/farmacología , Paclitaxel/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Intercambio de Cromátides Hermanas/efectos de los fármacos , Moduladores de Tubulina/farmacologíaRESUMEN
Cancer stem cells likely survive chemotherapy or radiotherapy by acquiring mutations that inactivate the endogenous apoptotic machinery or by cycling slowly. Thus, knowledge about the mechanisms linking the activation of an alternative cell death modality and the cell cycle machinery could have a transformative impact on the development of new cancer therapies, but the mechanisms remain completely unknown. We investigated the regulation of alternative cell death in Drosophila larval brain neural stem cells (neuroblasts) in which apoptosis is normally repressed. From a screen, we identified two novel loss-of-function alleles of the Cdc20/fizzy (fzy) gene that lead to premature brain neuroblast loss without perturbing cell proliferation in other diploid cell types. Fzy is an evolutionarily conserved regulator of anaphase promoting complex/cyclosome (APC/C). Neuroblasts carrying the novel fzy allele or exhibiting reduced APC/C function display hallmarks of necrosis. By contrast, neuroblasts overexpressing the non-degradable form of canonical APC/C substrates required for cell cycle progression undergo mitotic catastrophe. These data strongly suggest that Fzy can elicit a novel pro-survival function of APC/C by suppressing necrosis. Neuroblasts experiencing catastrophic cellular stress, or overexpressing p53, lose Fzy expression and undergo necrosis. Co-expression of fzy suppresses the death of these neuroblasts. Consequently, attenuation of the Fzy-dependent survival mechanism functions downstream of catastrophic cellular stress and p53 to eliminate neuroblasts by necrosis. Strategies that target the Fzy-dependent survival mechanism might lead to the discovery of new treatments or complement the pre-existing therapies to eliminate apoptosis-resistant cancer stem cells by necrosis.
Asunto(s)
Encéfalo/patología , Proteínas Cdc20/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Células-Madre Neurales/patología , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Animales , Animales Modificados Genéticamente , Encéfalo/enzimología , Proteínas Cdc20/genética , Proliferación Celular , Supervivencia Celular/genética , Proteínas de Drosophila/genética , Genes p53/fisiología , Necrosis/genética , Células-Madre Neurales/enzimología , Transducción de Señal/genética , Estrés Fisiológico/genéticaRESUMEN
The spindle and kinetochore-associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA-mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore-microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit.
Asunto(s)
Ciclosoma-Complejo Promotor de la Anafase/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Mitosis/fisiología , Anafase/efectos de los fármacos , Anafase/genética , Anafase/fisiología , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular , Cromosomas Humanos/efectos de los fármacos , Cromosomas Humanos/metabolismo , Ciclina B1/metabolismo , Células HeLa , Humanos , Metafase/efectos de los fármacos , Metafase/genética , Metafase/fisiología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/efectos de los fármacos , Mitosis/genética , Modelos Biológicos , Nocodazol/farmacología , Moduladores de Tubulina/farmacologíaRESUMEN
Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex (APC/C). Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C substrates provides a mechanism for the selective disposal of cell-cycle regulators that have fulfilled their mitotic roles.
Asunto(s)
Microtúbulos/fisiología , Huso Acromático/metabolismo , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Células HeLa , Humanos , Microtúbulos/metabolismo , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/fisiología , Huso Acromático/ultraestructura , beta Carioferinas/metabolismo , beta Carioferinas/fisiologíaRESUMEN
Chromosomes are dynamic structures that must be reversibly condensed and unfolded to accommodate mitotic division and chromosome segregation. Histone modifications are involved in the striking chromatin reconfiguration taking place during mitosis. However, the mechanisms that regulate activity and function of histone-modifying factors as cells enter and exit mitosis are poorly understood. Here, we show that the anaphase-promoting complex or cyclosome (APC/C) is involved in the mitotic turnover of TRRAP (TRansformation/tRanscription domain-Associated Protein), a common component of histone acetyltransferase (HAT) complexes, and that the pre-mitotic degradation of TRRAP is mediated by the APC/C ubiquitin ligase activators Cdc20 and Cdh1. Ectopic expression of both Cdh1 and Cdc20 reduced the levels of coexpressed TRRAP protein and induced its ubiquitination. TRRAP overexpression or stabilization induces multiple mitotic defects, including lagging chromosomes, chromosome bridges and multipolar spindles. In addition, lack of sister chromatid cohesion and impaired chromosome condensation were found after TRRAP overexpression or stabilization. By using a truncated form of TRRAP, we show that mitotic delay is associated with a global histone H4 hyperacetylation induced by TRRAP overexpression. These results demonstrate that the chromatin modifier TRRAP is targeted for destruction in a cell cycle-dependent fashion. They also suggest that degradation of TRRAP by the APC/C is necessary for a proper condensation of chromatin and proper chromosome segregation. Chromatin compaction mediated by histone modifiers may represent a fundamental arm for APC/C orchestration of the mitotic machinery.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclo Celular , Proteínas Nucleares/metabolismo , Acetilación , Ciclosoma-Complejo Promotor de la Anafase/fisiología , Antígenos CD , Cadherinas/fisiología , Proteínas Cdc20/fisiología , Línea Celular Tumoral , Segregación Cromosómica , Histonas/metabolismo , Humanos , Mitosis , UbiquitinaciónRESUMEN
In early embryos of a number of species the anaphase-promoting complex (APC), an important cell cycle regulator, requires only CDC20 for cell division. In contrast, fizzy-related-1 (FZR1), a non-essential protein in many cell types, is thought to play a role in APC activation at later cell cycles, and especially in endoreduplication. In keeping with this, Fzr1 knockout mouse embryos show normal preimplantation development but die due to a lack of endoreduplication needed for placentation. However, interpretation of the role of FZR1 during this period is hindered by the presence of maternal stores. In this study, therefore, we used an oocyte-specific knockout to examine FZR1 function in early mouse embryo development. Maternal FZR1 was not crucial for completion of meiosis, and furthermore viable pups were born to Fzr1 knockout females mated with normal males. However, in early embryos the absence of both maternal and paternal FZR1 led to a dramatic loss in genome integrity, such that the majority of embryos arrested having undergone only a single mitotic division and contained many γ-H2AX foci, consistent with fragmented DNA. A prominent feature of such embryos was the establishment of two independent spindles following pronuclear fusion and thus a failure of the chromosomes to mix (syngamy). These generated binucleate 2-cell embryos. In the 10% of embryos that progressed to the 4-cell stage, division was so slow that compaction occurred prematurely. No embryo development to the blastocyst stage was ever observed. We conclude that Fzr1 is a surprisingly essential gene involved in the establishment of a single spindle from the two pronuclei in 1-cell embryos as well as being involved in the maintenance of genomic integrity during the mitotic divisions of early mammalian embryos.