Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.328
Filtrar
1.
Nat Commun ; 15(1): 5448, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38937444

RESUMEN

Flowering plants rely on the polarized growth of pollen tubes to deliver sperm cells (SCs) to the embryo sac for double fertilization. In pollen, the vegetative nucleus (VN) and two SCs form the male germ unit (MGU). However, the mechanism underlying directional transportation of MGU is not well understood. In this study, we provide the first full picture of the dynamic interplay among microtubules, actin filaments, and MGU during pollen germination and tube growth. Depolymerization of microtubules and inhibition of kinesin activity result in an increased velocity and magnified amplitude of VN's forward and backward movement. Pharmacological washout experiments further suggest that microtubules participate in coordinating the directional movement of MGU. In contrast, suppression of the actomyosin system leads to a reduced velocity of VN mobility but without a moving pattern change. Moreover, detailed observation shows that the direction and velocity of VN's movement are in close correlations with those of the actomyosin-driven cytoplasmic streaming surrounding VN. Therefore, we propose that while actomyosin-based cytoplasmic streaming influences on the oscillational movement of MGU, microtubules and kinesins avoid MGU drifting with the cytoplasmic streaming and act as the major regulator for fine-tuning the proper positioning and directional migration of MGU in pollen.


Asunto(s)
Citoesqueleto de Actina , Actomiosina , Cinesinas , Microtúbulos , Polen , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Cinesinas/metabolismo , Polen/metabolismo , Actomiosina/metabolismo , Tubo Polínico/metabolismo , Tubo Polínico/crecimiento & desarrollo , Núcleo Celular/metabolismo , Arabidopsis/metabolismo , Corriente Citoplasmática , Germinación/fisiología
2.
Sci Adv ; 10(25): eadl6153, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896608

RESUMEN

Platelet-producing megakaryocytes (MKs) primarily reside in the bone marrow, where they duplicate their DNA content with each cell cycle resulting in polyploid cells with an intricate demarcation membrane system. While key elements of the cytoskeletal reorganizations during proplatelet formation have been identified, what initiates the release of platelets into vessel sinusoids remains largely elusive. Using a cell cycle indicator, we observed a unique phenomenon, during which amplified centrosomes in MKs underwent clustering following mitosis, closely followed by proplatelet formation, which exclusively occurred in G1 of interphase. Forced cell cycle arrest in G1 increased proplatelet formation not only in vitro but also in vivo following short-term starvation of mice. We identified that inhibition of the centrosomal protein kinesin family member C1 (KIFC1) impaired clustering and subsequent proplatelet formation, while KIFC1-deficient mice exhibited reduced platelet counts. In summary, we identified KIFC1- and cell cycle-mediated centrosome clustering as an important initiator of proplatelet formation from MKs.


Asunto(s)
Plaquetas , Ciclo Celular , Centrosoma , Cinesinas , Megacariocitos , Centrosoma/metabolismo , Animales , Megacariocitos/metabolismo , Megacariocitos/citología , Ratones , Plaquetas/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Ratones Noqueados , Humanos , Mitosis
3.
Discov Med ; 36(185): 1280-1288, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38926114

RESUMEN

BACKGROUND: Kinesin family member 26B (KIF26B) has been closely linked to the occurrence and progression of various tumors. However, there is limited research on its role in oral squamous cell carcinoma (OSCC). This article aims to investigate the expression levels and mechanisms of KIF26B in OSCC. METHODS: Real time quantity polymerase chain reaction (RT-qPCR) and Western blot analyses were conducted to assess the expression levels of KIF26B in 35 OSCC specimens and their corresponding non-cancerous tissues. Overexpression and silencing of KIF26B were achieved in HSC6 and SCC25 cells, respectively, resulting in the establishment of KIF26B-overexpressing and si-KIF26B cell lines, designated as the KIF26B group and si-KIF26B group. Proliferation assays using 5-Ethynyl-2'-deoxyuridine (EdU) labeling and clone formation were performed to evaluate the proliferative capacity of cells in these groups. The invasive and migratory abilities of cells in the KIF26B and si-KIF26B groups were assessed using Transwell assay. Additionally, the influence of KIF26B on the glycogen synthase kinase (GSK)-3ß/ß-catenin pathway was investigated through Western blot analysis. RESULTS: According to the results of RT-qPCR and Western blot analyses, the expression of KIF26B was predominantly higher in OSCC tissues compared to normal tissues (p < 0.01). Overexpression of KIF26B notably accelerated cell migration, invasion, and proliferation (p < 0.01), whereas knockdown of KIF26B significantly inhibited these processes (p < 0.01). Additionally, KIF26B overexpression led to increased levels of active ß-catenin, p-GSK-3, and c-myc (p < 0.01), while KIF26B silencing decreased the levels of these proteins (p < 0.01). CONCLUSION: Our findings suggest that KIF26B may play a role in the pathogenesis and progression of OSCC as an oncogene. This study establishes a foundation for the identification of potential therapeutic targets for OSCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Células Escamosas , Proliferación Celular , Cinesinas , Neoplasias de la Boca , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Línea Celular Tumoral , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Proliferación Celular/genética , Femenino , Masculino , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Movimiento Celular/genética , Anciano , Vía de Señalización Wnt/genética , beta Catenina/metabolismo , beta Catenina/genética
4.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38829962

RESUMEN

Two sets of motor proteins underpin motile cilia/flagella function. The axoneme-associated inner and outer dynein arms drive sliding of adjacent axoneme microtubule doublets to periodically bend the flagellum for beating, while intraflagellar transport (IFT) kinesins and dyneins carry IFT trains bidirectionally along the axoneme. Despite assembling motile cilia and flagella, IFT train speeds have only previously been quantified in immobilized flagella-mechanical immobilization or genetic paralysis. This has limited investigation of the interaction between IFT and flagellar beating. Here, in uniflagellate Leishmania parasites, we use high-frequency, dual-color fluorescence microscopy to visualize IFT train movement in beating flagella. We discovered that adhesion of flagella to a microscope slide is detrimental, reducing IFT train speed and increasing train stalling. In flagella free to move, IFT train speed is not strongly dependent on flagella beat type; however, permanent disruption of flagella beating by deletion of genes necessary for formation or regulation of beating showed an inverse correlation of beat frequency and IFT train speed.


Asunto(s)
Flagelos , Leishmania , Microtúbulos , Axonema/metabolismo , Axonema/genética , Transporte Biológico , Cilios/metabolismo , Cilios/genética , Dineínas/metabolismo , Dineínas/genética , Flagelos/metabolismo , Flagelos/genética , Cinesinas/metabolismo , Cinesinas/genética , Leishmania/citología , Leishmania/genética , Leishmania/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Microtúbulos/metabolismo
5.
Cell Commun Signal ; 22(1): 312, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38902769

RESUMEN

African American (AA) women are twice as likely to develop triple-negative breast cancer (TNBC) as women of European descent. Additionally, AA women with TNBC present a much more aggressive disease course than their European American (EA) counterparts. Thus, there is an unmet clinical need to identify race-specific biomarkers and improve survival outcomes in AA patients with TNBC. The minus-end directed microtubule motor protein kinesin family member C1 (KIFC1) promotes centrosome clustering and chromosomal instability and is often overexpressed in TNBC. Previous findings suggest that KIFC1 plays a role in cell proliferation and migration in TNBC cells from AAs and that the levels of nuclear KIFC1 (nKIFC1) are particularly high in AA patients with TNBC. The nuclear localization of KIFC1 in interphase may underlie its previously unrecognized race-specific association. In this study, we found that in TNBC cells derived from AAs, nKIFC1 interacted with the tumor suppressor myosin heavy chain 9 (MYH9) over EA cells. Treatment of AA TNBC cells with commercial inhibitors of KIFC1 and MYH9 disrupted the interaction between KIFC1 and MYH9. To characterize the racial differences in the KIFC1-MYH9-MYC axis in TNBC, we established homozygous KIFC1 knockout (KO) TNBC cell lines. KIFC1 KO significantly inhibited proliferation, migration, and invasion in AA TNBC cells but not in EA TNBC cells. RNA sequencing analysis showed significant downregulation of genes involved in cell migration, invasion, and metastasis upon KIFC1 KO in TNBC cell lines from AAs compared to those from EAs. These data indicate that mechanistically, the role of nKIFC1 in driving TNBC progression and metastasis is stronger in AA patients than in EA patients, and that KIFC1 may be a critical therapeutic target for AA patients with TNBC.


Asunto(s)
Cinesinas , Cadenas Pesadas de Miosina , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama Triple Negativas/etnología , Neoplasias de la Mama Triple Negativas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Femenino , Línea Celular Tumoral , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Proliferación Celular/genética , Movimiento Celular/genética , Negro o Afroamericano/genética , Población Blanca/genética , Unión Proteica
6.
J Cell Biol ; 223(9)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-38869473

RESUMEN

At each cell division, nanometer-scale motors and microtubules give rise to the micron-scale spindle. Many mitotic motors step helically around microtubules in vitro, and most are predicted to twist the spindle in a left-handed direction. However, the human spindle exhibits only slight global twist, raising the question of how these molecular torques are balanced. Here, we find that anaphase spindles in the epithelial cell line MCF10A have a high baseline twist, and we identify factors that both increase and decrease this twist. The midzone motors KIF4A and MKLP1 are together required for left-handed twist at anaphase, and we show that KIF4A generates left-handed torque in vitro. The actin cytoskeleton also contributes to left-handed twist, but dynein and its cortical recruitment factor LGN counteract it. Together, our work demonstrates that force generators regulate twist in opposite directions from both within and outside the spindle, preventing strong spindle twist during chromosome segregation.


Asunto(s)
Anafase , Cinesinas , Microtúbulos , Huso Acromático , Humanos , Huso Acromático/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Microtúbulos/metabolismo , Dineínas/metabolismo , Dineínas/genética , Torque , Segregación Cromosómica , Citoesqueleto de Actina/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/genética
7.
World J Gastroenterol ; 30(20): 2689-2708, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38855156

RESUMEN

BACKGROUND: The regulatory effects of KIF26B on gastric cancer (GC) have been confirmed, but the specific mechanism still needs further exploration. Pan-cancer analysis shows that the KIF26B expression is highly related to immune infiltration of cancer-associated fibroblasts (CAFs), and CAFs promote macrophage M2 polarization and affect cancers' progression. AIM: To investigate the regulatory functions of KIF26B on immune and metastasis of GC. METHODS: We analyzed genes' mRNA levels by quantitative real-time polymerase chain reaction. Expression levels of target proteins were detected by immunohistochemistry, ELISA, and Western blotting. We injected AGS cells into nude mice for the establishment of a xenograft tumor model and observed the occurrence and metastasis of GC. The degree of inflammatory infiltration in pulmonary nodes was observed through hematoxylin-eosin staining. Transwell and wound healing assays were performed for the evaluation of cell invasion and migration ability. Tube formation assay was used for detecting angiogenesis. M2-polarized macrophages were estimated by immunofluorescence and flow cytometry. RESULTS: KIF26B was significantly overexpressed in cells and tissues of GC, and the higher expression of KIF26B was related to GC metastasis and prognosis. According to in vivo experiments, KIF26B promoted tumor formation and metastasis of GC. KIF26B expression was positively associated with CAFs' degree of infiltration. Moreover, CAFs could regulate M2-type polarization of macrophages, affecting GC cells' migration, angiogenesis, invasion, and epithelial-mesenchymal transition process. CONCLUSION: KIF26B regulated M2 polarization of macrophage through activating CAFs, regulating the occurrence and metastasis of GC.


Asunto(s)
Fibroblastos Asociados al Cáncer , Regulación Neoplásica de la Expresión Génica , Cinesinas , Ratones Desnudos , Neoplasias Gástricas , Animales , Cinesinas/metabolismo , Cinesinas/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Línea Celular Tumoral , Ratones , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Movimiento Celular , Femenino , Microambiente Tumoral , Metástasis de la Neoplasia , Macrófagos Asociados a Tumores/metabolismo , Macrófagos Asociados a Tumores/inmunología , Pronóstico , Invasividad Neoplásica , Ratones Endogámicos BALB C , Neovascularización Patológica , Transición Epitelial-Mesenquimal
8.
FASEB J ; 38(13): e23750, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38888878

RESUMEN

Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.


Asunto(s)
Cinesinas , Meiosis , Microtúbulos , Oocitos , Huso Acromático , Animales , Cinesinas/metabolismo , Cinesinas/genética , Meiosis/fisiología , Oocitos/metabolismo , Microtúbulos/metabolismo , Ratones , Huso Acromático/metabolismo , Femenino , Actinas/metabolismo , Cinetocoros/metabolismo
9.
Biomed Pharmacother ; 175: 116785, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38781869

RESUMEN

Rearrangement of the actin cytoskeleton is a prerequisite for carcinoma cells to develop cellular protrusions, which are required for migration, invasion, and metastasis. Fascin is a key protein involved in actin bundling and is expressed in aggressive and invasive carcinomas. Additionally, fascin appears to be involved in tubulin-binding and microtubule rearrangement. Pharmacophoric-based in silico screening was performed to identify compounds with better fascin inhibitory properties than migrastatin, a gold-standard fascin inhibitor. We hypothesized that monastrol displays anti-migratory and anti-invasive properties via fascin blocking in colorectal cancer cell lines. Biophysical (thermofluor and ligand titration followed by fluorescence spectroscopy), biochemical (NMR), and cellular assays (MTT, invasion of human tissue), as well as animal model studies (zebrafish invasion) were performed to characterize the inhibitory effect of monastrol on fascin activity. In silico analysis revealed that monastrol is a potential fascin-binding compound. Biophysical and biochemical assays demonstrated that monastrol binds to fascin and interferes with its actin-bundling activity. Cell culture studies, including a 3D human myoma disc model, showed that monastrol inhibited fascin-driven cytoplasmic protrusions as well as invasion. In silico, confocal microscopy, and immunoprecipitation assays demonstrated that monastrol disrupted fascin-tubulin interactions. These anti-invasive effects were confirmed in vivo. In silico confocal microscopy and immunoprecipitation assays were carried out to test whether monastrol disrupted the fascin-tubulin interaction. This study reports, for the first time, the in vitro and in vivo anti-invasive properties of monastrol in colorectal tumor cells. The number and types of interactions suggest potential binding of monastrol across actin and tubulin sites on fascin, which could be valuable for the development of antitumor therapies.


Asunto(s)
Proteínas Portadoras , Neoplasias Colorrectales , Cinesinas , Proteínas de Microfilamentos , Invasividad Neoplásica , Humanos , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Portadoras/metabolismo , Cinesinas/metabolismo , Cinesinas/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Metástasis de la Neoplasia/prevención & control , Pirimidinas/farmacología , Transducción de Señal/efectos de los fármacos , Tionas/farmacología , Antineoplásicos/farmacología
10.
J Cancer Res Clin Oncol ; 150(5): 239, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713252

RESUMEN

PURPOSE: Multiple myeloma (MM) is an incurable hematological malignancy characterized by clonal proliferation of malignant plasma B cells in bone marrow, and its pathogenesis remains unknown. The aim of this study was to determine the role of kinesin family member 22 (KIF22) in MM and elucidate its molecular mechanism. METHODS: The expression of KIF22 was detected in MM patients based upon the public datasets and clinical samples. Then, in vitro assays were performed to investigate the biological function of KIF22 in MM cell lines, and subcutaneous xenograft models in nude mice were conducted in vivo. Chromatin immunoprecipitation (ChIP) and luciferase reporter assay were used to determine the mechanism of KIF22-mediated regulation. RESULTS: The results demonstrated that the expression of KIF22 in MM patients was associated with several clinical features, including gender (P = 0.016), LDH (P < 0.001), ß2-MG (P = 0.003), percentage of tumor cells (BM) (P = 0.002) and poor prognosis (P < 0.0001). Furthermore, changing the expression of KIF22 mainly influenced the cell proliferation in vitro and tumor growth in vivo, and caused G2/M phase cell cycle dysfunction. Mechanically, KIF22 directly transcriptionally regulated cell division cycle 25C (CDC25C) by binding its promoter and indirectly influenced CDC25C expression by regulating the ERK pathway. KIF22 also regulated CDC25C/CDK1/cyclinB1 pathway. CONCLUSION: KIF22 could promote cell proliferation and cell cycle progression by transcriptionally regulating CDC25C and its downstream CDC25C/CDK1/cyclinB1 pathway to facilitate MM progression, which might be a potential therapeutic target in MM.


Asunto(s)
Proteína Quinasa CDC2 , Ciclina B1 , Proteínas de Unión al ADN , Cinesinas , Mieloma Múltiple , Fosfatasas cdc25 , Animales , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Proteína Quinasa CDC2/metabolismo , Proteína Quinasa CDC2/genética , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/genética , Línea Celular Tumoral , Proliferación Celular , Ciclina B1/metabolismo , Ciclina B1/genética , Progresión de la Enfermedad , Regulación Neoplásica de la Expresión Génica , Cinesinas/metabolismo , Cinesinas/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Mieloma Múltiple/patología , Mieloma Múltiple/metabolismo , Mieloma Múltiple/genética , Pronóstico , Transducción de Señal
11.
Int J Biol Macromol ; 270(Pt 1): 132347, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38754673

RESUMEN

Aberrant cell proliferation is one of the main characteristics of tumor cells that can be affected by many cellular processes and signaling pathways. Kinesin superfamily proteins (KIFs) are motor proteins that are involved in cytoplasmic transportations and chromosomal segregation during cell proliferation. Therefore, regulation of the KIF functions as vital factors in chromosomal stability is necessary to maintain normal cellular homeostasis and proliferation. KIF deregulations have been reported in various cancers. MicroRNAs (miRNAs) and signaling pathways are important regulators of KIF proteins. MiRNAs have key roles in regulation of the cell proliferation, migration, and apoptosis. In the present review, we discussed the role of miRNAs in tumor biology through the regulation of KIF proteins. It has been shown that miRNAs have mainly a tumor suppressor function via the KIF targeting. This review can be an effective step to introduce the miRNAs/KIFs axis as a probable therapeutic target in tumor cells.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Cinesinas , MicroARNs , Neoplasias , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Cinesinas/metabolismo , Cinesinas/genética , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Animales , Proliferación Celular/genética , Progresión de la Enfermedad , Transducción de Señal , Apoptosis/genética , Movimiento Celular/genética
12.
Cell Death Dis ; 15(5): 367, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806484

RESUMEN

Mitochondria dysfunctions and mitophagy failure have been associated with several Alzheimer's disease (AD) related molecular actors including amyloid beta (Aß) and recently the amyloid precursor protein-C terminal fragments (APP-CTFs). The efficacy of the mitophagy process in neurons relies on regulated mitochondrial transport along axons involving a complex molecular machinery. The contribution of the amyloid precursor protein (APP) and its derived fragments to the mitochondrial transport machinery alterations in AD have not been investigated before. We report herein a change of the expression of mitochondrial transport proteins (SNPH and Miro1), motor adapters (TRANK1 and TRAK2), and components of the dynein and kinesin motors (i.e., IC1,2 and Kif5 (A, B, C) isoforms) by endogenous APP and by overexpression of APP carrying the familial Swedish mutation (APPswe). We show that APP-CTFs and Aß concomitantly regulate the expression of a set of transport proteins as demonstrated in APPswe cells treated with ß- and γ-secretase inhibitors and in cells Knock-down for presenilin 1 and 2. We further report the impact of APP-CTFs on the expression of transport proteins in AAV-injected C99 mice brains. Our data also indicate that both Aß oligomers (Aßo) and APP-CTFs impair the colocalization of mitochondria and transport proteins. This has been demonstrated in differentiated SH-SY5Y naive cells treated with Aßo and in differentiated SH-SY5Y and murine primary neurons expressing APPswe and treated with the γ-secretase inhibitor. Importantly, we uncover that the expression of a set of transport proteins is modulated in a disease-dependent manner in 3xTgAD mice and in human sporadic AD brains. This study highlights molecular mechanisms underlying mitochondrial transport defects in AD that likely contribute to mitophagy failure and disease progression.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Mitocondrias , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Mitocondrias/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Cinesinas/metabolismo , Transporte Biológico , Mitofagia , Proteínas del Tejido Nervioso , Proteínas de Unión al GTP rho , Péptidos y Proteínas de Señalización Intracelular
13.
Curr Biol ; 34(11): 2373-2386.e5, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38776903

RESUMEN

Proper distribution of organelles can play an important role in a moving cell's performance. During C. elegans gonad morphogenesis, the nucleus of the leading distal tip cell (DTC) is always found at the front, yet the significance of this localization is unknown. Here, we identified the molecular mechanism that keeps the nucleus at the front, despite a frictional force that pushes it backward. The Klarsicht/ANC-1/Syne homology (KASH) domain protein UNC-83 links the nucleus to the motor protein kinesin-1 that moves along a polarized acentrosomal microtubule network. Interestingly, disrupting nuclear positioning on its own did not affect gonad morphogenesis. However, reducing actomyosin contractility on top of nuclear mispositioning led to a dramatic phenotype: DTC splitting and gonad bifurcation. Long-term live imaging of the double knockdown revealed that, while the gonad attempted to perform a planned U-turn, the DTC was stretched due to the lagging nucleus until it fragmented into a nucleated cell and an enucleated cytoplast, each leading an independent gonadal arm. Remarkably, the enucleated cytoplast had polarity and invaded, but it could only temporarily support germ cell proliferation. Based on a qualitative biophysical model, we conclude that the leader cell employs two complementary mechanical approaches to preserve its integrity and ensure proper organ morphogenesis while navigating through a complex 3D environment: active nuclear positioning by microtubule motors and actomyosin-driven cortical contractility.


Asunto(s)
Actomiosina , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Núcleo Celular , Gónadas , Animales , Actomiosina/metabolismo , Gónadas/metabolismo , Gónadas/crecimiento & desarrollo , Caenorhabditis elegans/crecimiento & desarrollo , Caenorhabditis elegans/fisiología , Núcleo Celular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Microtúbulos/metabolismo , Morfogénesis , Cinesinas/metabolismo , Cinesinas/genética , Movimiento Celular
14.
Commun Biol ; 7(1): 661, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811803

RESUMEN

Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.


Asunto(s)
Hipocampo , Cinesinas , Microtúbulos , Neuritas , Cinesinas/metabolismo , Animales , Ratas , Neuritas/metabolismo , Microtúbulos/metabolismo , Hipocampo/metabolismo , Hipocampo/citología , Células Cultivadas
15.
Bioorg Chem ; 148: 107449, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759356

RESUMEN

Mitotic kinesin Eg5 isozyme as a motor protein plays a critical role in cell division of tumor cells. Kinesin Eg5 selective inhibitors and Colchicine binding site suppressors are essential targets for many anticancer drugs and radio chemotherapies. On this work, a new series of octahydroquinazoline as anti-mitotic candidates 2-13 has been synthesized with dual inhibition of tubulin polymerization/Eg5 against HCC cell line. All octahydroquinazolines have been in vitro assayed against HepG-2 cytotoxicity, Eg5 inhibitory and anti-tubulin polymerization activities. The most active analogues 7, 8, 9, 10, and 12 against HepG-2 were further subjected to in vitro cytotoxic assay against HCT-116 and MCF-7 cell lines. Chalcones 9, 10, and 12 displayed the most cytotoxic potency and anti-tubulin aggregation in comparable with reference standard colchicine and potential anti-mitotic Eg5 inhibitory activity in comparison with Monastrol as well. Besides, they exhibited cell cycle arrest at the G2/M phase. Moreover, good convinced apoptotic activities have been concluded as overexpression of caspase-3 levels and tumor suppressive gene p53 in parallel with higher induction of Bax and inhibition of Bcl-2 biomarkers. Octahydroquinazoline 10 displayed an increase in caspase-3 by 1.12 folds compared to standard colchicine and induce apoptosis and demonstrated cell cycle arrest in G2/M phase arrest by targeting p53 pathway. Analogue 10 has considerably promoted cytotoxic radiation activity and boosted apoptotic induction in HepG-2 cells by 1.5 fold higher than standard colchicine.


Asunto(s)
Antineoplásicos , Apoptosis , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Cinesinas , Polimerizacion , Quinazolinas , Moduladores de Tubulina , Tubulina (Proteína) , Humanos , Apoptosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Quinazolinas/farmacología , Quinazolinas/química , Quinazolinas/síntesis química , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/síntesis química , Moduladores de Tubulina/química , Cinesinas/antagonistas & inhibidores , Cinesinas/metabolismo , Polimerizacion/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/metabolismo
16.
Tissue Cell ; 88: 102389, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38714113

RESUMEN

Primary cilia have versatile functions, such as receiving signals from the extracellular microenvironment, mediating signaling transduction, and transporting ciliary substances, in tissue and organ development and clinical disease pathogenesis. During early development (embryos within 10 weeks) in the oral and maxillofacial region, defects in the structure and function of primary cilia can result in severe craniofacial malformations. For example, mice with mutations in the cilia-related genes Kif3a and IFT88 exhibit midline expansion and cleft lip/palate, which occur due to abnormalities in the fusion of the single frontonasal prominence and maxillary prominences. In the subsequent development of the oral and maxillofacial region, we discussed the regulatory role of primary cilia in the development of the maxilla, mandible, Meckel cartilage, condylar cartilage, lip, tongue, and tooth, among others. Moreover, primary cilia are promising regulators in some oral and maxillofacial diseases, such as tumors and malocclusion. We also summarize the regulatory mechanisms of primary cilia in oral and maxillofacial development and related diseases, including their role in various signaling transduction pathways. For example, aplasia of submandibular glands in the Kif3a mutant mice is associated with a decrease in SHH signaling within the glands. This review summarizes the similarities and specificities of the role of primary cilia in tissue and organ development and disease progression in the oral and maxillofacial region, which is expected to contribute several ideas for the treatment of primary cilia-related diseases.


Asunto(s)
Cilios , Cilios/metabolismo , Cilios/patología , Animales , Humanos , Desarrollo Maxilofacial/genética , Ratones , Transducción de Señal , Cinesinas/metabolismo , Cinesinas/genética
17.
Front Immunol ; 15: 1323410, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726004

RESUMEN

Background: Huntingtin-interacting protein-1 (HIP1) is a new arthritis severity gene implicated in the regulation of the invasive properties of rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS). These invasive properties of FLS strongly correlate with radiographic and histology damage in patients with RA and rodent models of arthritis. While HIP1 has several intracellular functions, little is known about its binding proteins, and identifying them has the potential to expand our understanding of its role in cell invasion and other disease-contributing phenotypes, and potentially identify new targets for therapy. Methods: FLS cell lines from arthritic DA (highly invasive) and from arthritis-protected congenic rats R6 (minimally invasive), which differ in an amino-acid changing HIP1 SNP, were cultured and lysed, and proteins were immunoprecipitated with an anti-HIP1 antibody. Immunoprecipitates were analyzed by mass spectrometry. Differentially detected (bound) proteins were selected for functional experiments using siRNA knockdown in human RA FLS to examine their effect in cell invasiveness, adhesion, cell migration and proliferation, and immunofluorescence microscopy. Results: Proteins detected included a few known HIP1-binding proteins and several new ones. Forty-five proteins differed in levels detected in the DA versus R6 congenic mass spectrometry analyses. Thirty-two of these proteins were knocked down and studied in vitro, with 10 inducing significant changes in RA FLS phenotypes. Specifically, knockdown of five HIP1-binding protein genes (CHMP4BL1, COPE, KIF1C, YWHAG, and YWHAH) significantly decreased FLS invasiveness. Knockdown of KIF1C also reduced RA FLS migration. The binding of four selected proteins to human HIP1 was confirmed. KIF1C colocalized with lamellipodia, and its knockdown prevented RA FLS from developing an elongated morphology with thick linearized actin fibers or forming polarized lamellipodia, all required for cell mobility and invasion. Unlike HIP1, KIF1C knockdown did not affect Rac1 signaling. Conclusion: We have identified new HIP1-binding proteins and demonstrate that 10 of them regulate key FLS phenotypes. These HIP1-binding proteins have the potential to become new therapeutic targets and help better understand the RA FLS pathogenic behavior. KIF1C knockdown recapitulated the morphologic changes previously seen in the absence of HIP1, but did not affect the same cell signaling pathway, suggesting involvement in the regulation of different processes.


Asunto(s)
Artritis Reumatoide , Proteínas de Unión al ADN , Fibroblastos , Cinesinas , Fenotipo , Sinoviocitos , Animales , Humanos , Ratas , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Reumatoide/genética , Movimiento Celular , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Fibroblastos/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Sinoviocitos/metabolismo , Sinoviocitos/patología
18.
PLoS Comput Biol ; 20(5): e1012158, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38768214

RESUMEN

The self-organization of cells relies on the profound complexity of protein-protein interactions. Challenges in directly observing these events have hindered progress toward understanding their diverse behaviors. One notable example is the interaction between molecular motors and cytoskeletal systems that combine to perform a variety of cellular functions. In this work, we leverage theory and experiments to identify and quantify the rate-limiting mechanism of the initial association between a cargo-bound kinesin motor and a microtubule track. Recent advances in optical tweezers provide binding times for several lengths of kinesin motors trapped at varying distances from a microtubule, empowering the investigation of competing models. We first explore a diffusion-limited model of binding. Through Brownian dynamics simulations and simulation-based inference, we find this simple diffusion model fails to explain the experimental binding times, but an extended model that accounts for the ADP state of the molecular motor agrees closely with the data, even under the scrutiny of penalizing for additional model complexity. We provide quantification of both kinetic rates and biophysical parameters underlying the proposed binding process. Our model suggests that a typical binding event is limited by ADP state rather than physical search. Lastly, we predict how these association rates can be modulated in distinct ways through variation of environmental concentrations and physical properties.


Asunto(s)
Cinesinas , Microtúbulos , Unión Proteica , Cinesinas/metabolismo , Cinesinas/química , Cinética , Microtúbulos/metabolismo , Microtúbulos/química , Biología Computacional , Adenosina Difosfato/metabolismo , Adenosina Difosfato/química , Simulación por Computador , Modelos Biológicos , Difusión
19.
Zhonghua Yu Fang Yi Xue Za Zhi ; 58(5): 665-672, 2024 May 06.
Artículo en Chino | MEDLINE | ID: mdl-38715507

RESUMEN

To investigate the expression of mRNA in esophageal cancer (ESCA) tissues and its potential and diagnostic and prognostic value by high-throughput sequencing data. Using the Cancer Genome Atlas Program (TCGA) database in USA by integrative bioinformatics analysis methods, the gene expression profiles and clinical data of 173 patients with ECSA were collected. The mRNA expression levels in ESCA tissue and para-cancerous tissue samples were analyzed using DESeq2, edgeR and limma to screen the differentially expressed genes (DEGs). DEGs-related protein network diagrams were drawn. GO and KEGG function enrichment analysis were performed and the hub genes were screened and the survival analysis of hub genes was analyzed. Genes related to the prognosis of ESCA were selected and their prognostic value in ESCA was analyzed. Finally, the receiver operating characteristic curve was drawn to evaluate its diagnostic value. The results showed that using TCGA cancer data, a total of 620 up-regulated DEGs and 668 down-regulated DEGs with significant differential expression between ESCA and para-cancerous tissues were screened. DEGs were mainly involved in receptor complexes, ubiquitin ligase complexes, etc., playing GTPase activity, phospholipid binding, and other molecular functions, and participating in the regulation of intracellular substance transport, small molecule metabolism, and other biological processes. Protein functional enrichment analysis showed that these proteins were mainly enriched in the IL-17 signaling pathway, TNF signaling pathway, Toll-like receptor signaling pathway, Epstein-Barr virus infection, neutrophil extracellular trap formation, and other pathways involved in the formation and development process of ESCA. Survival analysis showed that the overall survival rate of ESCA patients with high expression of KIF4A, RAD51AP1, and CDKN3 was significantly shortened, and the difference was statistically significant (P<0.05). Furthermore, the areas under the curve (AUC) of KIF4A, RAD51AP1, and CDKN3 for diagnosing esophageal cancer were 0.956, 0.951 and 0.979, respectively, with sensitivities and specificities both exceeding 80%. Additionally, ROC results of the combined diagnostic model of these three genes showed an AUC of 0.979, with sensitivities and specificities of 0.914 and 1, respectively. This indicates that KIF4A, RAD51AP1 and CDKN3 have individual or combined auxiliary diagnostic value for ESCA. In conclusion, KIF4A, RAD51AP1 and CDKN3 have high diagnostic efficiency for ESCA, and their increased expression is closely related to the prognosis, suggesting that these three genes could be used as auxiliary diagnostic and prognostic factors for ESCA.


Asunto(s)
Neoplasias Esofágicas , Cinesinas , Humanos , Pronóstico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Biología Computacional/métodos , Regulación Neoplásica de la Expresión Génica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Perfilación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Mapas de Interacción de Proteínas , Proteínas de Unión al ARN
20.
Sci Adv ; 10(22): eadn4490, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38820146

RESUMEN

In recent years, there has been a growing interest in engineering dynamic and autonomous systems with robotic functionalities using biomolecules. Specifically, the ability of molecular motors to convert chemical energy to mechanical forces and the programmability of DNA are regarded as promising components for these systems. However, current systems rely on the manual addition of external stimuli, limiting the potential for autonomous molecular systems. Here, we show that DNA-based cascade reactions can act as a molecular controller that drives the autonomous assembly and disassembly of DNA-functionalized microtubules propelled by kinesins. The DNA controller is designed to produce two different DNA strands that program the interaction between the microtubules. The gliding microtubules integrated with the controller autonomously assemble to bundle-like structures and disassemble into discrete filaments without external stimuli, which is observable by fluorescence microscopy. We believe this approach to be a starting point toward more autonomous behavior of motor protein-based multicomponent systems with robotic functionalities.


Asunto(s)
ADN , Cinesinas , Microtúbulos , Robótica , ADN/química , ADN/metabolismo , Microtúbulos/metabolismo , Microtúbulos/química , Cinesinas/metabolismo , Cinesinas/química , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...