RESUMEN
BACKGROUND: The ectoparasite Psoroptes ovis var. cuniculi causes substantial economic losses to the global rabbit industry. Currently, microscopy for identifying Psoroptes mite in skin scrapings, as the "diagnosis gold standard," remains a challenge owing to its poor sensitivity in detecting low-level and/or early stage mite infestations. Additionally, Psoroptes infestations rapidly trigger cutaneous inflammation, thus the mites might produce some molecules to deal with the harmful effects of inflammation for their long-time survival on the host skin, but these molecules are still mostly unknown. METHODS: To seek a sensitive diagnostic method and illuminate the new antiinflammatory molecules, we characterized a novel cystatin of P. ovis var. cuniculi (PsoCys) using bioinformatics and molecular biology methods. RESULTS: The results showed that PsoCys comprised the classical features of the type II cystatin superfamily including an N-terminal glycine residue, a central QXVXG motif, and a C-terminal LW motif. In mixed stages of mites, the transcription level of PsoCys was significantly higher in "fed" mites than in "starved" mites (P < 0.001), and among the different life-cycle stages of "fed" mites, the expression of PsoCys was higher in adult males than in larva, nymph, and adult females (P < 0.001). The established indirect ELISA based on recombinant PsoCys (rPsoCys-iELISA) presented 95.4% sensitivity and 95.7% specificity. The area under the receiver operating characteristic curve (AUC) for this method was 0.991, indicating its excellent diagnostic performance. Moreover, rPsoCys-iELISA had advantages over microscopy for detecting low-level and/or early stage mite infestations (90% versus 40% in artificial infestation cases at 3 weeks post-infestation; 61.9% versus 22.6% in clinical cases). In addition, rPsoCys could inhibit the activity of papain and cathepsin B in vitro, and significantly suppressed mRNA levels of toll-like receptors (TLR 1, 2, 4, and 6) and downstream molecules (NF-κB, p38, MyD88, IL-10, and IFN-γ) in LPS-stimulated rabbit PBMCs, indicating its anti-inflammatory property. CONCLUSIONS: Our findings indicated that PsoCys was a novel type II cystatin of Psoroptes mites, and it served as a potential serological diagnostic antigen for detecting low-level and/or early stage mite infestations, as well as a novel anti-inflammatory molecule of Psoroptes mites.
Asunto(s)
Cistatinas , Leucocitos Mononucleares , Infestaciones por Ácaros , Psoroptidae , Animales , Conejos , Psoroptidae/inmunología , Cistatinas/genética , Cistatinas/inmunología , Infestaciones por Ácaros/veterinaria , Infestaciones por Ácaros/diagnóstico , Infestaciones por Ácaros/inmunología , Leucocitos Mononucleares/inmunología , Pruebas Serológicas/métodos , Pruebas Serológicas/veterinaria , Antiinflamatorios , FemeninoRESUMEN
The Trichinella spiralis novel cystatin (TsCstN) inhibits cathepsin L (CatL) activity and inflammation of macrophages during lipopolysaccharide (LPS) induction. To identify the protease inhibitory region, this study applied an in silico modeling approach to simulate truncation sites of TsCstN (Ts01), which created four truncated forms, including TsCstN∆1-39 (Ts02), TsCstN∆1-71 (Ts03), TsCstN∆1-20, ∆73-117 (Ts04), and TsCstN∆1-20, ∆42-117 (Ts05). The superimposition of these truncates modeled with AlphaFold Colab indicated that their structures were more akin to Ts01 than those modeled with I-TASSER. Moreover, Ts04 exhibited the closest resemblance to the structure of Ts01. The recombinant Ts01 (rTs01) and truncated proteins (rTs02, rTs03, and rTs04) were successfully expressed in a prokaryotic expression system while Ts05 was synthesized, with sizes of approximately 14, 12, 8, 10, and 2.5 kDa, respectively. When determining the inhibition of CatL activity, both rTs01 and rTs04 effectively reduced CatL activity in vitro. Thus, the combination of the α1 and L1 regions may be sufficient to inhibit CatL. This study provides comprehensive insights into TsCstN, particularly regarding its protein function and inhibitory domains against CatL.
Asunto(s)
Cistatinas , Trichinella spiralis , Trichinella spiralis/genética , Trichinella spiralis/metabolismo , Animales , Cistatinas/metabolismo , Cistatinas/química , Cistatinas/genética , Catepsina L/metabolismo , Proteínas del Helminto/química , Proteínas del Helminto/metabolismo , Proteínas del Helminto/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Modelos Moleculares , Dominios Proteicos , Ratones , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Lipopolisacáridos/farmacologíaRESUMEN
Currently, the primary strategy for tick control relies on chemical agents. Pyrethrins, which are botanically derived compounds, have demonstrated efficacy in controlling ticks without posing a risk to human or animal health. However, research into pyrethrins' metabolic mechanisms remains sparse. Cystatin, as a reversible binding inhibitor of cysteine protease, may be involved in the initiation of pyrethrin detoxification of Haemaphysalis doenitzi. In this study, two novel cystatins were cloned, HDcyst-3 and HDcyst-4, the relative expression of which was highest in the Malpighian tubules compared with the tick midguts, salivary glands, and ovaries. Prokaryotic expression and in vitro studies revealed that cystatins effectively inhibit the enzymatic activities of cathepsins B and S. RNAi results showed that the reduction of cystatins significantly decreased the engorgement weight, egg mass weight, and egg hatching rate of adult female ticks, and prolonged feeding time by two days. The control rate of rHDcyst-3 and rHDcyst-4 protein vaccination against female adults were 55.9% and 63.2%, respectively. In addition, the tick immersion test showed that cypermethrin and λ-cyhalothrin had significant acaricidal effects against adult unfed H. doenitzi. The qPCR result indicated that compared with the control group, the expression of HDcyst-3 and HDcyst-4 was markedly decreased in the sublethal cypermethrin and λ-cyhalothrin group at LC50. Enzyme activity showed that cypermethrin and λ-cyhalothrin could significantly induce the activities of glutathione S-transferase (GST), carboxylesterase (CarE), and acetylcholinesterase (AchE). The aforementioned results provided indirect evidence that cystatin plays an important role in pyrethrin detoxification and provides a theoretical basis for future acaricide experiments and pest management.
Asunto(s)
Cistatinas , Nitrilos , Piretrinas , Piretrinas/farmacología , Animales , Nitrilos/farmacología , Cistatinas/metabolismo , Cistatinas/genética , Femenino , Ixodidae/efectos de los fármacos , Ixodidae/genética , Ixodidae/metabolismo , Acaricidas/farmacología , Resistencia a MedicamentosRESUMEN
Cystatin F (CstF) is a protease inhibitor of cysteine cathepsins, including those involved in activating the perforin/granzyme cytotoxic pathways. It is targeted at the endolysosomal pathway but can also be secreted to the extracellular milieu or endocytosed by bystander cells. CstF was shown to be significantly increased in tuberculous pleurisy, and during HIV coinfection, pleural fluids display high viral loads. In human macrophages, our previous results revealed a strong upregulation of CstF in phagocytes activated by interferon γ or after infection with Mycobacterium tuberculosis (Mtb). CstF manipulation using RNA silencing led to increased proteolytic activity of lysosomal cathepsins, improving Mtb intracellular killing. In the present work, we investigate the impact of CstF depletion in macrophages during the coinfection of Mtb-infected phagocytes with lymphocytes infected with HIV. The results indicate that decreasing the CstF released by phagocytes increases the major pro-granzyme convertase cathepsin C of cytotoxic immune cells from peripheral blood-derived lymphocytes. Consequently, an observed augmentation of the granzyme B cytolytic activity leads to a significant reduction in viral replication in HIV-infected CD4+ T-lymphocytes. Ultimately, this knowledge can be crucial for developing new therapeutic approaches to control both pathogens based on manipulating CstF.
Asunto(s)
Catepsina C , Coinfección , Granzimas , Infecciones por VIH , Macrófagos , Mycobacterium tuberculosis , Humanos , Granzimas/metabolismo , Granzimas/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Macrófagos/virología , Coinfección/microbiología , Catepsina C/metabolismo , Catepsina C/genética , Cistatinas/metabolismo , Cistatinas/genética , Tuberculosis/metabolismo , Tuberculosis/inmunología , Tuberculosis/microbiología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , VIH-1/fisiología , Biomarcadores de TumorRESUMEN
Cystatins play an important role in various physiological and pathological processes of organisms, including regulating protein metabolism, antigen processing, inflammatory response, nutritional disorders, and controlling enzyme activity. However, research on immunity functions of fish cystatin M is limited. In this study, Pampus argenteus cystatin M (Pacystatin M) was identified and analyzed. Its amino acid sequence was highly conserved in teleosts, and included the conserved cystatin cysteine protease inhibitor motifs. Pacystatin M was highly expressed in the gill, spleen, and intestine, whereas the expression levels of liver and kidney were lower. Furthermore, Nocardia seriolae infection up-regulated the expression of Pacystatin M in the kidney, spleen and liver, with particularly significant expression observed in the liver on day 15 post-infection. Functional analysis indicated that the recombinant Pacystatin M showed increasing inhibitory activity against papain within a certain concentration range, suggesting that the inhibition was likely competitive. Additionally, Pacystatin M demonstrated the ability to inhibit bacterial growth and high thermal stability. These results suggested that Pacystatin M might be involved in the immune response to microbial invasion and provided new reference addressing disease issues in the large-scale farming of silver pomfret.
Asunto(s)
Secuencia de Aminoácidos , Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Inmunidad Innata , Nocardia , Perciformes , Alineación de Secuencia , Animales , Enfermedades de los Peces/inmunología , Cistatinas/genética , Cistatinas/inmunología , Cistatinas/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/química , Inmunidad Innata/genética , Perciformes/inmunología , Perciformes/genética , Nocardia/inmunología , Nocardiosis/inmunología , Nocardiosis/veterinaria , Filogenia , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinariaRESUMEN
Cystatins are well known as a vast superfamily of functional proteins participated in the reversible competitive inhibition of cysteine proteases. Currently, increasing evidences point to the extensive phylogenetic diversity and crucial immune roles of type-2 cystatins in the vertebrate species. However, no information is available regarding the homologue in cephalochordate amphioxus, the representative of most basal living chordates, whose immune regulation are still ambiguous. Here, we clearly identified the presence of type-2 cystatin gene in amphioxus Branchiostoma japonicum, termed Bjcystatin-2, which was structurally characterized by typical wedge-shaped cystatin feature. Evolutionary analyses revealed that Bjcystatin-2 is the putative ancestral type-2 cystatin for chordates, with gene diversity emerging through duplication events. The expression of Bjcystatin-2 showed tissue-specific profile and was inducible upon invasive pathogens. Significantly, the recombinant Bjcystatin-2 exhibited not merely cathepsin L inhibitory activity, but also the ability to bind with bacteria and their characteristic molecules. Furthermore, Bjcystatin-2 also showed the capacity to enhance the macrophage-driven bacterial phagocytosis and to attenuate the generation of pro-inflammatory cytokines within macrophages. In summary, these findings demonstrate that Bjcystatin-2 exhibits dual role acting as both a protease inhibitor and an immunoactive molecule, greatly enriching our understanding of immune defense mechanisms of type-2 cystatin within the amphioxus.
Asunto(s)
Secuencia de Aminoácidos , Cistatinas , Anfioxos , Filogenia , Animales , Cistatinas/genética , Cistatinas/química , Cistatinas/metabolismo , Anfioxos/genética , Fagocitosis , Evolución Molecular , Macrófagos/metabolismo , Macrófagos/inmunología , RatonesRESUMEN
BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.
Asunto(s)
Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Macrófagos , Vibrio , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/metabolismo , Vibrio/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética , FN-kappa B/metabolismo , Clonación Molecular/métodos , Regulación de la Expresión GénicaRESUMEN
BACKGROUND: Cystatin F is a secreted lysosomal cysteine protease inhibitor that has been implicated in affecting the severity of demyelination and enhancing remyelination in pre-clinical models of immune-mediated demyelination. How cystatin F impacts neurologic disease severity following viral infection of the central nervous system (CNS) has not been well characterized and was the focus of this study. We used cystatin F null-mutant mice (Cst7-/-) with a well-established model of murine coronavirus-induced neurologic disease to evaluate the contributions of cystatin F in host defense, demyelination and remyelination. METHODS: Wildtype controls and Cst7-/- mice were intracranially (i.c.) infected with a sublethal dose of the neurotropic JHM strain of mouse hepatitis virus (JHMV), with disease progression and survival monitored daily. Viral plaque assays and qPCR were used to assess viral levels in CNS. Immune cell infiltration into the CNS and immune cell activation were determined by flow cytometry and 10X genomics chromium 3' single cell RNA sequencing (scRNA-seq). Spinal cord demyelination was determined by luxol fast blue (LFB) and Hematoxylin/Eosin (H&E) staining and axonal damage assessed by immunohistochemical staining for SMI-32. Remyelination was evaluated by electron microscopy (EM) and calculation of g-ratios. RESULTS: JHMV-infected Cst7-/- mice were able to control viral replication within the CNS, indicating that cystatin F is not essential for an effective Th1 anti-viral immune response. Infiltration of T cells into the spinal cords of JHMV-infected Cst7-/- mice was increased compared to infected controls, and this correlated with increased axonal damage and demyelination associated with impaired remyelination. Single-cell RNA-seq of CD45 + cells enriched from spinal cords of infected Cst7-/- and control mice revealed enhanced expression of transcripts encoding T cell chemoattractants, Cxcl9 and Cxcl10, combined with elevated expression of interferon-g (Ifng) and perforin (Prf1) transcripts in CD8 + T cells from Cst7-/- mice compared to controls. CONCLUSIONS: Cystatin F is not required for immune-mediated control of JHMV replication within the CNS. However, JHMV-infected Cst7-/- mice exhibited more severe clinical disease associated with increased demyelination and impaired remyelination. The increase in disease severity was associated with elevated expression of T cell chemoattractant chemokines, concurrent with increased neuroinflammation. These findings support the idea that cystatin F influences expression of proinflammatory gene expression impacting neuroinflammation, T cell activation and/or glia cell responses ultimately impacting neuroinflammation and neurologic disease.
Asunto(s)
Infecciones por Coronavirus , Cistatinas , Enfermedades Desmielinizantes , Ratones Noqueados , Virus de la Hepatitis Murina , Animales , Ratones , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/virología , Enfermedades Desmielinizantes/inmunología , Virus de la Hepatitis Murina/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Infecciones por Coronavirus/inmunología , Infecciones por Coronavirus/patología , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/patología , Enfermedades Neuroinflamatorias/metabolismoRESUMEN
BACKGROUND: Understanding the molecular mechanisms of Alzheimer's disease (AD) has important clinical implications for guiding therapy. Impaired amyloid beta (Aß) clearance is critical in the pathogenesis of sporadic AD, and blood monocytes play an important role in Aß clearance in the periphery. However, the mechanism underlying the defective phagocytosis of Aß by monocytes in AD remains unclear. METHODS: Initially, we collected whole blood samples from sporadic AD patients and isolated the monocytes for RNA sequencing analysis. By establishing APP/PS1 transgenic model mice with monocyte-specific cystatin F overexpression, we assessed the influence of monocyte-derived cystatin F on AD development. We further used a nondenaturing gel to identify the structure of the secreted cystatin F in plasma. Flow cytometry, enzyme-linked immunosorbent assays and laser scanning confocal microscopy were used to analyse the internalization of Aß by monocytes. Pull down assays, bimolecular fluorescence complementation assays and total internal reflection fluorescence microscopy were used to determine the interactions and potential interactional amino acids between the cystatin F protein and Aß. Finally, the cystatin F protein was purified and injected via the tail vein into 5XFAD mice to assess AD pathology. RESULTS: Our results demonstrated that the expression of the cystatin F protein was specifically increased in the monocytes of AD patients. Monocyte-derived cystatin F increased Aß deposition and exacerbated cognitive deficits in APP/PS1 mice. Furthermore, secreted cystatin F in the plasma of AD patients has a dimeric structure that is closely related to clinical signs of AD. Moreover, we noted that the cystatin F dimer blocks the phagocytosis of Aß by monocytes. Mechanistically, the cystatin F dimer physically interacts with Aß to inhibit its recognition and internalization by monocytes through certain amino acid interactions between the cystatin F dimer and Aß. We found that high levels of the cystatin F dimer protein in blood contributed to amyloid pathology and cognitive deficits as a risk factor in 5XFAD mice. CONCLUSIONS: Our findings highlight that the cystatin F dimer plays a crucial role in regulating Aß metabolism via its peripheral clearance pathway, providing us with a potential biomarker for diagnosis and potential target for therapeutic intervention.
Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Monocitos , Anciano , Anciano de 80 o más Años , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/patología , Cistatinas/metabolismo , Cistatinas/genética , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/metabolismoRESUMEN
BACKGROUND: Ticks, which are obligate blood-feeding parasites, transmit a wide range of pathogens during their hematophagic process. Certain enzymes and macromolecules play a crucial role in inhibition of several tick physiological processes, including digestion and reproduction. In the present study, genes encoding type 2 cystatin were cloned and characterized from Haemaphysalis doenitzi, and the potential role of cystatin in tick control was further assessed. RESULTS: Two cystatin genes, HDcyst-1 and HDcyst-2, were successfully cloned from the tick H. doenitzi. Their open reading frames are 390 and 426 base pairs, and the number of coding amino acids are 129 and 141, respectively. In the midgut, salivary glands, Malpighian tubules and ovaries of ticks, the relative expression of HDcyst-1 was higher in the midgut and Malpighian tubules, and HDcyst-2 was higher in the salivary glands of H. doenitzi, respectively. Lipopolysaccharide (LPS) injection and low-temperature stress elevated cystatin expression in ticks. Enzyme-linked immunosorbent assay showed that both rHDcyst-1 and rHDcyst-2 protein vaccines increased antibody levels in immunized rabbits. A vaccination trial in rabbits infected with H. doenitzi showed that both recombinant cystatin proteins significantly reduced tick engorgement weights and egg mass weight, in particular, rHDcyst-1 significantly prolonged tick engorgement time by 1 day and reduced egg hatching rates by 16.9%. In total, rHDcyst-1 and rHDcyst-2 protein vaccinations provided 64.1% and 51.8% protection to adult female ticks, respectively. CONCLUSION: This is the first report on the immunological characterization of the cystatin protein and sequencing of the cystatin gene in H. doenitzi. Cystatin proteins are promising antigens that have the potential to be used as vaccines for infestation of H. doenitzi control. © 2024 Society of Chemical Industry.
Asunto(s)
Proteínas de Artrópodos , Frío , Cistatinas , Ixodidae , Vacunas , Animales , Cistatinas/genética , Conejos , Femenino , Vacunas/inmunología , Ixodidae/inmunología , Ixodidae/fisiología , Ixodidae/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Proteínas de Artrópodos/inmunología , Estrés Fisiológico , Lipopolisacáridos/farmacología , Secuencia de AminoácidosRESUMEN
Cystatins comprise a vast superfamily of evolutionary conserved proteins, predominantly recognized for their roles as endogenous inhibitors by regulating the activity of cysteine proteases. Emerging lines of research evidence also provides insight into their alternative roles in a spectrum of biological and pathological processes, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. Nowadays, various type-1 cystatins (stefins) have been demonstrated among a variety of discovered vertebrate groups, while little is known about the related homologue in cephalochordate amphioxus, which are repositioned at the base of the chordate phylum. In the present study, a single type-1 cystatin homologue in Branchiostoma japonicum was first successfully cloned and designated as Bjcystatin-1. The deduced Bjcystatin-1 protein is structurally characterized by the presence of typical wedge-shaped cystatin features, including the 'QxVxG' and 'Px' motif, as well as the conserved N-terminal glycine residue. Phylogenomic analyses utilizing different cystatin counterparts affirmed the close evolutionary relationship of Bjcystatin-1 and type-1 cystatin homologue. Bjcystatin-1 was predominantly expressed in the gills and hind-gut in a tissue-specific pattern, and its expression was remarkably up-regulated in response to challenge with bacteria or their signature molecules LPS and LTA, suggesting the involvement in immune response. Additionally, the recombinant Bjcystatin-1 (rBjcystatin-1) protein showed significant inhibitory activity towards papain and binding ability to LPS and LTA, indicating its hypothesized role as a pattern recognition receptor in immune response. Subcellular localization results also showed that Bjcystatin-1 was located in the cytoplasm and nucleus, and its overexpression could attenuate the activation of LPS-induced nuclear transcription factors NF-κB. Taken together, our study suggests that amphioxus Bjcystatin-1 acts as a dual role in protease inhibitor and an immunocompetent factor, providing new insights into the immune defense effect of type-1 cystatin in amphioxus.
Asunto(s)
Cistatinas , Anfioxos , Animales , Lipopolisacáridos , Cistatinas/genética , Evolución Biológica , Factores de TranscripciónRESUMEN
Progressive myoclonic epilepsy type 1 (EPM1) is an autosomal recessive disorder caused by mutations in the cystatin B gene (CSTB). Affected individual's manifest stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. In this study, we have generated iPSCs from an EPM1 patient's skin fibroblasts with Sendai virus mediated transgene delivery. The iPSCs retained the patient specific promoter region expansion mutation, expressed pluripotency markers, differentiated into all three germ layers, and presented a normal karyotype. The line can in future be used to develop an in-vitro model for EPM1 and may help in understanding disease mechanisms at cellular and molecular level.
Asunto(s)
Cistatinas , Células Madre Pluripotentes Inducidas , Epilepsias Mioclónicas Progresivas , Síndrome de Unverricht-Lundborg , Humanos , Cistatina B , Cistatinas/genética , Cistatinas/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Síndrome de Unverricht-Lundborg/genética , Epilepsias Mioclónicas Progresivas/genéticaRESUMEN
Subolesin is a conserved molecule in both hard and soft ticks and is considered as an effective candidate molecule for the development of anti-tick vaccine. Previous studies have reported the role of subolesin in blood feeding, reproduction, development, and gene expression in hard ticks. However, studies addressing the role of subolesin in soft ticks are limited. In this study, we report that subolesin is not only important in soft tick Ornithodoros turicata americanus blood feeding but also in the regulation of innate immune gene expression in these ticks. We identified and characterized several putative innate immune genes including Toll, Lysozyme precursor (Lp), fibrinogen-domain containing protein (FDP), cystatin and ML-domain containing protein (MLD) in O. turicata americanus ticks. Quantitative real-time polymerase chain reaction analysis revealed the expression of these genes in both O. turicata americanus salivary glands and midgut and in all developmental stages of these soft ticks. Significantly increased expression of fdp was noted in salivary glands and midgut upon O. turicata americanus blood feeding. Furthermore, RNAi-mediated knockdown of O. turicata americanus subolesin expression affected blood feeding and innate immune gene expression in these ticks. Significant downregulation of toll, lp, fdp, cystatin, and mld transcripts was evident in sub-dsRNA-treated ticks when compared to the levels noted in mock-dsRNA-treated control. Collectively, our study not only reports identification and characterization of various innate immune genes in O. turicata americanus ticks but also provides evidence on the role of subolesin in blood feeding and innate immune gene expression in these medically important ticks.
Asunto(s)
Argasidae , Cistatinas , Ornithodoros , Vacunas , Animales , Ornithodoros/genética , Vacunas/genética , Expresión Génica , Cistatinas/genética , Inmunidad InnataRESUMEN
BACKGROUND: Accumulating evidence indicates that type II cystatin (CST) genes play a pivotal role in several tumor pathological processes, thereby affecting all stages of tumorigenesis and tumor development. However, the prognostic and predictive value of type II CST genes in GC has not yet been investigated. METHODS: The present study evaluated the expression and prognostic value of type II CST genes in GC by using The Cancer Genome Atlas (TCGA) database and the Kaplan-Meier plotter (KM plotter) online database. The type II CST genes related to the prognosis of GC were then screened out. We then validated the expression and prognostic value of these genes by immunohistochemistry. We also used Database for Annotation, Visualization, and Integrated Discovery (DAVID), Gene Multiple Association Network Integration Algorithm (GeneMANIA), Search Tool for the Retrieval of Interacting Genes/Proteins (STRING), nomogram, genome-wide co-expression analysis, and other bioinformatics tools to analyze the value of type II CST genes in GC and the underlying mechanism. RESULTS: The data from the TCGA database and the KM plotter online database showed that high expression of CST2 and CST4 was associated with the overall survival (OS) of patients with GC. The immunohistochemical expression analysis showed that patients with high expression of CST4 in GC tissues have a shorter OS than those with low expression of CST4 (HR = 1.85,95%CI: 1.13-3.03, P = 0.015). Multivariate Cox regression analysis confirmed that the high expression level of CST4 was an independent prognostic risk factor for OS. CONCLUSIONS: Our findings suggest that CST4 could serve as a tumor marker that affects the prognosis of GC and could be considered as a potential therapeutic target for GC.
Asunto(s)
Cistatinas , Neoplasias Gástricas , Humanos , Pronóstico , Neoplasias Gástricas/patología , Redes Reguladoras de Genes , Nomogramas , Cistatinas/genéticaRESUMEN
Cysteine proteases orchestrate bone remodeling, and are inhibited by cystatins. In reinforcing our hypothesis that exogenous and naturally obtained inhibitors of cysteine proteases (cystatins) act on bone remodeling, we decided to challenge osteoblasts with sugarcane-derived cystatin (CaneCPI-5) for up to 7 days. To this end, we investigated molecular issues related to the decisive, preliminary stages of osteoblast biology, such as adhesion, migration, proliferation, and differentiation. Our data showed that CaneCPI-5 negatively modulates both cofilin phosphorylation at Ser03, and the increase in cytoskeleton remodeling during the adhesion mechanism, possibly as a prerequisite to controlling cell proliferation and migration. This is mainly because CaneCPI-5 also caused the overexpression of the CDK2 gene, and greater migration of osteoblasts. Extracellular matrix remodeling was also evaluated in this study by investigating matrix metalloproteinase (MMP) activities. Our data showed that CaneCPI-5 overstimulates both MMP-2 and MMP-9 activities, and suggested that this cellular event could be related to osteoblast differentiation. Additionally, differentiation mechanisms were better evaluated by investigating Osterix and alkaline phosphatase (ALP) genes, and bone morphogenetic protein (BMP) signaling members. Altogether, our data showed that CaneCPI-5 can trigger biological mechanisms related to osteoblast differentiation, and broaden the perspectives for better exploring biotechnological approaches for bone disorders.
Asunto(s)
Cistatinas , Proteasas de Cisteína , Saccharum , Osteogénesis/genética , Saccharum/genética , Diferenciación Celular/genética , Cistatinas/genética , Cistatinas/farmacología , Cistatinas/metabolismo , Factores de Transcripción/metabolismo , Proteasas de Cisteína/metabolismo , Osteoblastos , Proteína Morfogenética Ósea 2/metabolismoRESUMEN
Fasciolosis is a worldwide parasitic disease of ruminants and an emerging human disease caused by the liver fluke Fasciola hepatica. The cystatin superfamily of cysteine protease inhibitors is composed of distinct families of intracellular stefins and secreted true cystatins. FhCyLS-2 from F. hepatica is an unusual member of the superfamily, where our sequence and 3D structure analyses in this study revealed that it combines characteristics of both families. The protein architecture demonstrates its relationship to stefins, but FhCyLS-2 also contains the secretion signal peptide and disulfide bridges typical of true cystatins. The secretion status was confirmed by detecting the presence of FhCyLS-2 in excretory/secretory products, supported by immunolocalization. Our high-resolution crystal structure of FhCyLS-2 showed a distinct disulfide bridging pattern and functional reactive center. We determined that FhCyLS-2 is a broad specificity inhibitor of cysteine cathepsins from both the host and F. hepatica, suggesting a dual role in the regulation of exogenous and endogenous proteolysis. Based on phylogenetic analysis that identified several FhCyLS-2 homologues in liver/intestinal foodborne flukes, we propose a new group within the cystatin superfamily called cystatin-like stefins.
Asunto(s)
Cistatinas , Fasciola hepatica , Animales , Secuencia de Aminoácidos , Cistatinas/genética , Cistatinas/química , Disulfuros , Fasciola hepatica/genética , Filogenia , Proteínas del Helminto/química , Proteínas del Helminto/genéticaRESUMEN
Phytocystatins are a type of proteinase inhibitor which are extensively studied for their specific inhibitory action against cysteine protease enzymes (CP) of insects and pathogens. Oryzacystatins (OC), a phytocystatin from rice inhibits CP in a reversible manner with its conserved tripartite wedge. OCs have important role in plant innate defense mechanism through phytohormonal signalling pathways. OC are induced in response to both biotic and abiotic stress conditions and are used to develop transgenic plants exhibiting resistance against stress conditions. In this review, we focus on the structure and mechanism of action of oryzacystatins, their possible role in plant physiology, biotic and abiotic stress tolerance mechanism in plants and their potential application strategies for future crop management studies.
Asunto(s)
Cistatinas , Proteasas de Cisteína , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Estrés FisiológicoRESUMEN
BACKGROUND: Sepsis is a life-threateningorgandysfunction caused by the cytokine storm induced by the severe bacterial infection. Excessive inflammatory responses are responsible for the lethal organ damage during the early stage of sepsis. Helminth infection and helminth-derived proteins have been identified to have the ability to immunomodulate the host immune system by reducing inflammation against inflammatory diseases. Trichinella spiralis cystatin (Ts-Cys) is a cysteine protease inhibitor with strong immunomodulatory functions on host immune system. Our previous studies have shown that excretory-secretory proteins of T. spiralis reduced sepsis-induced inflammation and Ts-Cys was able to inhibit macrophages to produce inflammatory cytokines. Whether Ts-Cys has a therapeutic effect on polymicrobial sepsis and related immunological mechanism are not yet known. METHODS: Sepsis was induced in BALB/c mice using cecal ligation and puncture (CLP), followed by intraperitoneal injection of 15 µg recombinant Ts-Cys (rTs-Cys). The therapeutic effect of rTs-Cys on sepsis was evaluated by observing the 72-hour survival rates of CLP-induced septic mice and the acute injury of lung and kidney through measuring the wet/dry weight ratio of lung, the levels of blood urea nitrogen (BUN) and creatinine (Cr) in sera and the tissue section pathology. The potential underlying mechanism was investigated using mouse bone marrow-derived macrophages (BMDMs) by observing the effect of rTs-Cys on LPS-stimulated macrophage polarization. The expression of genes associated with macrophage polarization in BMDMs and tissues of septic mice was measured by Western Blotting and qPCR. RESULTS: In this study, we demonstrated the treatment with rTs-Cys alleviated CLP-induced sepsis in mice with significantly reduced pathological injury in vital organs of lung and kidney and reduced mortality of septic mice. The further study identified that treatment with rTs-Cys promoted macrophage polarization from classically activated macrophage (M1) to alternatively activated macrophage (M2) phenotype via inhibiting TLR2/MyD88 signal pathway and increasing expression of mannose receptor (MR), inhibited pro-inflammatory cytokines (TNF-α, IL-6 and IL-1ß) and increased regulatory anti-inflammatory cytokines (IL-10 and TGF-ß) in sera and tissues (lung and kidney) of mice with polymicrobial sepsis. CONCLUSIONS: Our results demonstrated that rTs-Cys had a therapeutic effect on sepsis through activating regulatory macrophages possibly via suppressing TLR2/MyD88 signal pathway. We also identified that rTs-Cys-induced M2 macrophage differentiation was associated with increased expression of MR on the surface of macrophages. Our results underscored the importance of MR in regulating macrophages during the treatment with rTs-Cys, providing another immunological mechanism in which helminths and their derived proteins modulate the host immune system. The findings in this study suggest that rTs-Cys is a potential therapeutic agent for the prevention and treatment of sepsis and other inflammatory diseases.
Asunto(s)
Cistatinas , Sepsis , Trichinella spiralis , Animales , Cistatinas/genética , Cistatinas/metabolismo , Cistatinas/uso terapéutico , Citocinas/metabolismo , Proteínas del Helminto , Inflamación , Macrófagos , Ratones , Factor 88 de Diferenciación Mieloide/metabolismo , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Receptor Toll-Like 2/metabolismoRESUMEN
The regulation of protease activity is a critical factor for the physiological balance during plant growth and development. Among the proteins involved in controlling protease activity are the cystatins, well-described inhibitors of cysteine proteases present in viruses, bacteria and most Eukaryotes. Plant cystatins, commonly called phytocystatins, display unique structural and functional diversity and are classified according to their molecular weight as type-I, -II, and -III. Their gene structure is highly conserved across Viridiplantae and provides insights into their evolutionary relationships. Many type-I phytocystatins with introns share sequence similarities with type-II phytocystatins. New data shows that they could have originated from recent losses of the carboxy-terminal extension present in type-II phytocystatins. Intronless type-I phytocystatins originated from a single event shared by flowering plants. Pieces of evidence show multiple events of gene duplications, intron losses, and gains throughout the expansion and diversity of the phytocystatin family. Gene duplication events in Gymnosperms and Eudicots resulted in inhibitors with amino acid substitutions that may modify their interaction with target proteases and other proteins. This review brings a phylogenomic analysis of plant cystatin evolution and contributes to a broader understanding of their origins. A complete functional genomic analysis among phytocystatins and their roles in plant development and responses to abiotic and biotic stresses remains a question to be fully solved.
Asunto(s)
Cistatinas , Cistatinas/química , Cistatinas/genética , Cistatinas/metabolismo , Inhibidores de Cisteína Proteinasa/química , Duplicación de Gen , Péptido Hidrolasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo , Estrés FisiológicoRESUMEN
Cystatin, a cysteine protease inhibitor found in many parasites, plays important roles in immune evasion. This study analyzed the molecular characteristics of a cystatin from Fasciola hepatica (FhCystatin) and expressed recombinant FhCystatin (rFhcystatin) to investigate the immune modulatory effects on lipopolysaccharide-induced proliferation, migration, cytokine secretion, nitric oxide (NO) production, and apoptosis in mouse macrophages. The FhCystatin gene encoded 116 amino acids and contained a conserved cystatin-like domain. rFhCystatin significantly inhibited the activity of cathepsin B. rFhCystatin bound to the surface of mouse RAW264.7 cells, significantly inhibited cell proliferation and promoted apoptosis. Moreover, rFhCystatin inhibited the expression of cellular nitric oxide, interleukin-6, and tumor necrosis factor-α, and promoted the expression of transforming growth factor-ß and interleukin-10. These results showed that FhCystatin played an important role in regulating the activity of mouse macrophages. Our findings provide new insights into mechanisms underlying the immune evasion and contribute to the exploration of potential targets for the development of new drug to control F. hepatica infection.