Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
J Dent ; 145: 105033, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697505

RESUMEN

OBJECTIVES: This study aimed to enhance gingival fibroblast function and to achieve antibacterial activity around the implant abutment by using a zinc (Zn)-containing bioactive glass (BG) coating. METHODS: 45S5 BG containing 0, 5, and 10 wt.% Zn were coated on zirconia disks. The release of silica and Zn ions in physiological saline and their antibacterial effects were measured. The effects of BG coatings on human gingival fibroblasts (hGFs) were assessed using cytotoxicity assays and by analyzing the gene expression of various genes related to antioxidant enzymes, wound healing, and fibrosis. RESULTS: BG coatings are capable of continuous degradation and simultaneous ion release. The antibacterial effect of BG coatings increased with the addition of Zn, while the cytotoxicity remained unchanged compared to the group without coatings. BG coating enhances the expression of angiogenesis genes, while the Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CONCLUSIONS: The antibacterial effect of BG improved with the increase in Zn concentration, without inducing cytotoxicity. BG coating enhances the expression of angiogenesis genes, and Zn-containing BG enhances the expression of antioxidant genes at an early time point. BG coating enhances the expression of collagen genes at later time points. CLINICAL SIGNIFICANCE: Adding 10 wt% Zn to BG could enhance the environment around implant abutments by providing antibacterial, antioxidant, and anti-fibrotic effects, having potential for clinical use.


Asunto(s)
Antibacterianos , Cerámica , Pilares Dentales , Fibroblastos , Encía , Vidrio , Propiedades de Superficie , Zinc , Circonio , Circonio/farmacología , Circonio/química , Humanos , Zinc/farmacología , Fibroblastos/efectos de los fármacos , Antibacterianos/farmacología , Encía/citología , Encía/efectos de los fármacos , Vidrio/química , Cerámica/farmacología , Cerámica/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antioxidantes/farmacología , Ensayo de Materiales , Colágeno , Cicatrización de Heridas/efectos de los fármacos , Materiales Dentales/farmacología , Materiales Dentales/química , Células Cultivadas
2.
J Colloid Interface Sci ; 667: 491-502, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38653070

RESUMEN

An injectable hydrogel dressing, Zr/Fc-MOF@CuO2@FH, was constructed by combing acid-triggered chemodynamic treatment (CDT) with low-temperature photothermal treatment (LT-PTT) to effectively eliminate bacteria without harming the surrounding normal tissues. The Zr/Fc-MOF acts as both photothermal reagent and nanozyme to generate reactive oxygen species (ROS). The CuO2 nanolayer can be decomposed by the acidic microenvironment of the bacterial infection to release Cu2+ and H2O2, which not only induces Fenton-like reaction but also enhances the catalytic capability of the Zr/Fc-MOF. The generated heat augments ROS production, resulting in highly efficient bacterial elimination at low temperature. Precisely, injectable hydrogel dressing can match irregular wound sites, which shortens the distance of heat dissipation and ROS diffusion to bacteria, thus improving sterilization efficacy and decreasing non-specific systemic toxicity. Both in vitro and in vivo experiments validated the predominant sterilization efficiency of drug-resistant methicillin-resistant Staphylococcus aureus (MRSA) and kanamycin-resistant Escherichia coli (KREC), presenting great potential for application in clinical therapy.


Asunto(s)
Antibacterianos , Cobre , Terapia Fototérmica , Especies Reactivas de Oxígeno , Catálisis , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Animales , Ratones , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Circonio/química , Circonio/farmacología , Frío , Pruebas de Sensibilidad Microbiana , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/química , Tamaño de la Partícula , Propiedades de Superficie , Hidrogeles/química , Hidrogeles/farmacología
3.
ACS Appl Bio Mater ; 7(5): 2762-2780, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38629138

RESUMEN

In the present study, we have discussed the influence of forging temperature (623 K (FT623), 723 K (FT723) and 823 K (FT823)) on microstructure and texture evolution and its implication on mechanical behavior, in vitro-in vivo biocorrosion, antibacterial response, and cytocompatibility of microalloyed Mg-Zr-Sr-Ce alloy. Phase analysis, SEM, and TEM characterization confirm the presence of Mg12Ce precipitate, and its stability was further validated by performing ab initio molecular dynamic simulation study. FT723 exhibits strengthened basal texture, higher fraction of second phases, and particle-stimulated nucleation-assisted DRX grains compared to other two specimens, resulting in superior strength with comparable ductility. FT723 also exhibits superior corrosion resistance mainly due to the strengthened basal texture and lower dislocation density. All the specimens exhibit excellent antibacterial behavior with Gram-negative E. coli, Gram-positive Staphylococcus aureus, and Pseudomonas aeruginosa bacteria. 100% reduction of bacterial growth is observed within 24 h of culture of the specimens. Cytocompatibility was determined by challenging specimen extracts with the MC3T3-E1 cell lines. FT723 specimen exhibits the highest cell proliferation and alkaline phosphatase activity (ALP) because of its superior corrosion resistance. The ability of the specimens to be used in orthopedic implant application was evaluated by in vivo study in rabbit femur. Neither tissue-related infection nor the detrimental effect surrounding the implant was confirmed from histological analysis. Significant higher bone regeneration surrounding the FT723 specimen was observed in SEM analysis and fluorochrome labeling. After 60 days, the FT723 specimen exhibits the highest bone formation, suggesting it is a suitable candidate for orthopedic implant application.


Asunto(s)
Aleaciones , Antibacterianos , Materiales Biocompatibles , Ensayo de Materiales , Osteogénesis , Antibacterianos/farmacología , Antibacterianos/química , Aleaciones/química , Aleaciones/farmacología , Osteogénesis/efectos de los fármacos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratones , Circonio/química , Circonio/farmacología , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Diferenciación Celular/efectos de los fármacos , Conejos , Magnesio/química , Magnesio/farmacología , Escherichia coli/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Estroncio/química , Estroncio/farmacología , Simulación de Dinámica Molecular , Línea Celular , Temperatura
4.
Int Immunopharmacol ; 131: 111868, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38493692

RESUMEN

Mitochondrial injury, neuronal apoptosis and phenotypic transformation of macrophages are the main mechanisms of spinal cord injury. Based on the Prussian blue nanomase's strong ability to clear free radicals, the treatment of spinal cord injury with nano-zirconium (Pb-Zr) was carried out. The disease treatment strategy based on nanomaterials has excellent therapeutic effect, and Prussian blue analogs have good therapeutic properties, so the application prospects of Prussian blue analogs is broad. From the point of view of Prussian blue content, improving the presence of zirconium in the microenvironment significantly increased the activity of Prussian blue. Prussian Blue zirconium significantly improved lipopolysaccharide (LPS) and interferon (IFN-γ) induced neuronal cell (pc12 cells) and macrophage dysfunction by improving oxidative stress, inflammation, and apoptosis in the microenvironment. It can promote the recovery of motor function after spinal cord injury. In vivo experiments, it shows that Prussian blue zirconium can improve inflammation, apoptosis and oxidative stress of spinal cord tissue, promote regenerative therapy after spinal cord injury, and improve motor function. Moreover, it has been reported that high-priced Zr4+ cations can regulate the deposition and nucleation behavior of Zn2+ in high-performance zinc metal anodes. Therefore, we propose the hypothesis that Pb-Zr modulates Zn2+ be used to promote recovery from spinal cord injury. The results show that nanomaterial is beneficial in the treatment of spinal cord injury. This study provides a good prospect for the application of spinal cord injury treatment. It also provides an important feasibility for subsequent clinical conversions.


Asunto(s)
Ferrocianuros , Plomo , Traumatismos de la Médula Espinal , Ratas , Animales , Plomo/farmacología , Plomo/uso terapéutico , Circonio/uso terapéutico , Circonio/farmacología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Médula Espinal , Inflamación/tratamiento farmacológico , Zinc/uso terapéutico , Zinc/farmacología
5.
Dent Mater ; 40(4): 629-642, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369404

RESUMEN

OBJECTIVES: This study aims to produce by robocasting leucite/zirconia pieces with suitable mechanical and tribological performance, convenient aesthetics, and antibacterial properties to be used in dental crown replacement. METHODS: Leucite pastes reinforced with 12.5%, 25%, and 37.5% wt. ZrO2 nanoparticles were prepared and used to print samples that after sintering were characterized in terms of density, shrinkage, morphology, porosity, mechanical and tribological properties and translucency. A coating of silver diamine fluoride (SDF) and potassium iodide (KI) was applied over the most promising material. The material's antibacterial activity and cytotoxicity were assessed. RESULTS: It was found that the increase of ZrO2 reinforcement up to 25% enhanced both microhardness and fracture toughness of the sintered composite. However, for a superior content of ZrO2, the increase of the porosity negatively affected the mechanical behaviour of the composite. Moreover, the composite with 25% ZrO2 exhibited neglectable wear in chewing simulator tests and induced the lowest wear on the antagonist dental cusps. Although this composite exhibited lower translucency than human teeth, it was three times higher than the ZrO2 glazed material. Coating this composite material with SDF+KI conferred antibacterial properties without inducing cytotoxicity. SIGNIFICANCE: Robocasting of leucite reinforced with 25% ZrO2 led to best results. The obtained material revealed superior optical properties and tribomechanical behaviour compared to glazed ZrO2 (that is a common option in dental practice). Moreover, the application of SDF+KI coating impaired S. aureus proliferation, which anticipates its potential benefit for preventing pathogenic bacterial complications associated with prosthetic crown placement.


Asunto(s)
Silicatos de Aluminio , Cerámica , Staphylococcus aureus , Humanos , Ensayo de Materiales , Circonio/farmacología , Antibacterianos/farmacología , Impresión Tridimensional , Propiedades de Superficie
6.
Adv Healthc Mater ; 13(12): e2303975, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38235953

RESUMEN

Magnesium (Mg) alloys are widely used in bone fixation and bone repair as biodegradable bone-implant materials. However, their clinical application is limited due to their fast corrosion rate and poor mechanical stability. Here, the development of Mg-2Zn-0.5Ca-0.5Sr (MZCS) and Mg-2Zn-0.5Ca-0.5Zr (MZCZ) alloys with improved mechanical properties, corrosion resistance, cytocompatibility, osteogenesis performance, and antibacterial capability is reported. The hot-extruded (HE) MZCZ sample exhibits the highest ultimate tensile strength of 255.8 ± 2.4 MPa and the highest yield strength of 208.4 ± 2.8 MPa and an elongation of 15.7 ± 0.5%. The HE MZCS sample shows the highest corrosion resistance, with the lowest corrosion current density of 0.2 ± 0.1 µA cm-2 and the lowest corrosion rate of 4 ± 2 µm per year obtained from electrochemical testing, and a degradation rate of 368 µm per year and hydrogen evolution rate of 0.83 ± 0.03 mL cm-2 per day obtained from immersion testing. The MZCZ sample shows the highest cell viability in relation to MC3T3-E1 cells among all alloy extracts, indicating good cytocompatibility except at 25% concentration. Furthermore, the MZCZ alloy shows good antibacterial capability against Staphylococcus aureus.


Asunto(s)
Aleaciones , Antibacterianos , Magnesio , Ensayo de Materiales , Osteogénesis , Antibacterianos/farmacología , Antibacterianos/química , Aleaciones/química , Aleaciones/farmacología , Corrosión , Animales , Osteogénesis/efectos de los fármacos , Ratones , Magnesio/química , Magnesio/farmacología , Staphylococcus aureus/efectos de los fármacos , Implantes Absorbibles , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Zinc/química , Zinc/farmacología , Línea Celular , Estroncio/química , Estroncio/farmacología , Circonio/química , Circonio/farmacología
7.
ACS Appl Mater Interfaces ; 16(3): 3162-3170, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38194287

RESUMEN

In this work, a simple green synthesis method of the novel metal-organic framework (MOF) nanocomposite PCN-224/Au-NPs (Au-NPs = gold nanoparticles) is described. In this regard, initially, PCN-224 was synthesized. Afterward, in a single-step, one-pot procedure, under visible-light irradiation, Au-NPs were fabricated on PCN-224. The cytotoxicity effect of the synthesized PCN-224/Au-NPs nanocomposite was investigated in human colon cancer cells. Determination of the apoptosis induction was done by the Annexin- V/propidium iodide flow cytometry method. Besides, to ascertain the biocompatibility of the synthesized sample, the cytotoxicity of PCN-224/Au-NPs was evaluated on the human embryonic kidney (HEK)-293 cell line. The substantial anticancer activity with the biocompatibility of the structure, the green facile synthesis, and the MOF surface of the synthesized nanocomposite make it special for utilization in therapeutic applications.


Asunto(s)
Neoplasias Colorrectales , Nanopartículas del Metal , Estructuras Metalorgánicas , Humanos , Oro/farmacología , Oro/química , Circonio/farmacología , Circonio/química , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas del Metal/química , Células HEK293 , Neoplasias Colorrectales/tratamiento farmacológico
8.
J Prosthodont ; 33(1): 54-60, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36693242

RESUMEN

PURPOSE: The purpose of this study was to analyze the fibroblast growth and proliferation on 3D-printed zirconia in presence and absence of porosities. MATERIAL AND METHODS: A total of 40 bars (8 × 4 × 3) were included in this study. Thirty 3D-printed and 10 milled zirconia samples were prepared. The 3D-printed samples had different porosities, 0% (PZ0), 20% (PZ20), and 40% (PZ40) with 10 specimens in each group. Milled zirconia samples were used as the control (MZ). Rat gingival fibroblasts were cultured for 48 h, and the proliferation of fibroblasts on each sample in each group (n = 10) was determined by MTT assays. The differences among the four groups were compared by one-way ANOVA. To test the significance of the observed differences between two groups, an unpaired Student's t-test was applied. The significance level was set at p < 0.05. Qualitative analysis for the cell culture was performed using scanning electron microscopy. RESULTS: One-way ANOVA showed that the numbers of the fibroblasts among the four groups had a statistical difference. Post hoc Bonferroni test revealed that there was no significant difference between PZ0 and MZ; however, all other groups and among groups were significantly different. CONCLUSIONS: Fibroblasts had a better affinity toward the MZ and PZ0 in a short period of cell culture time.


Asunto(s)
Fibroblastos , Circonio , Animales , Ratas , Circonio/farmacología , Impresión Tridimensional , Ensayo de Materiales
9.
Dent Mater ; 40(1): 37-43, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37880068

RESUMEN

OBJECTIVES: To evaluate the mechanical and antimicrobial properties of boron-containing coating on translucent zirconia (5Y-PSZ). METHODS: 5Y-PSZ discs (Control) were coated with a glaze (Glaze), silver- (AgCoat), or boron-containing (BCoat) glasses. The coatings' antimicrobial potential was characterized using S. mutans biofilms after 48 h via viable colony-forming units (CFU), metabolic activity (CV) assays, and quantification of extracellular polysaccharide matrix (EPS). Biofilm architectures were imaged under scanning electron and confocal laser scanning microscopies (SEM and CLSM). The cytocompatibility was determined at 24 h via WST-1 and LIVE&DEAD assays using periodontal ligament stem cells (PDLSCs). The coatings' effects on properties were characterized by Vickers hardness, biaxial bending tests, and fractography analysis. Statistical analyses were performed via one-way ANOVA, Tukey's tests, Weibull analysis, and Pearson's correlation analysis. RESULTS: BCoat significantly decreased biofilm formation, having the lowest CFU and metabolic activity compared with the other groups. BCoat and AgCoat presented the lowest EPS, followed by Glaze and Control. SEM and CLSM images revealed that the biofilms on BCoat were thin and sparse, with lower biovolume. In contrast, the other groups yielded robust biofilms with higher biovolume. The cytocompatibility was similar in all groups. BCoat, AgCoat, and Glaze also presented similar hardness and were significantly lower than Control. BCoat had the highest flexural strength, characteristic strength and Weibull parameters (σF: 625 MPa; σ0: 620 MPa; m = 11.5), followed by AgCoat (σF: 464 MPa; σ0: 478 MPa; m = 5.3). SIGNIFICANCE: BCoat is a cytocompatible coating with promising antimicrobial properties that can improve the mechanical properties and reliability of 5Y-PSZ.


Asunto(s)
Antiinfecciosos , Cerámica , Ensayo de Materiales , Boro/farmacología , Reproducibilidad de los Resultados , Circonio/farmacología , Propiedades de Superficie
10.
ACS Appl Bio Mater ; 6(12): 5470-5480, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37983256

RESUMEN

Under alkaline treatment, zirconyl chloride (ZrOCl2.8H2O) became a zirconia gel and formed a stable complex with beta-cyclodextrin (ßCD). This complex was highly active in reactive oxygen species (ROS) formation via H2O2 decomposition. Its surface with numerous hydroxyl groups acts as an ionic sponge to capture the charged reaction intermediates, including superoxide (O2-•) and the hydroxyl radical (•OH). ROS, especially •OH radicals, are harmful to living microorganisms because of their kinetic instability, high oxidation potential, and chemical nonselectivity. Therefore, •OH radicals can engage in fast reactions with virtually any adjacent biomolecule. With H2O2, the complex with cationic and hydrophobic moieties interacted with the anionic bacterial membrane of two Gram-positive (Staphylococcus aureus and S. epidermidis) and two Gram-negative (Escherichia coli and Klebsiella pneumoniae) strains. The Zr-ßCD-H2O2 also eradicated more than 99% of the biofilm of these four pathogens. Considering the difficult acquisition of resistance to the oxidation of •OH, the results suggested that this ßCD-based nanomaterial might be a promising agent to target both drug-resistant pathogens with no cytotoxicity and exceptional antimicrobial activity.


Asunto(s)
Nanoestructuras , beta-Ciclodextrinas , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno , Circonio/farmacología , Biopelículas , beta-Ciclodextrinas/farmacología
11.
Colloids Surf B Biointerfaces ; 232: 113576, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37862951

RESUMEN

Preventing bacterial development on surfaces is essential to avoid problems caused by biofouling. Surfaces decorated with gold nanoparticles have been shown to thermally kill bacteria under high-intensity NIR illumination. In this study, we evaluated the colonization by E. coli of nanostructured surfaces composed of mesoporous zirconia thin films, both with and without gold nanoparticles embedded into the pores. We studied the effect of the nanostructure and of low intensity visible light excitation of the gold nanoparticles on the colonization process. We found that neither the zirconia, nor the presence of pores, or even gold nanoparticles affect bacterial adhesion compared to the bare glass substrate. Therefore, mesoporous zirconia thin films are biologically inert scaffolds that enable the construction of robust surfaces containing functional nanoparticles that can affect bacterial growth. When the gold containing surfaces are irradiated with light, bacterial adhesion shows a remarkable 96 ± 4% reduction. Our studies revealed that these surfaces affect early colonization steps, prior to biofilm formation, preventing bacterial adhesion without affecting its viability. In contrast to related systems where plasmonic excitation induces membrane damage due to strong local heating, the membrane integrity is preserved, showing that these surfaces have a different working principle.


Asunto(s)
Adhesión Bacteriana , Nanopartículas del Metal , Oro/farmacología , Oro/química , Escherichia coli , Circonio/farmacología
12.
Colloids Surf B Biointerfaces ; 230: 113484, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37540946

RESUMEN

Poor osteogenesis caused by limited bioactivity and peri-implantitis caused by bacterial colonization are the main challenges affecting the use of zirconia-based materials in dental implants. Accordingly, the development of a surface treatment method with an antibacterial effect and that promotes osteogenesis without damage to cells is crucial for yttrium-stabilized tetragonal zirconia (Y-TZP) implants. Herein, we have developed a functional surface modification strategy whereby a poly (ethylene imine)/hyaluronic acid /chitosan-chlorogenic acid (PEI/HA/CGA-CS) conjugate is deposited on a zirconia surface by the layer-by-layer (LBL) technique, enhancing its osteogenic differentiation and antibacterial activities. The results showed that the PEI/HA/CGA-CS coating improved the wettability of the zirconia surface and maintained stable release of CGA. The PEI/HA/CGA-CS functional coating was found to promote early cell adhesion, proliferation, differentiation, and calcification. The results of bacterial adhesion and activity tests showed that the coating effectively inhibits the proliferation and activity of Porphyromonas gingivalis (P. gingivalis) and Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) without impairing the biological activity of osteoblasts. In addition, we found that the PEI/HA/CGA-CS coating enhances the osteogenesis of MC3T3-E1 cells by promoting the protein expression of Nephronectin (NPNT) and activating the Wnt/ß-catenin signaling pathway. The above results are of profound significance for the practical application of zirconia-based implants. DATA AVAILABILITY: Data will be made available on request.


Asunto(s)
Quitosano , Quitosano/farmacología , Propiedades de Superficie , Osteogénesis , Ácido Clorogénico/farmacología , Circonio/farmacología , Diferenciación Celular , Antibacterianos/farmacología , Titanio/farmacología
13.
Acta Biomater ; 168: 540-550, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37393970

RESUMEN

Although inactivated vaccines have higher safety than live-attenuated vaccines in the control of pseudorabies virus (PRV), their protection efficacy is limited due to insufficient immunogenicity when used alone. High-performance adjuvants that can potentiate immune responses are highly desirable to improve the protection efficacy of inactivated vaccines. In this work, we have developed U@PAA-Car, a Carbopol dispersed zirconium-based metal-organic framework UIO-66 modified by polyacrylic acid (PAA), as a promising adjuvant for inactivated PRV vaccines. The U@PAA-Car has good biocompatibility, high colloidal stability, and antigen (vaccine) loading capacity. It significantly potentiates humoral and cellular immune responses over either U@PAA, Carbopol, or commercial adjuvants such as Alum and biphasic 201 by inducing a higher specific antibody titer, IgG2a/IgG1 ratio, cell cytokine secretion, and splenocyte proliferation. A protection rate of over 90% was observed in challenge tests in the model animal mice and the host animal pigs, which is much higher than that observed with commercial adjuvants. The high performance of the U@PAA-Car is attributed to antigen sustainable release at the injection site and highly efficient antigen internalization and presentation. In conclusion, this work not only demonstrates a great potential of the developed U@PAA-Car nano-adjuvant for the inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism. STATEMENT OF SIGNIFICANCE: We have developed a Carbopol dispersed PAA-modified zirconium-based metal-organic framework UIO-66 (U@PAA-Car) as a promising combination nano-adjuvant for the inactivated PRV vaccine. The U@PAA-Car induced higher specific antibody titers and IgG2a/IgG1 ratio, increased cell cytokines secretion, and better splenocyte proliferation than U@PAA, Carbopol, and the commercial adjuvants Alum and biphasic 201, indicating that it induces a significant potentiation of humoral and cellular immune response. In addition, much higher protection rates were achieved with the U@PAA-Car-adjuvanted PRV vaccine in mice and pigs challenge than those observed from the commercial adjuvant groups. This work not only demonstrates the great potential of the U@PAA-Car nano-adjuvant in an inactivated PRV vaccine but also gives a preliminary explanation of its action mechanism.


Asunto(s)
Herpesvirus Suido 1 , Estructuras Metalorgánicas , Seudorrabia , Animales , Porcinos , Ratones , Seudorrabia/prevención & control , Circonio/farmacología , Adyuvantes Inmunológicos/farmacología , Inmunidad Celular , Citocinas , Inmunoglobulina G , Vacunas de Productos Inactivados
14.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445749

RESUMEN

Implantology is crucial for restoring aesthetics and masticatory function in oral rehabilitation. Despite its advantages, certain issues, such as bacterial infection, may still arise that hinder osseointegration and result in implant rejection. This work aims to address these challenges by developing a biomaterial for dental implant coating based on 45S5 Bioglass® modified by zirconium insertion. The structural characterization of the glasses, by XRD, showed that the introduction of zirconium in the Bioglass network at a concentration higher than 2 mol% promotes phase separation, with crystal phase formation. Impedance spectroscopy was used, in the frequency range of 102-106 Hz and the temperature range of 200-400 K, to investigate the electrical properties of these Bioglasses, due to their ability to store electrical charges and therefore enhance the osseointegration capacity. The electrical study showed that the presence of crystal phases, in the glass ceramic with 8 mol% of zirconium, led to a significant increase in conductivity. In terms of biological properties, the Bioglasses exhibited an antibacterial effect against Gram-positive and Gram-negative bacteria and did not show cytotoxicity for the Saos-2 cell line at extract concentrations up to 25 mg/mL. Furthermore, the results of the bioactivity test revealed that within 24 h, a CaP-rich layer began to form on the surface of all the samples. According to our results, the incorporation of 2 mol% of ZrO2 into the Bioglass significantly improves its potential as a coating material for dental implants, enhancing both its antibacterial and osteointegration properties.


Asunto(s)
Implantes Dentales , Circonio/farmacología , Circonio/química , Antibacterianos , Bacterias Gramnegativas , Bacterias Grampositivas , Cerámica/farmacología , Cerámica/química , Vidrio/química , Propiedades de Superficie
15.
Acta Crystallogr C Struct Chem ; 79(Pt 8): 316-323, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466222

RESUMEN

A new zirconium(IV) complex, diaquabis(8-hydroxyquinoline-2-carboxylato-κ3N,O2,O8)zirconium(IV) dimethylformamide disolvate, [Zr(C10H5NO3)2(H2O)2]·2C3H7NO or [Zr(QCa)2(H2O)2]·2DMF (1) (HQCaH is 8-hydroxyquinoline-2-carboxylic acid and DMF is dimethylformamide), was prepared and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray structure analysis. Complex 1 is a mononuclear complex in which the ZrIV atoms sit on the twofold axis and they are octacoordinated by two N and six O atoms of two tridentate anionic QCa2- ligands, and two aqua ligands. Outside the coordination sphere are two DMF molecules bound to the complex unit by hydrogen bonds. The structure and stability of complex 1 in dimethyl sulfoxide were verified by NMR spectroscopy. The cytotoxic properties of 1 and HQCaH were studied in vitro against eight cancer cell lines, and their selectivity was tested on the BJ-5ta noncancerous cell line. Both the complex and HQCaH exhibited low activity, with IC50 > 200 µM. DNA and human serum albumin (HSA) binding studies showed that 1 binds to calf thymus (CT) DNA via intercalation and is able to bind to the tryptophan binding site of HSA (Trp-214).


Asunto(s)
Complejos de Coordinación , Circonio , Humanos , Circonio/farmacología , Complejos de Coordinación/química , Ligandos , Albúmina Sérica Humana , Dimetilformamida , Cristalografía por Rayos X , Enlace de Hidrógeno , Oxiquinolina/farmacología , ADN/química
16.
J Biomed Mater Res B Appl Biomater ; 111(11): 1883-1889, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37289176

RESUMEN

Zirconia materials have been increasingly used in implant rehabilitation due to their excellent physical and esthetic properties. Stable peri-implant epithelial tissue adhesion to the transmucosal implant abutment may significantly enhance the efficacy of implant long-term stability. However, it is difficult to form stable chemical or biological bindings with peri-implant epithelial tissue due to the strong biological inertia of zirconia materials. In the present study, we investigated whether calcium hydrothermal treatment of zirconia promotes sealing of peri-implant epithelial tissue. In vitro experiments were performed to analyze the effects of calcium hydrothermal treatment on zirconia surface morphology and composition by scanning electron microscopy and energy dispersive spectrometry. Immunofluorescence staining of adherent proteins, namely, F-actin and integrin ß1, in human gingival fibroblast line (HGF-l) cells was performed. In the calcium hydrothermal treatment group, there was higher expression of these adherent proteins and increased HGF-l cell proliferation. An in vivo study was conducted by extracting the maxillary right first molars of rats and replacing them with mini-zirconia abutment implants. The calcium hydrothermal treatment group showed better attachment at the zirconia abutment surface, which inhibited horseradish peroxidase penetration at 2 weeks post-implantation. These results demonstrated that calcium hydrothermal treatment of zirconia improves the seal between the implant abutment and surrounding epithelial tissues, potentially increasing the long-term stability of the implant.


Asunto(s)
Calcio , Implantes Dentales , Humanos , Ratas , Animales , Encía , Circonio/farmacología , Circonio/química , Fibroblastos , Titanio/química , Propiedades de Superficie , Diseño de Implante Dental-Pilar
17.
J Biomed Mater Res B Appl Biomater ; 111(10): 1824-1839, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37255008

RESUMEN

Although yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramics have been widely used as restorative materials due to their high mechanical strength, unique esthetic effect, and good biocompatibility, their general application to implant materials is still limited by their biological inertness and hydrothermal aging phenomenon. Existing studies have attempted to investigate how to enhance the bioactivity or hydrothermal aging resistance of Y-TZP. Still, more studies need to be done on the modification that combines these two aspects. In this study, Y-TZP was prepared by 77S bioactive glass (BG) sol and akermanite (AKT) sol infiltration and microwave sintering, which provided Y-TZP with high bioactivity while maintaining resistance to hydrothermal aging. Results of phase composition evaluation, microstructural characteristics, and mechanical property tests showed that modified Y-TZP specimens exhibited little or no tetragonal-to-monoclinic (t → m) transformation and maintained relatively high mechanical properties after accelerated hydrothermal aging treatment. The in vitro biological behaviors showed that the introduction of 77S BG and AKT significantly promoted cell adhesion, spreading, viability, and proliferation on the surface of modified Y-TZP ceramics. Therefore, this modification could effectively enhance the bioactivity and hydrothermal aging resistance of Y-TZP ceramics for its application in dental implant materials.


Asunto(s)
Implantes Dentales , Proteínas Proto-Oncogénicas c-akt , Ensayo de Materiales , Propiedades de Superficie , Circonio/farmacología , Circonio/química , Itrio/química , Cerámica/farmacología , Cerámica/química , Materiales Dentales
18.
Int J Biol Macromol ; 242(Pt 3): 124820, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37178890

RESUMEN

Bone tissue is a natural composite, exhibiting complicated structures and unique mechanical/biological properties. With an attempt of mimicking the bone tissue, a novel inorganic-organic composite scaffolds (ZrO2-GM/SA) was designed and prepared via the vacuum infiltration method and the single/double cross-linking strategy by blending GelMA/alginate (GelMA/SA) interpenetrating polymeric network (IPN) into the porous zirconia (ZrO2) scaffold. The structure, morphology, compressive strength, surface/interface properties, and biocompatibility of the ZrO2-GM/SA composite scaffolds were characterized to evaluate the performance of the composite scaffolds. Results showed that compared to ZrO2 bare scaffolds with well-defined open pores, the composite scaffolds prepared by double cross-linking of GelMA hydrogel and sodium alginate (SA) presented a continuous, tunable and honeycomb-like microstructure. Meanwhile, GelMA/SA showed favorable and controllable water-uptake capacity, swelling property and degradability. After the introduction of IPN components, the mechanical strength of composite scaffolds was further improved. The compressive modulus of composite scaffolds was significantly higher than the bare ZrO2 scaffolds. In addition, ZrO2-GM/SA composite scaffolds had highly biocompatibility and displayed a potent proliferation and osteogenesis of MC3T3-E1 pre-osteoblasts compared to bare ZrO2 scaffolds and ZrO2-GelMA composite scaffolds. At the same time, ZrO2-10GM/1SA composite scaffold regenerated significantly greater bone than other groups in vivo. This study demonstrated that the proposed ZrO2-GM/SA composite scaffolds had great research and application potential in bone tissue engineering.


Asunto(s)
Alginatos , Regeneración Ósea , Hidrogeles , Osteogénesis , Andamios del Tejido , Circonio , Hidrogeles/química , Hidrogeles/farmacología , Circonio/química , Circonio/farmacología , Polímeros/química , Polímeros/farmacología , Porosidad , Alginatos/química , Alginatos/farmacología , Regeneración Ósea/efectos de los fármacos , Animales , Ratones , Células 3T3 , Osteogénesis/efectos de los fármacos
19.
Sci Rep ; 13(1): 6773, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37101002

RESUMEN

The infections leading to failed implants can be controlled mainly by metal and metal oxide-based nanoparticles. In this work, the randomly distributed AgNPs-doped onto hydroxyapatite-based surfaces were produced on zirconium by micro arc oxidation (MAO) and electrochemical deposition processes. The surfaces were characterized by XRD, SEM, EDX mapping and EDX area and contact angle goniometer. AgNPs-doped MAO surfaces, which is beneficial for bone tissue growth exhibited hydrophilic behaviors. The bioactivity of the AgNPs-doped MAO surfaces is improved compared to bare Zr substrate under SBF conditions. Importantly, the AgNPs-doped MAO surfaces exhibited antimicrobial activity for E. coli and S. aureus compared to control samples.


Asunto(s)
Durapatita , Nanopartículas del Metal , Staphylococcus aureus , Circonio/farmacología , Circonio/química , Plata/farmacología , Plata/química , Nanopartículas del Metal/química , Escherichia coli , Antibacterianos/química
20.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769100

RESUMEN

Due to their chemical, mechanical, and optical properties, 2D ultrathin nanomaterials have significant potential in biomedicine. However, the cytotoxicity of such materials, including their mutual increase or decrease, is still not well understood. We studied the effects that graphene oxide (GO) nanolayers (with dimensions 0.1-3 µm and average individual flake thickness less than 1 nm) and ZrS3 nanoribbons (length more than 10 µm, width 0.4-3 µm, and thickness 50-120 nm) have on the viability, cell cycle, and cell death of HCT116 colon carcinoma cells. We found that ZrS3 exhibited strong cytotoxicity by causing apoptotic cell death, which was in contrast to GO. When adding GO to ZrS3, ZrS3 was significantly less toxic, which may be because GO inhibits the effects of cytotoxic hydrogen sulfide produced by ZrS3. Thus, using zirconium trisulfide nanoribbons as an example, we have demonstrated the ability of graphene oxide to reduce the cytotoxicity of another nanomaterial, which may be of practical importance in biomedicine, including the development of biocompatible nanocoatings for scaffolds, theranostic nanostructures, and others.


Asunto(s)
Carcinoma , Grafito , Nanoestructuras , Nanotubos de Carbono , Humanos , Circonio/farmacología , Nanoestructuras/química , Grafito/farmacología , Grafito/química , Colon
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA