Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
1.
Front Immunol ; 15: 1373224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633264

RESUMEN

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Cistinosis , Enfermedades Renales , Animales , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Cistinosis/patología , Riñón/patología , Enfermedades Renales/patología , ARN Mensajero , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Ratones
2.
Am J Physiol Renal Physiol ; 326(6): F981-F987, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545650

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the CTNS gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs. In the kidney, the disease initially manifests as a generalized dysfunction in the proximal tubules (also called renal Fanconi syndrome). MFSD12 is a lysosomal cysteine importer that directly affects the cystine levels in melanoma cells, HEK293T cells, and cystinosis patient-derived fibroblasts. In this study, we aimed to evaluate MFSD12 mRNA levels in cystinosis patient-derived proximal tubular epithelial cells (ciPTECs) and to study the effect of MFSD12 knockout on cystine levels. We showed similar MFSD12 mRNA expression in patient-derived ciPTECs in comparison with the control cells. CRISPR MFSD12 knockout in a patient-derived ciPTEC (CTNSΔ57kb) resulted in significantly reduced cystine levels. Furthermore, we evaluated proximal tubular reabsorption after injection of mfsd12a translation-blocking morpholino (TB MO) in a ctns-/- zebrafish model. This resulted in decreased cystine levels but caused a concentration-dependent increase in embryo dysmorphism. Furthermore, the mfsd12a TB MO injection did not improve proximal tubular reabsorption or megalin expression. In conclusion, MFSD12 mRNA depletion reduced cystine levels in both tested models without improvement of the proximal tubular function in the ctns-/- zebrafish embryo. In addition, the apparent toxicity of higher mfsd12a TB MO concentrations on the zebrafish development warrants further evaluation.NEW & NOTEWORTHY In this study, we show that MFSD12 depletion with either CRISPR/Cas9-mediated gene editing or a translation-blocking morpholino significantly reduced cystine levels in cystinosis ciPTECs and ctns-/- zebrafish embryos, respectively. However, we observed no improvement in the proximal tubular reabsorption of dextran in the ctns-/- zebrafish embryos injected with mfsd12a translation-blocking morpholino. Furthermore, a negative effect of the mfsd12a morpholino on the zebrafish development warrants further investigation.


Asunto(s)
Cistina , Cistinosis , Modelos Animales de Enfermedad , Túbulos Renales Proximales , Pez Cebra , Animales , Pez Cebra/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Cistinosis/metabolismo , Cistinosis/genética , Cistinosis/patología , Humanos , Cistina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Epiteliales/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas CRISPR-Cas
3.
Lab Invest ; 104(1): 100287, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37949358

RESUMEN

Cystinosis is an autosomal recessive disease caused by mutations in the CTNS gene encoding a protein called cystinosine, which is a lysosomal cystine transporter. Disease-causing mutations lead to accumulation of cystine crystals in the lysosomes, thereby causing dysfunction of vital organs. Determination of the increased leukocyte cystine level is one of the most used methods for diagnosis. However, this method is expensive, difficult to perform, and may yield different results in different laboratories. In this study, a disease model was created with CTNS gene-silenced HK2 cells, which can mimic cystinosis in cell culture, and multiomics methods (ie, proteomics, metabolomics, and fluxomics) were implemented at this cell culture to investigate new biomarkers for the diagnosis. CTNS-silenced cell line exhibited distinct metabolic profiles compared with the control cell line. Pathway analysis highlighted significant alterations in various metabolic pathways, including alanine, aspartate, and glutamate metabolism; glutathione metabolism; aminoacyl-tRNA biosynthesis; arginine and proline metabolism; beta-alanine metabolism; ascorbate and aldarate metabolism; and histidine metabolism upon CTNS silencing. Fluxomics analysis revealed increased cycle rates of Krebs cycle intermediates such as fumarate, malate, and citrate, accompanied by enhanced activation of inorganic phosphate and ATP production. Furthermore, proteomic analysis unveiled differential expression levels of key proteins involved in crucial cellular processes. Notably, peptidyl-prolyl cis-trans isomerase A, translation elongation factor 1-beta (EF-1beta), and 60S acidic ribosomal protein decreased in CTNS-silenced cells. Additionally, levels of P0 and tubulin α-1A chain were reduced, whereas levels of 40S ribosomal protein S8 and Midasin increased. Overall, our study, through the utilization of an in vitro cystinosis model and comprehensive multiomics approach, led to the way toward the identification of potential new biomarkers while offering valuable insights into the pathogenesis of cystinosis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Cistinosis/metabolismo , Cistina/genética , Cistina/metabolismo , Proteómica , Biomarcadores , Silenciador del Gen , ARN Interferente Pequeño/genética , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
4.
Clin Genet ; 105(3): 323-328, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38009794

RESUMEN

Cystinosis is a severe, monogenic systemic disease caused by variants in CTNS gene. Currently, there is growing evidence that exonic variants in many diseases can affect pre-mRNA splicing. The impact of CTNS gene exonic variants on splicing regulation may be underestimated due to the lack of routine studies at the RNA level. Here, we analyzed 59 exonic variants in the CTNS gene using bioinformatics tools and identified candidate variants that may induce splicing alterations by minigene assays. We identified six exonic variants that induce splicing alterations by disrupting the ratio of exonic splicing enhancers/exonic splicing silencers (ESEs/ESSs) or by interfering with the recognition of classical splice sites, or both. Our results help in the correct molecular characterization of variants in cystinosis and inform emerging therapies. Furthermore, our work suggests that the combination of in silico and in vitro assays facilitates to assess the effects of DNA variants driving rare genetic diseases on splicing regulation and will enhance the clinical utility of variant functional annotation.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Empalme del ARN/genética , Exones/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN , Empalme Alternativo , Sitios de Empalme de ARN , Sistemas de Transporte de Aminoácidos Neutros/genética
5.
J Neurol Sci ; 456: 122841, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38101161

RESUMEN

Nephropathic cystinosis is a rare autosomal recessive storage disorder caused by CTNS gene mutations, leading to autophagy-lysosomal pathway impairment and cystine crystals accumulation. Neurologic involvement is highly variable and includes both neurodevelopmental and neurodegenerative disturbances, as well as focal neurologic deficits. By presenting longitudinal data of a 28-year-old patient with a large infratentorial lesion, we summarized the pathology, clinical and imaging features of neurological involvement in cystinosis patients. Brain damage in form of cystinosis-related cerebral lesions occurs in advanced disease phases and is characterized by the accumulation of cystine crystals, subsequent inflammation with vasculitis-like features, necrosis, and calcification. Epilepsy is a frequent comorbidity in affected individuals. Steroids might play a role in the symptomatic treatment of "stroke-like" episodes due to edematous-inflammatory lesions, but probably do not change the overall prognosis. Lifelong compliance to depleting therapy with cysteamine still represents the main therapeutic option. However, consequences of CTNS gene defects are not restricted to cystine accumulation. New evidence of four-repeat (4R-) Tau immunoreactivity suggests concurrent progressive neurodegeneration in cystinosis patients, highlighting the need of innovative therapeutic strategies, and shedding light on the crosstalk between proteinopathies and autophagy-lysosomal system defects. Eventually, emerging easily accessible biomarkers such as serum neurofilament light chains (NfL) might detect subclinical neurologic involvement in cystinosis patients.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Adulto , Cistinosis/complicaciones , Cistinosis/genética , Cistinosis/tratamiento farmacológico , Cistina/metabolismo , Cistina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Cisteamina/uso terapéutico , Inflamación/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
6.
Pediatr Nephrol ; 39(8): 2283-2292, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38127152

RESUMEN

Cystinosis is a rare autosomal recessive disease with an incidence 1 per 100,000-200,000 live births. It is caused by pathogenic variants of the cystinosin (CTNS) gene that lead to impaired cystine transport from lysosomes to cystosol, resulting in cystine accumulation in lysosomes and subsequent cellular dysfunction. The initial manifestation, cystine accumulation in proximal tubular cells (PTCs), causes renal Fanconi syndrome, which presents with proximal renal tubular acidosis and generalized dysfunction of the proximal tubule, including the presence of polyuria, glycosuria, phosphaturia, aminoaciduria, tubular proteinuria, growth retardation, and rickets. Eventually, glomerular involvement, glomerular proteinuria, focal segmental glomerulosclerosis (FSGS), and progression to kidney failure occur. Although the kidneys are the first organs affected, and play a key role in morbidity and mortality, extrarenal multiorgan involvement can occur in patients with cystinosis, which is seen not only in adults but in early ages in untreated patients, patients with insufficient treatment, and in those that don't comply with treatment. The treatment of cystinosis consists of supportive treatment for Fanconi syndrome, and specific lifelong cystine-depleting therapy using oral cysteamine. There is strong evidence that as early as possible, initiation and ongoing appropriate therapy with cysteamine are essential for delaying the progression to kidney failure, end-organ damage, and extrarenal involvement. The present review aimed to evaluate the extra renal complications of cystinosis.


Asunto(s)
Cistinosis , Síndrome de Fanconi , Humanos , Cistinosis/complicaciones , Cistinosis/genética , Síndrome de Fanconi/etiología , Síndrome de Fanconi/complicaciones , Cisteamina/uso terapéutico , Depletores de Cistina/uso terapéutico , Sistemas de Transporte de Aminoácidos Neutros/genética
7.
Orphanet J Rare Dis ; 18(1): 389, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38087330

RESUMEN

BACKGROUND: Cystinosis, a rare lysosomal storage disease caused by mutations in the CTNS gene, is characterized by cystine crystallization and accumulation within multiple tissues, including kidney and brain. Its impact on neural function appears mild relative to its effects on other organs during early disease, but since therapeutic advances have led to substantially increased life expectancy, neurological implications are of increasing interest, necessitating deeper understanding of the impact of cystinosis on neurocognitive function. Behavioral difficulties have been reported in cystinosis in the visual domain. Very little is known, however, about how the brains of people living with cystinosis process visual information. This is especially interesting given that cystine accumulation in the cornea and posterior ocular structures is a hallmark of cystinosis. METHODS: Here, high-density scalp electrophysiology was recorded to visual stimuli (during a Go/No-Go task) to investigate visual processing in individuals with cystinosis, compared to age-matched controls. Analyses focused on early stages of cortical visual processing. RESULTS: The groups differed in their initial cortical response, with individuals with cystinosis exhibiting a significantly larger visual evoked potential (VEP) in the 130-150 ms time window. The groups also differed in the associations between neural responses and verbal abilities: While controls with higher IQ scores presented larger neural responses, that relationship was not observed in cystinosis. CONCLUSIONS: The enlarged VEP in cystinosis could be the result of cortical hyperexcitability and/or differences in attentional engagement and explain, at least partially, the visual and visual-spatial difficulties described in this population.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Oftalmopatías , Niño , Adulto , Humanos , Cistinosis/genética , Cistinosis/tratamiento farmacológico , Cistina/genética , Cistina/metabolismo , Cistina/uso terapéutico , Potenciales Evocados Visuales , Mutación/genética , Percepción Visual , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico
8.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38069326

RESUMEN

Cystinosis is an autosomal recessive disease resulting from mutations in ctns, which encodes for cystinosin, a proton-coupled cystine transporter that exports cystine from lysosomes. The major clinical form, infantile cystinosis, is associated with renal failure due to the malfunctioning of the renal proximal tubule (RPT). To examine the hypothesis that the malfunctioning of the cystinotic RPT arises from defective differentiation, human-induced pluripotent stem cells (hiPSCs) were generated from human dermal fibroblasts from an individual with infantile cystinosis, as well as a normal individual. The results indicate that both the cystinotic and normal hiPSCs are pluripotent and can form embryoid bodies (EBs) with the three primordial germ layers. When the normal hiPSCs were subjected to a differentiation regime that induces RPT formation, organoids containing tubules with lumens emerged that expressed distinctive RPT proteins, including villin, the Na+/H+ Exchanger (NHE) isoform 3 (NHE3), and the NHE Regulatory Factor 1 (NHERF1). The formation of tubules with lumens was less pronounced in organoids derived from cystinotic hiPSCs, although the organoids expressed villin, NHE3, and NHERF1. These observations can be attributed to an impairment in differentiation and/or by other defects which cause cystinotic RPTs to have an increased propensity to undergo apoptosis or other types of programmed cell death.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Células Madre Pluripotentes Inducidas , Humanos , Cistinosis/genética , Cistina/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Intercambiador 3 de Sodio-Hidrógeno/genética , Mutación , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Lisosomas/metabolismo
9.
J Biosci ; 482023.
Artículo en Inglés | MEDLINE | ID: mdl-38018544

RESUMEN

Cystinosis is an autosomally inherited rare genetic disorder in which cystine accumulates in the lysosome. The defect arises from a mutation in the lysosomal efflux pump, cystinosin (or CTNS). Despite the disease being known for more than a century, research, diagnosis, and treatment in India have been very minimal. In recent years, however, some research on cystinosis has been carried out on understanding the pathophysiology and in the development of a humanized yeast model for interrogating the CTNS protein. There has also been a greater awareness of the disease that has been facilitated by the formation of the Cystinosis Foundation of India just over a decade ago. Awareness among primary physicians is critical for early diagnosis, which in turn is critical for proper treatment. Eight different mutations have been observed in cystinosis patients in India, and the mutation spectrum seems different to what has been seen in the US and Europe. Despite these positive developments, there are immense hurdles still to be surmounted. This includes ensuring that the diagnosis is done sooner, making cysteamine more easily available, and, also for the future, to make accessible the promise of gene therapy to cystinosis patients.


Asunto(s)
Cistinosis , Humanos , Cistinosis/diagnóstico , Cistinosis/epidemiología , Cistinosis/genética , Cistina/genética , Cistina/metabolismo , Cisteamina/efectos adversos , Mutación , India/epidemiología
10.
Sci Rep ; 13(1): 20961, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38016974

RESUMEN

Messenger RNA (mRNA) therapies are emerging in different disease areas, but have not yet reached the kidney field. Our aim was to study the feasibility to treat the genetic defect in cystinosis using synthetic mRNA in cell models and ctns-/- zebrafish embryos. Cystinosis is a prototype lysosomal storage disorder caused by mutations in the CTNS gene, encoding the lysosomal cystine-H+ symporter cystinosin, and leading to cystine accumulation in all cells of the body. The kidneys are the first and the most severely affected organs, presenting glomerular and proximal tubular dysfunction, progressing to end-stage kidney failure. The current therapeutic standard cysteamine, reduces cystine levels, but has many side effects and does not restore kidney function. Here, we show that synthetic mRNA can restore lysosomal cystinosin expression following lipofection into CTNS-/- kidney cells and injection into ctns-/- zebrafish. A single CTNS mRNA administration decreases cellular cystine accumulation for up to 14 days in vitro. In the ctns-/- zebrafish, CTNS mRNA therapy improves proximal tubular reabsorption, reduces proteinuria, and restores brush border expression of the multi-ligand receptor megalin. Therefore, this proof-of-principle study takes the first steps in establishing an mRNA-based therapy to restore cystinosin expression, resulting in cystine reduction in vitro and in the ctns-/- larvae, and restoration of the zebrafish pronephros function.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Animales , Cistinosis/genética , Cistinosis/terapia , Cistina/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , ARN Mensajero/genética , ARN Mensajero/uso terapéutico , Modelos Teóricos , Suplementos Dietéticos , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo
11.
J Clin Invest ; 133(19)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37561577

RESUMEN

Cystinosis is a lysosomal storage disease that is characterized by the accumulation of dipeptide cystine within the lumen. It is caused by mutations in the cystine exporter, cystinosin. Most of the clinically reported mutations are due to the loss of transporter function. In this study, we identified a rapidly degrading disease variant, referred to as cystinosin(7Δ). We demonstrated that this mutant is retained in the ER and degraded via the ER-associated degradation (ERAD) pathway. Using genetic and chemical inhibition methods, we elucidated the roles of HRD1, p97, EDEMs, and the proteasome complex in cystinosin(7Δ) degradation pathway. Having understood the degradation mechanisms, we tested some chemical chaperones previously used for treating CFTR F508Δ and demonstrated that they could facilitate the folding and trafficking of cystinosin(7Δ). Strikingly, chemical chaperone treatment can reduce the lumenal cystine level by approximately 70%. We believe that our study conclusively establishes the connection between ERAD and cystinosis pathogenesis and demonstrates the possibility of using chemical chaperones to treat cystinosin(7Δ).


Asunto(s)
Cistinosis , Humanos , Cistinosis/tratamiento farmacológico , Cistinosis/genética , Cistinosis/metabolismo , Cistina/genética , Cistina/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Medicina de Precisión , Mutación , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Lisosomas/metabolismo
12.
Med Sci (Paris) ; 39(3): 253-261, 2023 Mar.
Artículo en Francés | MEDLINE | ID: mdl-36943122

RESUMEN

Cystinosis is an autosomal recessive metabolic disease characterized by lysosomal accumulation of cystine in all the cells of the body. Infantile cystinosis begins in infancy by a renal Fanconi syndrome and eventually leads to multi-organ failure, including the kidney, eye, thyroid, muscle, and pancreas, eventually causing premature death in early adulthood. The current treatment is the drug cysteamine that only delays the progression of the disease. We identified the gene involved, CTNS, and showed that the encoded protein, cystinosin, is a proton-driven cystine transporter. We generated a mouse model of cystinosis, the Ctns-/- mice, that recapitulates the main disease complications. The goal was next to develop a gene therapy approach for cystinosis. We used bone marrow stem cells as a vehicle to bring the healthy CTNS gene to tissues, and we showed that wild-type hematopoietic stem and progenitor cell (HSPC) transplantation led to abundant tissue integration of bone marrow-derived cells, significant decrease of tissue cystine accumulation and long-term kidney, eye and thyroid preservation. We then developed an autologous transplantation approach of HSPCs modified ex vivo using a lentiviral vector to introduce a functional CTNS cDNA, and showed its efficacy in Ctns-/- mice. We conducted the pharmacology/toxicology studies, developed the manufacturing process using human CD34+ cells, and design the clinical trial. We received Food and Drug Administration (FDA)-clearance to start a phase 1/2 clinical trial for cystinosis in December 2018. Six patients have been treated so far. In this review, we describe the path to go from the gene to a gene therapy approach for cystinosis.


Title: Cystinose - De la découverte du gène aux premiers essais de thérapie génique. Abstract: La cystinose est une maladie métabolique autosomique récessive caractérisée par une accumulation lysosomale de cystine dans toutes les cellules de l'organisme. La cystinose infantile débute dans la petite enfance par un syndrome de Fanconi et aboutit à une détérioration progressive de la fonction de la plupart des organes, y compris les reins, les yeux, la thyroïde, les muscles et le pancréas, et finit par entraîner une mort prématurée. Le traitement par la cystéamine ne permet que de retarder la progression de la maladie. Afin de développer une approche de thérapie génique pour la cystinose, un modèle murin qui présente les principales complications de la maladie a été développé grâce à l'identification du gène CTNS, dont le produit, la cystinosine, est un co-transporteur de cystine-protons. Cette revue décrit les étapes allant de la découverte du gène à la thérapie génique pour la cystinose, qui a permis de traiter six patients jusqu'à présent.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Adulto , Animales , Humanos , Ratones , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/uso terapéutico , Cisteamina/uso terapéutico , Cisteamina/efectos adversos , Cistina/genética , Cistina/metabolismo , Cistina/uso terapéutico , Cistinosis/genética , Cistinosis/terapia , Cistinosis/complicaciones , Terapia Genética/efectos adversos , Riñón , Ensayos Clínicos como Asunto
13.
Klin Monbl Augenheilkd ; 240(3): 251-259, 2023 Mar.
Artículo en Inglés, Alemán | MEDLINE | ID: mdl-36977426

RESUMEN

Cystinosis is a very rare autosomal recessive lysosomal storage disorder with an incidence of 1 : 150,000 - 1 : 200,000, and is caused by mutations in the CTNS gene encoding the lysosomal membrane protein cystinosin, which transports cystine out of the lysosome into the cytoplasm. As a result, accumulation of cystine occurs in almost all cells and tissues, especially in the kidneys, leading to multiple organ involvement. Introduction of drug therapy with cysteamine in the mid 1980s, along with the availability of renal replacement therapy in childhood, have dramatically improved patient outcome. Whereas patients used to die without therapy with end-stage renal failure during the first decade of life, nowadays most patients live well into adulthood without renal replacement therapy, and several reach 40 years. There is robust evidence that early initiation and sustained lifelong therapy with cysteamine are both essential for morbidity and mortality. The rarity of the disease and the multi-organ involvement present an enormous challenge for those affected and the providers of care for this patient group.


Asunto(s)
Cistinosis , Humanos , Cistinosis/diagnóstico , Cistinosis/tratamiento farmacológico , Cistinosis/genética , Cistina/genética , Cistina/metabolismo , Cistina/uso terapéutico , Cisteamina/uso terapéutico , Mutación
14.
Klin Monbl Augenheilkd ; 240(3): 266-275, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36977427

RESUMEN

Cystinosis is a rare lysosomal storage disease with a prevalence of 1 : 100 000 - 1 : 200 000 cases. It is caused by biallelic mutations in the CTNS gene, which encodes cystinosin, that transport cystine out of the lysosomes. Due to its dysfunction, cystine crystals accumulate in the lysosomes and ultimately cause apoptosis of the cell. Since cystinosin is ubiquitously present in the body, cystine crystals are deposited in every body structure and lead to the dysfunction of various organ systems in the course of time. Cystine crystals deposited in the cornea are a clinical hallmark of the disease, while there is less awareness of concomitant posterior segment alterations. Symmetrical pigment epithelial mottling and patches of depigmentation frequently start in the periphery and progress towards the posterior pole and can be encountered upon fundus biomicroscopy. Spectral-domain optical coherence tomography (SD-OCT) is an elegant tool for visualizing chorioretinal cystine crystals at the posterior pole. An SD-OCT-based clinical grading of the severity of the chorioretinal manifestation can potentially be applied as a biomarker for systemic disease status and for monitoring oral therapy adherence in the future. Along with previous histological examinations, it may also give information about the location of cystine crystals in the choroid and retina. This review aims to increase the awareness of vision-threatening retinal and choroidal changes in cystinosis and the concomitant findings in SD-OCT.


Asunto(s)
Cistinosis , Humanos , Cistinosis/diagnóstico , Cistinosis/genética , Cistinosis/tratamiento farmacológico , Cistina/uso terapéutico , Retina , Córnea
15.
Int J Mol Sci ; 24(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36768921

RESUMEN

Cystinosis is a rare, devastating hereditary disease secondary to recessive CTNS gene mutations. The most commonly used diagnostic method is confirmation of an elevated leukocyte cystine level; however, this method is expensive and difficult to perform. This study aimed to identify candidate biomarkers for the diagnosis and follow-up of cystinosis based on multiomics studies. The study included three groups: newly-diagnosed cystinosis patients (patient group, n = 14); cystinosis patients under treatment (treatment group, n = 19); and healthy controls (control group, n = 30). Plasma metabolomics analysis identified 10 metabolites as candidate biomarkers that differed between the patient and control groups [L-serine, taurine, lyxose, 4-trimethylammoniobutanoic acid, orotic acid, glutathione, PE(O-18:1(9Z)/0:0), 2-hydroxyphenyl acetic acid, acetyl-N-formil-5-metoxikinuramine, 3-indoxyl sulphate]. As compared to the healthy control group, in the treatment group, hypotaurine, phosphatidylethanolamine, N-acetyl-d-mannosamine, 3-indolacetic acid, p-cresol, phenylethylamine, 5-aminovaleric acid, glycine, creatinine, and saccharic acid levels were significantly higher, and the metabolites quinic acid, capric acid, lenticin, xanthotoxin, glucose-6-phosphate, taurine, uric acid, glyceric acid, alpha-D-glucosamine phosphate, and serine levels were significantly lower. Urinary metabolomic analysis clearly differentiated the patient group from the control group by means of higher allo-inositol, talose, glucose, 2-hydroxybutiric acid, cystine, pyruvic acid, valine, and phenylalanine levels, and lower metabolite (N-acetyl-L-glutamic acid, 3-aminopropionitrile, ribitol, hydroquinone, glucuronic acid, 3-phosphoglycerate, xanthine, creatinine, and 5-aminovaleric acid) levels in the patient group. Urine metabolites were also found to be significantly different in the treatment group than in the control group. Thus, this study identified candidate biomarkers that could be used for the diagnosis and follow-up of cystinosis.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistinosis/genética , Cistina/metabolismo , Creatinina , Biomarcadores/metabolismo , Glutatión/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética
16.
Int J Mol Sci ; 24(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36674769

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disease, caused by mutations in the CTNS gene, resulting in multi-organ cystine accumulation. Three forms of cystinosis are distinguished: infantile and juvenile nephropathic cystinosis affecting kidneys and other organs such as the eyes, endocrine system, muscles, and brain, and adult ocular cystinosis affecting only the eyes. Currently, elevated white blood cell (WBC) cystine content is the gold standard for the diagnosis of cystinosis. We present a patient with proteinuria at adolescent age and corneal cystine crystals, but only slightly elevated WBC cystine levels (1.31 ½ cystine/mg protein), precluding the diagnosis of nephropathic cystinosis. We demonstrate increased levels of cystine in skin fibroblasts and urine-derived kidney cells (proximal tubular epithelial cells and podocytes), that were higher than the values observed in the WBC and healthy control. CTNS gene analysis shows the presence of a homozygous missense mutation (c.590 A > G; p.Asn177Ser), previously described in the Arab population. Our observation underlines that low WBC cystine levels can be observed in patients with juvenile cystinosis, which may delay the diagnosis and timely administration of cysteamine. In such patients, the diagnosis can be confirmed by cystine measurement in slow-dividing cells and by molecular analysis of the CTNS gene.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Adulto , Adolescente , Humanos , Cistinosis/diagnóstico , Cistinosis/genética , Cistinosis/metabolismo , Cistina/metabolismo , Cisteamina , Leucocitos/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética
17.
Klin Monbl Augenheilkd ; 240(3): 260-265, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36696914

RESUMEN

Nephropathic cystinosis is a rare autosomal recessive disease caused by mutations in the CTNS gene. This causes dysfunction of cystinosin, a protein that transports cystine out of lysosomes, causing cystine crystals to accumulate in cells in most organ systems. While renal complications predominate in the early forms of cystinosis, corneal crystal accumulation will inevitably manifest in all patients. The main symptoms are photophobia along with glare sensitivity and blepharospasm. In addition, corneal crystal accumulation can cause other complications, such as recurrent corneal erosions, punctate or filamentary keratopathy, and chronic dry eye. Eventually, peripheral corneal neovascularization and limbal stem cell deficiency may develop. Ophthalmologists play a key role in the early diagnosis of patients with cystinosis. This review aims to not only raise awareness of secondary complications of corneal crystal accumulation, but also to highlight current treatment options and challenges that ophthalmologists and pediatricians might face.


Asunto(s)
Cistinosis , Humanos , Cistinosis/complicaciones , Cistinosis/diagnóstico , Cistinosis/genética , Cistina/genética , Cistina/metabolismo , Mutación , Córnea/metabolismo
18.
Pediatr Nephrol ; 38(1): 119-129, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35445972

RESUMEN

BACKGROUND: Nephropathic cystinosis is an autosomal recessive disease caused by a mutation in the CTNS gene which encodes cystinosin, a lysosomal cystine transporter. The spectrum of mutations in the CTNS gene is not well defined in the North African population. Here, we investigated twelve patients with nephropathic cystinosis belonging to eight Tunisian families in order to analyze the clinical and genetic characteristics of Tunisian children with infantile nephropathic cystinosis. METHODS: Clinical data were collected retrospectively. Molecular analysis of the CTNS gene was performed by Sanger sequencing. RESULTS: We describe a new splicing mutation c.971-1G > C in the homozygous state in 6/12 patients which seems to be a founder mutation. The reported deletion of 23nt c.771_793 Del (p.Gly258Serfs*30) was detected in a homozygous state in one patient and in a heterozygous compound state with the c.971-1G > C mutation in 3/12 patients. Two of 12 patients have a deletion of exons 4 and 5 of the CTNS gene. None of our patients had the most common 57-kb deletion. CONCLUSIONS: The mutational spectrum in the Tunisian population is different from previously described populations. Thus, a molecular diagnostic strategy must be implemented in Tunisia, by targeting as a priority the common mutations described in this country. Such a strategy will allow a cost-effective diagnosis confirmation as well as early administration of treatment with oral cysteamine. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Niño , Humanos , Sistemas de Transporte de Aminoácidos Neutros/genética , Cistinosis/tratamiento farmacológico , Cistinosis/etnología , Cistinosis/genética , Exones/genética , Síndrome de Fanconi/genética , Estudios Retrospectivos
19.
J Inherit Metab Dis ; 46(1): 43-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36117148

RESUMEN

Infantile nephropathic cystinosis (INC) is an inheritable lysosomal storage disorder characterized by lysosomal cystine accumulation, progressive kidney disease, and multiple extrarenal complications (ERCs). Cysteamine postpones the onset of end-stage kidney disease (ESKD) and reduces the incidence of ERCs; however, cysteamine is generally initiated upon establishment of the renal Fanconi syndrome (FS) and partial loss of kidney function, whereas data on long-term effects of cysteamine administered from neonatal age are lacking. An international multicenter retrospective cohort study of siblings with INC was set up to investigate the outcome in relation to age at initiation of cysteamine versus CTNS genotype, with attention to patients treated with cysteamine from neonatal age. None of the siblings treated from neonatal age (n = 9; age 10 ± 6 years) had reached ESKD, while 22% of their index counterparts (n = 9; age 14 ± 5 years) had commenced renal replacement therapy. Siblings treated with cysteamine from the onset of symptoms at a younger age compared with their index counterparts, reached ESKD at a significant older age (13 ± 3 vs. 10 ± 3 years, p = 0.002). In contrast, no significant difference in ERCs was observed between sibling and index patients, independently from the age at initiation of cysteamine. The CTNS genotype had no impact on the overall outcome in this cohort. In INC, presymptomatic treatment with cysteamine results in a better renal outcome in comparison to treatment initiated from the onset of symptoms. This justifies including cystinosis into newborn screening programs. SYNOPSIS: In infantile nephropathic cystinosis, presymptomatic treatment with cysteamine improves the renal outcome which justifies the inclusion of cystinosis into newborn screening programs.


Asunto(s)
Cistinosis , Síndrome de Fanconi , Fallo Renal Crónico , Recién Nacido , Humanos , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Cistinosis/tratamiento farmacológico , Cistinosis/genética , Cistinosis/complicaciones , Cisteamina/uso terapéutico , Hermanos , Estudios de Cohortes , Estudios Retrospectivos , Síndrome de Fanconi/tratamiento farmacológico , Síndrome de Fanconi/genética , Fallo Renal Crónico/etiología
20.
Hum Mol Genet ; 32(7): 1090-1101, 2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36300303

RESUMEN

Cysteamine is currently the only therapy for nephropathic cystinosis. It significantly improves life expectancy and delays progression to end-stage kidney disease; however, it cannot prevent it. Unfortunately, compliance to therapy is often weak, particularly during adolescence. Therefore, finding better treatments is a priority in the field of cystinosis. Previously, we found that genistein, an isoflavone particularly enriched in soy, can revert part of the cystinotic cellular phenotype that is not sensitive to cysteamine in vitro. To test the effects of genistein in vivo, we fed 2-month-old wild-type and Ctns-/- female mice with either a control diet, a genistein-containing diet or a cysteamine-containing diet for 14 months. Genistein (160 mg/kg/day) did not affect the growth of the mice or hepatic functionality. Compared with untreated mice at 16 months, Ctns-/- mice fed with genistein had lower cystine concentrations in their kidneys, reduced formation of cystine crystals, a smaller number of LAMP1-positive structures and an overall better-preserved parenchymal architecture. Cysteamine (400 mg/kg/day) was efficient in reverting the lysosomal phenotype and in preventing the development of renal lesions. These preclinical data indicate that genistein ameliorates kidney injury resulting from cystinosis with no side effects. Genistein therapy represents a potential treatment to improve the outcome for patients with cystinosis.


Asunto(s)
Cistinosis , Enfermedades Renales , Animales , Femenino , Ratones , Cisteamina/uso terapéutico , Cistina/uso terapéutico , Cistinosis/tratamiento farmacológico , Cistinosis/genética , Modelos Animales de Enfermedad , Genisteína/farmacología , Genisteína/uso terapéutico , Riñón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...