Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.954
Filtrar
1.
Pharmacogenomics J ; 24(3): 13, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637522

RESUMEN

To investigate the pharmacokinetic and pharmacodynamic profiles of volunteers carrying CYP2D6 genotypes with unknow metabolic phenotypes, a total of 22 volunteers were recruited based on the sequencing results. Peripheral blood and urine samples were collected at specific time points after oral administration of metoprolol. A validated high-performance liquid chromatography (HPLC) method was used to determine the concentrations of metoprolol and α-hydroxymetoprolol. Blood pressure and electrocardiogram were also monitored. The results showed that the main pharmacokinetic parameters of metoprolol in CYP2D6*1/*34 carriers are similar to those in CYP2D6*1/*1 carriers. However, in individuals carrying the CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 genotypes, the area under the curve (AUC) and half-life (t1/2) of metoprolol increased by 2-3 times compared to wild type. The urinary metabolic ratio of metoprolol in these genotypes is consistent with the trends observed in plasma samples. Therefore, CYP2D6*1/*34 can be considered as normal metabolizers, while CYP2D6*10/*87, CYP2D6*10/*95, and CYP2D6*97/*97 are intermediate metabolizers. Although the blood concentration of metoprolol has been found to correlate with CYP2D6 genotype, its blood pressure-lowering effect reaches maximum effectiveness at a reduction of 25 mmHg. Furthermore, P-Q interval prolongation and heart rate reduction are not positively correlated with metoprolol blood exposure. Based on the pharmacokinetic-pharmacodynamic model, this study clarified the properties of metoprolol in subjects with novel CYP2D6 genotypes and provided important fundamental data for the translational medicine of this substrate drug.


Asunto(s)
Antagonistas Adrenérgicos beta , Metoprolol , Humanos , Metoprolol/farmacocinética , Metoprolol/orina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Preparaciones Farmacéuticas , Genotipo , Fenotipo
2.
Clin Drug Investig ; 44(5): 303-317, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38598106

RESUMEN

BACKGROUND AND OBJECTIVE: Viloxazine extended-release (ER) [Qelbree®] is a nonstimulant attention-deficit/hyperactivity disorder (ADHD) treatment. In vitro studies suggested potential for viloxazine to inhibit cytochrome 450 (CYP) enzymes 1A2, 2B6, 2D6 and 3A4. This clinical study therefore evaluated viloxazine ER effects on index substrates for CYP1A2, 2D6, and 3A4, and secondarily evaluated the impact of CYP2D6 polymorphisms on viloxazine pharmacokinetics. METHODS: Thirty-seven healthy subjects received a modified Cooperstown cocktail (MCC; caffeine 200 mg, dextromethorphan 30 mg, midazolam 0.025 mg/kg) on Day 1, viloxazine ER 900 mg/day on Days 3-5, and a combination of viloxazine ER 900 mg and MCC on Day 6. Viloxazine ER effects on MCC substrates were evaluated using analysis of variance. The impact of CYP2D6 genetic polymorphisms on steady-state viloxazine plasma concentrations was evaluated using Student's t test assessing pharmacokinetic parameter differences between poor versus extensive metabolizers. RESULTS: The least squares geometric mean ratio [GMR%] (90% CI) of MCC substrate + viloxazine ER/MCC substrate alone for caffeine maximum concentration (Cmax), area under the plasma concentration-time curve from time 0 to the last quantifiable concentration (AUCt), and area under the plasma concentration-time curve from time 0 extrapolated to infinity (AUC∞) was 99.11 (95.84-102.49), 436.15 (398.87-476.92), and 583.35 (262.41-1296.80), respectively; 150.76 (126.03-180.35), 185.76 (155.01-222.61), and 189.71 (160.37-224.42) for dextromethorphan Cmax, AUCt, and AUC∞, respectively; and 112.81 (104.71-121.54), 167.56 (153.05-183.45), and 168.91 (154.38-184.80) for midazolam Cmax, AUCt, and AUC∞, respectively. At steady state, viloxazine least squares GMR (90% CI) for poor/extensive CYP2D6 metabolizers were Cmax 120.70 (102.33-142.37) and area under the plasme concentration-time curve from time 0 to 24 hours (AUC0-24 125.66 (105.36-149.87)). CONCLUSION: Viloxazine ER is a strong CYP1A2 inhibitor and a weak CYP2D6 and CYP3A4 inhibitor. CYP2D6 polymorphisms did not meaningfully alter the viloxazine ER pharmacokinetic profile.


Asunto(s)
Citocromo P-450 CYP2D6 , Preparaciones de Acción Retardada , Polimorfismo Genético , Viloxazina , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Masculino , Adulto , Viloxazina/farmacocinética , Viloxazina/administración & dosificación , Femenino , Adulto Joven , Cafeína/farmacocinética , Cafeína/administración & dosificación , Dextrometorfano/farmacocinética , Dextrometorfano/administración & dosificación , Cápsulas , Midazolam/farmacocinética , Midazolam/administración & dosificación , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Voluntarios Sanos
3.
Minerva Anestesiol ; 90(5): 386-396, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38619184

RESUMEN

BACKGROUND: Opioids are widely used in chronic non-cancer pain (CNCP) management. However, they remain controversial due to serious risk of causing opioid use disorder (OUD). Our main aim was to develop a predictive model for future clinical translation that include pharmacogenetic markers. METHODS: An observational study was conducted in 806 pre-screened Spanish CNCP patients, under long-term use of opioids, to compare cases (with OUD, N.=137) with controls (without OUD, N.=669). Mu-opioid receptor 1 (OPRM1, A118G, rs1799971) and catechol-O-methyltransferase (COMT, G472A, rs4680) genetic variants plus cytochrome P450 2D6 (CYP2D6) liver enzyme phenotypes were analyzed. Socio-demographic, clinical and pharmacological outcomes were also registered. A logistic regression model was performed. The model performance and diagnostic accuracy were calculated. RESULTS: OPRM1-AA genotype and CYP2D6 poor and ultrarapid metabolizers together with three other potential predictors: 1) age; 2) work disability; 3) oral morphine equivalent daily dose (MEDD), were selected with a satisfactory diagnostic accuracy (sensitivity: 0.82 and specificity: 0.85), goodness of fit (P=0.87) and discrimination (0.89). Cases were ten-year younger with lower incomes, more sleep disturbances, benzodiazepines use, and history of substance use disorder in front of controls. CONCLUSIONS: Functional polymorphisms related to OPRM1 variant and CYP2D6 phenotypes may predict a higher OUD risk. Established risk factors such as young age, elevated MEDD and lower incomes were identified. A predictive model is expected to be implemented in clinical setting among CNCP patients under long-term opioids use.


Asunto(s)
Dolor Crónico , Trastornos Relacionados con Opioides , Humanos , Masculino , Femenino , Dolor Crónico/tratamiento farmacológico , Dolor Crónico/genética , Persona de Mediana Edad , Trastornos Relacionados con Opioides/genética , Adulto , Estudios Retrospectivos , Estudios de Cohortes , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/efectos adversos , Farmacogenética , Receptores Opioides mu/genética , Citocromo P-450 CYP2D6/genética , Catecol O-Metiltransferasa/genética , Anciano , Genotipo
4.
J Psychiatr Res ; 174: 137-152, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631139

RESUMEN

Variability in hepatic cytochrome P450 (CYP) enzymes such as 2C19 and 2D6 may influence side-effect and efficacy outcomes for antipsychotics. Aripiprazole and risperidone are two commonly prescribed antipsychotics, metabolized primarily through CYP2D6. Here, we aimed to provide an overview of the effect of CYP2C19 and CYP2D6 on side-effects of aripiprazole and risperidone, and expand on existing literature by critically examining methodological issues associated with pharmacogenetic studies. A PRISMA compliant search of six electronic databases (Pubmed, PsychInfo, Embase, Central, Web of Science, and Google Scholar) identified pharmacogenetic studies on aripiprazole and risperidone. 2007 publications were first identified, of which 34 were included. Quality of literature was estimated using Newcastle-Ottowa Quality Assessment Scale (NOS) and revised Cochrane Risk of Bias tool. The average NOS score was 5.8 (range: 3-8) for risperidone literature and 5 for aripiprazole (range: 4-6). All RCTs on aripiprazole were rated as high risk of bias, and four out of six for risperidone literature. Study populations ranged from healthy volunteers to inpatient individuals in psychiatric units and included adult and pediatric samples. All n = 34 studies examined CYP2D6. Only one study genotyped for CYP2C19 and found a positive association with neurological side-effects of risperidone. Most studies did not report any relationship between CYP2D6 and any side-effect outcome. Heterogeneity between and within studies limited the ability to synthesize data and draw definitive conclusions. Studies lacked statistical power due to small sample size, selective genotyping methods, and study design. Large-scale randomized trials with multiple measurements, providing robust evidence on this topic, are suggested.


Asunto(s)
Antipsicóticos , Aripiprazol , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Risperidona , Humanos , Aripiprazol/efectos adversos , Aripiprazol/farmacología , Citocromo P-450 CYP2D6/genética , Risperidona/efectos adversos , Citocromo P-450 CYP2C19/genética , Antipsicóticos/efectos adversos
5.
J Psychopharmacol ; 38(5): 481-488, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38519421

RESUMEN

OBJECTIVE: Ibogaine is a hallucinogenic drug that may be used to treat opioid use disorder (OUD). The relationships between pharmacokinetics (PKs) of ibogaine and its metabolites and their clinical effects on side effects and opioid withdrawal severity are unknown. We aimed to study these relationships in patients with OUD undergoing detoxification supported by ibogaine. METHODS: The study was performed in 14 subjects with OUD. They received a single dose of 10mg/kg ibogaine hydrochloride. Plasma PKs of ibogaine, noribogaine, and noribogaine glucuronide were obtained during 24 h. Cytochrome P450 isoenzyme 2D6 (CYP2D6) genotyping was performed. The PKs were analyzed by means of nonlinear mixed effects modeling and related with corrected QT interval (QTc) prolongation, cerebellar ataxia, and opioid withdrawal severity. RESULTS: The PK of ibogaine were highly variable and significantly correlated to CYP2D6 genotype (p < 0.001). The basic clearance of ibogaine (at a CYP2D6 activity score (AS) of 0) was 0.82 L/h. This increased with 30.7 L/h for every point of AS. The relation between ibogaine plasma concentrations and QTc was best described by a sigmoid Emax model. Spearman correlations were significant (p < 0.03) for ibogaine but not noribogaine with QTc (p = 0.109) and cerebellar effects (p = 0.668); neither correlated with the severity of opioid withdrawal symptoms. CONCLUSIONS: The clearance of ibogaine is strongly related to CYPD2D6 genotype. Ibogaine cardiac side effects (QTc time) and cerebellar effects are most likely more driven by ibogaine rather than noribogaine. Future studies should aim at exploring lower doses and/or applying individualized dosing based on CYP2D6 genotype.


Asunto(s)
Citocromo P-450 CYP2D6 , Genotipo , Alucinógenos , Ibogaína , Trastornos Relacionados con Opioides , Humanos , Ibogaína/farmacocinética , Ibogaína/efectos adversos , Ibogaína/farmacología , Ibogaína/análogos & derivados , Masculino , Adulto , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Femenino , Alucinógenos/farmacocinética , Alucinógenos/efectos adversos , Alucinógenos/sangre , Trastornos Relacionados con Opioides/tratamiento farmacológico , Trastornos Relacionados con Opioides/genética , Persona de Mediana Edad , Síndrome de Abstinencia a Sustancias/genética , Adulto Joven , Síndrome de QT Prolongado/inducido químicamente , Síndrome de QT Prolongado/genética
6.
Sr Care Pharm ; 39(4): 137-142, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38528335

RESUMEN

The objective of this case report is to illustrate pharmacogenomics (PGx)-guided oxycodone treatment, given the conflicting data on the analgesic response from oxycodone in Cytochrome P450 (CYP)2D6 poor metabolizers (PMs). PGx-guided therapy can help improve treatment outcomes. This case report describes a 58-year-old patient who was prescribed oxycodone for chronic pain management. The patient presented with a history of inadequate pain control despite analgesic treatment with oxycodone (morphine milliequivalent [MME] = 22.5). Pharmacogenetic testing revealed that the patient was a CYP2D6 Poor Metabolizer (PM), which may shed light on the observed lack of analgesic response to oxycodone. The clinical pharmacist recommended switching to an alternative opioid not metabolized via the CYP2D6 pathway. The patient was subsequently switched to hydromorphone (MME = 16), resulting in improved pain control and fewer side effects. The newer hydromorphone dose accounted for a 30% MME dose reduction. The patient's initial average and worst pain score were 7 and 9 out of 10, respectively, per the numeric rating scale (NRS). Upon follow-up with the patient in two weeks, her average and worst pain scores improved to 3 and 3.5 out of 10, respectively, per the NRS. Further PGx testing results led to an overall positive outcome, such as her willingness to participate in physical therapy as a result of improved pain scores. This case highlights the importance of considering individual variability in drug metabolism when prescribing medications, particularly opioids such as oxycodone, to ensure optimal therapeutic outcomes and minimize the risk of adverse events in CYP2D6 PMs.


Asunto(s)
Citocromo P-450 CYP2D6 , Endrín/análogos & derivados , Oxicodona , Humanos , Femenino , Oxicodona/uso terapéutico , Oxicodona/efectos adversos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2D6/uso terapéutico , Hidromorfona/uso terapéutico , Manejo del Dolor , Analgésicos Opioides/uso terapéutico , Analgésicos Opioides/efectos adversos , Dolor/tratamiento farmacológico
7.
Pharm Res ; 41(4): 731-749, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38443631

RESUMEN

BACKGROUND: Venlafaxine (VEN) is a commonly utilized medication for alleviating depression and anxiety disorders. The presence of genetic polymorphisms gives rise to considerable variations in plasma concentrations across different phenotypes. This divergence in phenotypic responses leads to notable differences in both the efficacy and tolerance of the drug. PURPOSE: A physiologically based pharmacokinetic (PBPK) model for VEN and its metabolite O-desmethylvenlafaxine (ODV) to predict the impact of CYP2D6 and CYP2C19 gene polymorphisms on VEN pharmacokinetics (PK). METHODS: The parent-metabolite PBPK models for VEN and ODV were developed using PK-Sim® and MoBi®. Leveraging prior research, derived and implemented CYP2D6 and CYP2C19 activity score (AS)-dependent metabolism to simulate exposure in the drug-gene interactions (DGIs) scenarios. The model's performance was evaluated by comparing predicted and observed values of plasma concentration-time (PCT) curves and PK parameters values. RESULTS: In the base models, 91.1%, 94.8%, and 94.6% of the predicted plasma concentrations for VEN, ODV, and VEN + ODV, respectively, fell within a twofold error range of the corresponding observed concentrations. For DGI scenarios, these values were 81.4% and 85% for VEN and ODV, respectively. Comparing CYP2D6 AS = 2 (normal metabolizers, NM) populations to AS = 0 (poor metabolizers, PM), 0.25, 0.5, 0.75, 1.0 (intermediate metabolizers, IM), 1.25, 1.5 (NM), and 3.0 (ultrarapid metabolizers, UM) populations in CYP2C19 AS = 2.0 group, the predicted DGI AUC0-96 h ratios for VEN were 3.65, 3.09, 2.60, 2.18, 1.84, 1.56, 1.34, 0.61, and for ODV, they were 0.17, 0.35, 0.51, 0.64, 0.75, 0.83, 0.90, 1.11, and the results were similar in other CYP2C19 groups. It should be noted that PK differences in CYP2C19 phenotypes were not similar across different CYP2D6 groups. CONCLUSIONS: In clinical practice, the impact of genotyping on the in vivo disposition process of VEN should be considered to ensure the safety and efficacy of treatment.


Asunto(s)
Citocromo P-450 CYP2D6 , Polimorfismo Genético , Clorhidrato de Venlafaxina , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Genotipo , Succinato de Desvenlafaxina
8.
Clin Transl Sci ; 17(3): e13741, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38445532

RESUMEN

Drug development teams must evaluate the risk/benefit profile of new drug candidates that perpetrate drug-drug interactions (DDIs). Real-world data (RWD) can inform this decision. The purpose of this study was to develop a predicted impact score for DDIs perpetrated by three hypothetical drug candidates via CYP3A, CYP2D6, or CYP2C9 in type 2 diabetes mellitus (T2DM), obesity, or migraine. Optum Market Clarity was analyzed to estimate use of CYP3A, CYP2D6, or CYP2C9 substrates classified in the University of Washington Drug Interaction Database as moderate sensitive, sensitive, narrow therapeutic index, or QT prolongation. Scoring was based on prevalence of exposure to victim substrates and characteristics (age, polypharmacy, duration of exposure, and number of prescribers) of those exposed. The study population of 14,163,271 adults included 1,579,054 with T2DM, 3,117,753 with obesity, and 410,436 with migraine. For T2DM, 71.3% used CYP3A substrates, 44.3% used CYP2D6 substrates, and 44.3% used CYP2C9 substrates. For obesity, 57.1% used CYP3A substrates, 34.6% used CYP2D6 substrates, and 31.0% used CYP2C9 substrates. For migraine, 64.1% used CYP3A substrates, 44.0% used CYP2D6 substrates, and 28.9% used CYP2C9 substrates. In our analyses, the predicted DDI impact scores were highest for DDIs involving CYP3A, followed by CYP2D6, and CYP2C9 substrates, and highest for T2DM, followed by migraine, and obesity. Insights from RWD can be used to estimate a predicted DDI impact score for pharmacokinetic DDIs perpetrated by new drug candidates currently in development. This score can inform the risk/benefit profile of new drug candidates in a target patient population.


Asunto(s)
Diabetes Mellitus Tipo 2 , Trastornos Migrañosos , Adulto , Humanos , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/epidemiología , Obesidad/tratamiento farmacológico , Obesidad/epidemiología
9.
Clin Transl Sci ; 17(3): e13761, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38476074

RESUMEN

Tamoxifen, a selective estrogen receptor modulator, is used to treat hormone receptor-positive breast cancer. Tamoxifen acts as a prodrug, with its primary therapeutic effect mediated by its principal metabolite, endoxifen. However, tamoxifen has complex pharmacokinetics involving several drug-metabolizing enzymes and transporters influencing its disposition. Genes encoding enzymes involved in tamoxifen disposition exhibit genetic polymorphisms which vary widely across world populations. This review highlights the lack of data on tamoxifen pharmacogenetics among African populations. Gaps in data are described in this study with the purpose that future research can address this dearth of research on the pharmacogenetics of tamoxifen among African breast cancer patients. Initiatives such as the African Pharmacogenomics Network (APN) are crucial in promoting comprehensive pharmacogenetics studies to pinpoint important variants in pharmacogenes that could be used to reduce toxicity and improve efficacy.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Farmacogenética , Citocromo P-450 CYP2D6/genética , Tamoxifeno , Polimorfismo Genético
10.
Clin Transl Sci ; 17(3): e13772, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501281

RESUMEN

Genetic variants affect drug responses, making pre-emptive genotyping crucial for averting serious adverse events (SAEs) and treatment failure. However, assessing the benefits of pre-emptive genotyping based on genetic distribution, drug exposure, and demographics is challenging. This study aimed to estimate the population-level benefits of pre-emptive genotyping in the Korean population using nationwide cohort data. We reviewed actionable gene-drug combinations recommended by both the Clinical Pharmacogenomics Implementation Consortium (CPIC) and the Dutch Pharmacogenetics Working Group (DPWG) as of February 2022, identifying high-risk phenotypes. We collected reported risk reduction from genotyping and standardized it into population attributable risks. Healthcare reimbursement costs for SAEs and treatment failures were obtained from the Health Insurance Review and Assessment Service Statistics in 2021. The benefits of pre-emptive genotyping for a specific group were determined by multiplying drug exposure from nationwide cohort data by individual genotyping benefits. We identified 31 gene-drug-event pairs, with CYP2D6 and CYP2C19 demonstrating the greatest benefits for both male and female patients. Individuals aged 65-70 years had the highest individual benefit from pre-emptive genotyping, with $84.40 for men and $100.90 for women. Pre-emptive genotyping, particularly for CYP2D6 and CYP2C19, can provide substantial benefits.


Asunto(s)
Citocromo P-450 CYP2D6 , Farmacogenética , Femenino , Humanos , Masculino , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Genotipo , Fenotipo , Anciano
11.
Pharmacogenomics ; 25(3): 147-160, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38426301

RESUMEN

Aim: The CYP2D6 gene is highly polymorphic, causing large interindividual variability in the metabolism of several clinically important drugs. Materials & methods: The authors investigated the diversity and distribution of CYP2D6 alleles in Indians using whole genome sequences (N = 1518). Functional consequences were assessed using pathogenicity scores and molecular dynamics simulations. Results: The analysis revealed population-specific CYP2D6 alleles (*86, *7, *111, *112, *113, *99) and remarkable differences in variant and phenotype frequencies with global populations. The authors observed that one in three Indians could benefit from a dose alteration for psychiatric drugs with accurate CYP2D6 phenotyping. Molecular dynamics simulations revealed large conformational fluctuations, confirming the predicted reduced function of *86 and *113 alleles. Conclusion: The findings emphasize the utility of comprehensive CYP2D6 profiling for aiding precision public health.


Asunto(s)
Citocromo P-450 CYP2D6 , Genómica , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Alelos , Fenotipo , Genotipo
12.
J Psychopharmacol ; 38(4): 382-394, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38494658

RESUMEN

BACKGROUND: Prescribing drugs for psychosis (antipsychotics) is challenging due to high rates of poor treatment outcomes, which are in part explained by an individual's genetics. Pharmacogenomic (PGx) testing can help clinicians tailor the choice or dose of psychosis drugs to an individual's genetics, particularly psychosis drugs with known variable response due to CYP2D6 gene variants ('CYP2D6-PGx antipsychotics'). AIMS: This study aims to investigate differences between demographic groups prescribed 'CYP2D6-PGx antipsychotics' and estimate the proportion of patients eligible for PGx testing based on current pharmacogenomics guidance. METHODS: A cross-sectional study took place extracting data from 243 patients' medical records to explore psychosis drug prescribing, including drug transitions. Demographic data such as age, sex, ethnicity, and clinical sub-team were collected and summarised. Descriptive statistics explored the proportion of 'CYP2D6-PGx antipsychotic' prescribing and the nature of transitions. We used logistic regression analysis to investigate associations between demographic variables and prescription of 'CYP2D6-PGx antipsychotic' versus 'non-CYP2D6-PGx antipsychotic'. RESULTS: Two-thirds (164) of patients had been prescribed a 'CYP2D6-PGx antipsychotic' (aripiprazole, risperidone, haloperidol or zuclopenthixol). Over a fifth (23%) of patients would have met the suggested criteria for PGx testing, following two psychosis drug trials. There were no statistically significant differences between age, sex, or ethnicity in the likelihood of being prescribed a 'CYP2D6-PGx antipsychotic'. CONCLUSIONS: This study demonstrated high rates of prescribing 'CYP2D6-PGx-antipsychotics' in an EIP cohort, providing a rationale for further exploration of how PGx testing can be implemented in EIP services to personalise the prescribing of drugs for psychosis.


Asunto(s)
Antipsicóticos , Psicosis Inducidas por Sustancias , Trastornos Psicóticos , Humanos , Antipsicóticos/uso terapéutico , Farmacogenética , Citocromo P-450 CYP2D6/genética , Estudios Transversales , Trastornos Psicóticos/tratamiento farmacológico , Trastornos Psicóticos/genética , Psicosis Inducidas por Sustancias/tratamiento farmacológico
13.
Pharmacogenet Genomics ; 34(4): 117-125, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38465522

RESUMEN

OBJECTIVE: We aim to develop a personalized dosing tool for tricyclic antidepressants (TCAs) that integrates CYP2D6 and CYP2C19 gene variants and their effects while also considering the polypharmacy effect. METHODS: The study first adopted a scoring system that assigns weights to each genetic variant. A formula was then developed to compute the effect of both genes' variants on drug dosing. The output of the formula was assessed by a comparison with the clinical pharmacogenetics implementation consortium recommendation. The study also accounts for the effect of the co-administration of inhibitors and inducers on drug metabolism. Accordingly, a user-friendly tool, Clinical Dosing Tool ver.2, was created to assist clinicians in dosing patients on TCAs. RESULTS: The study provides a comprehensive list of all alleles with corresponding activity values and phenotypes for both enzymes. The tool calculated an updated area under the curve ratio that utilizes the effects of both enzymes' variants for dose adjustment. The tool provided a more accurate individualized dosing that also integrates the polypharmacy effect. CONCLUSION: To the best of our knowledge, the literature misses such a tool that provides a numerical adjusted dose based on continuous numerical activity scores for the considered patients' alleles and phenoconversion.


Asunto(s)
Antidepresivos Tricíclicos , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Medicina de Precisión , Humanos , Antidepresivos Tricíclicos/administración & dosificación , Antidepresivos Tricíclicos/farmacocinética , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Medicina de Precisión/métodos , Alelos , Relación Dosis-Respuesta a Droga , Polifarmacia
14.
World J Biol Psychiatry ; 25(4): 214-221, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38493365

RESUMEN

OBJECTIVES: Previous results demonstrated that CYP2D6 and CYP2C19 gene variants affect serum concentrations of antidepressants. We implemented a PGx service determining gene variants in CYP2D6 and CYP2C19 in our clinical routine care and report on our first patient cohort. METHODS: We analysed CYP2D6 and CYP2C19 allele, genotype, and phenotype frequencies, and actionable pharmacogenetic variants in this German psychiatric inpatient cohort. Two-tailed z-test was used to investigate for differences in CYP2D6 and CYP2C19 phenotypes and actionable/non-actionable genetic variant frequencies between our cohort and reference cohorts. RESULTS: Out of the 154 patients included, 44.8% of patients were classified as CYP2D6 normal metabolizer, 38.3% as intermediate metabolizers, 8.4% as poor metabolizers, and 2.6% as ultrarapid metabolizers. As for CYP2C19, 40.9% of patients were classified as normal metabolizers, 19.5% as intermediate metabolizers, 2.6% as poor metabolizers, 31.2% as rapid metabolizers, and 5.8% as ultrarapid metabolizers. Approximately, 80% of patients had at least one actionable PGx variant. CONCLUSION: There is a high prevalence of actionable PGx variants in psychiatric inpatients which may affect treatment response. Physicians should refer to PGx-informed dosing guidelines in carriers of these variants. Pre-emptive PGx testing in general may facilitate precision medicine also for other drugs metabolised by CYP2D6 and/or CYP2C19.


Asunto(s)
Antidepresivos , Trastornos de Ansiedad , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Trastornos del Humor , Humanos , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2C19/genética , Femenino , Masculino , Alemania , Adulto , Persona de Mediana Edad , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/tratamiento farmacológico , Antidepresivos/uso terapéutico , Trastornos del Humor/genética , Trastornos del Humor/tratamiento farmacológico , Pacientes Internos , Genotipo , Alelos , Fenotipo , Frecuencia de los Genes , Variantes Farmacogenómicas , Anciano , Estudios de Cohortes
15.
Transl Psychiatry ; 14(1): 151, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504095

RESUMEN

Integrating CYP2D6 genotyping and therapeutic drug monitoring (TDM) is crucial for guiding individualized atomoxetine therapy in children with attention-deficit/hyperactivity disorder (ADHD). The aim of this retrospective study was (1) to investigate the link between the efficacy and tolerability of atomoxetine in children with ADHD and plasma atomoxetine concentrations based on their CYP2D6 genotypes; (2) to offer TDM reference range recommendations for atomoxetine based on the CYP2D6 genotypes of children receiving different dosage regimens. This retrospective study covered children and adolescents with ADHD between the ages of 6 and <18, who visited the psychological and behavioral clinic of Children's Hospital of Nanjing Medical University from June 1, 2021, to January 31, 2023. The demographic information and laboratory examination data, including CYP2D6 genotype tests and routine TDM of atomoxetine were obtained from the hospital information system. We used univariate analysis, Mann-Whitney U nonparametric test, Kruskal-Wallis test, and the receiver operating characteristic (ROC) curve to investigate outcomes of interest. 515 plasma atomoxetine concentrations of 385 children (325 boys and 60 girls) with ADHD between 6 and 16 years of age were included for statistical analysis in this study. Based on genotyping results, >60% of enrolled children belonged to the CYP2D6 extensive metabolizer (EM), while <40% fell into the intermediate metabolizer (IM). CYP2D6 IMs exhibited higher dose-corrected plasma atomoxetine concentrations by 1.4-2.2 folds than those CYP2D6 EMs. Moreover, CYP2D6 IMs exhibited a higher response rate compare to EMs (93.55% vs 85.71%, P = 0.0132), with higher peak plasma atomoxetine concentrations by 1.67 times than those of EMs. Further ROC analysis revealed that individuals under once daily in the morning (q.m.) dosing regimen exhibited a more effective response to atomoxetine when their levels were ≥ 268 ng/mL (AUC = 0.710, P < 0.001). In addition, CYP2D6 IMs receiving q.m. dosing of atomoxetine were more likely to experience adverse reactions in the central nervous system and gastrointestinal system when plasma atomoxetine concentrations reach 465 and 509 ng/mL, respectively. The findings in this study provided promising treatment strategy for Chinese children with ADHD based on their CYP2D6 genotypes and plasma atomoxetine concentration monitoring. A peak plasma atomoxetine concentration higher than 268 ng/mL might be requisite for q.m. dosing. Assuredly, to validate and reinforce these initial findings, it is necessary to collect further data in controlled studies with a larger sample size.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Adolescente , Niño , Femenino , Humanos , Masculino , Inhibidores de Captación Adrenérgica/efectos adversos , Clorhidrato de Atomoxetina/efectos adversos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/genética , Citocromo P-450 CYP2D6/genética , Monitoreo de Drogas , Genotipo , Propilaminas/efectos adversos , Estudios Retrospectivos , Lactante , Preescolar
16.
Clin Pharmacokinet ; 63(4): 469-481, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38393578

RESUMEN

BACKGROUND: We investigated the effect of a 5-day low-dose ritonavir therapy, as it is used in the treatment of COVID-19 with nirmatrelvir/ritonavir, on the pharmacokinetics of three factor Xa inhibitors (FXaI). Concurrently, the time course of the activities of the cytochromes P450 (CYP) 3A4, 2C19, and 2D6 was assessed. METHODS: In an open-label, fixed sequence clinical trial, the effect and duration of a 5-day oral ritonavir (100 mg twice daily) treatment on the pharmacokinetics of three oral microdosed FXaI (rivaroxaban 25 µg, apixaban 25 µg, and edoxaban 50 µg) and microdosed probe drugs (midazolam 25 µg, yohimbine 50 µg, and omeprazole 100 µg) was evaluated in eight healthy volunteers. The plasma concentrations of all drugs were quantified using validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods and pharmacokinetics were analysed using non-compartmental analyses. RESULTS: Ritonavir increased the exposure of apixaban, edoxaban, and rivaroxaban, but to a different extent the observed area under the plasma concentration-time curve (geometric mean ratio 1.29, 1.46, and 1.87, respectively). A strong CYP3A4 inhibition (geometric mean ratio > 10), a moderate CYP2C19 induction 2 days after ritonavir (0.64), and no alteration of CYP2D6 were observed. A CYP3A4 recovery half-life of 2.3 days was determined. CONCLUSION: This trial with three microdosed FXaI suggests that at most the rivaroxaban dose should be reduced during short-term ritonavir, and only in patients receiving high maintenance doses. Thorough time series analyses demonstrated differential effects on three different drug-metabolising enzymes over time with immediate profound inhibition of CYP3A4 and only slow recovery after discontinuation. CLINICAL TRIAL REGISTRATION: EudraCT number: 2021-006643-39.


Asunto(s)
Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP3A , Interacciones Farmacológicas , Inhibidores del Factor Xa , Voluntarios Sanos , Piridonas , Ritonavir , Humanos , Ritonavir/administración & dosificación , Ritonavir/farmacocinética , Ritonavir/farmacología , Masculino , Adulto , Inhibidores del Factor Xa/farmacocinética , Inhibidores del Factor Xa/administración & dosificación , Citocromo P-450 CYP3A/metabolismo , Piridonas/farmacocinética , Piridonas/administración & dosificación , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP2C19/metabolismo , Citocromo P-450 CYP2C19/genética , Administración Oral , Femenino , Rivaroxabán/farmacocinética , Rivaroxabán/administración & dosificación , Adulto Joven , Piridinas/farmacocinética , Piridinas/administración & dosificación , Piridinas/farmacología , Pirazoles/farmacocinética , Pirazoles/administración & dosificación , Pirazoles/farmacología , Tiazoles/farmacocinética , Tiazoles/administración & dosificación , Tiazoles/farmacología , Midazolam/farmacocinética , Midazolam/administración & dosificación , Omeprazol/farmacocinética , Omeprazol/administración & dosificación , Omeprazol/farmacología
17.
Antimicrob Agents Chemother ; 68(4): e0120423, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38411047

RESUMEN

Primaquine (PQ) is the main drug used to eliminate dormant liver stages and prevent relapses in Plasmodium vivax malaria. It also has an effect on the gametocytes of Plasmodium falciparum; however, it is unclear to what extent PQ affects P. vivax gametocytes. PQ metabolism involves multiple enzymes, including the highly polymorphic CYP2D6 and the cytochrome P450 reductase (CPR). Since genetic variability can impact drug metabolism, we conducted an evaluation of the effect of CYP2D6 and CPR variants on PQ gametocytocidal activity in 100 subjects with P. vivax malaria. To determine gametocyte density, we measured the levels of pvs25 transcripts in samples taken before treatment (D0) and 72 hours after treatment (D3). Generalized estimating equations (GEEs) were used to examine the effects of enzyme variants on gametocyte densities, adjusting for potential confounding factors. Linear regression models were adjusted to explore the predictors of PQ blood levels measured on D3. Individuals with the CPR mutation showed a smaller decrease in gametocyte transcript levels on D3 compared to those without the mutation (P = 0.02, by GEE). Consistent with this, higher PQ blood levels on D3 were associated with a lower reduction in pvs25 transcripts. Based on our findings, the CPR variant plays a role in the persistence of gametocyte density in P. vivax malaria. Conceptually, our work points to pharmacogenetics as a non-negligible factor to define potential host reservoirs with the propensity to contribute to transmission in the first days of CQ-PQ treatment, particularly in settings and seasons of high Anopheles human-biting rates.


Asunto(s)
Antimaláricos , Artemisininas , Malaria Falciparum , Malaria Vivax , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria Vivax/tratamiento farmacológico , Malaria Falciparum/tratamiento farmacológico , NADPH-Ferrihemoproteína Reductasa , Cloroquina/farmacología , Citocromo P-450 CYP2D6/genética , Artemisininas/farmacología , Primaquina/farmacología , Primaquina/uso terapéutico , Malaria/tratamiento farmacológico , Plasmodium falciparum , Plasmodium vivax/genética
18.
Basic Clin Pharmacol Toxicol ; 134(4): 531-542, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38308569

RESUMEN

AIM: The objective of this registry study is to assess the utilization of pharmacogenomic (PGx) drugs among patients with chronic kidney disease (CKD). METHODS: This study was a retrospective study of patients affiliated with the Department of Nephrology, Aalborg University Hospital, Denmark in 2021. Patients diagnosed with CKD were divided into CKD without dialysis and CKD with dialysis. PGx prescription drugs were retrieved from the Patient Administration System. Actionable dosing guidelines (AG) for specific drug-gene pairs for CYP2D6, CYP2C9, CYP2C19 and SLCO1B1 were retrieved from the PharmGKB homepage. RESULTS: Out of 1241 individuals, 25.5% were on dialysis. The median number of medications for each patient was 9 within the non-dialysis group and 16 within the dialysis group. Thirty-one distinct PGx drugs were prescribed. Altogether, 76.0% (943 individuals) were prescribed at least one PGx drug and the prevalence of prescriptions of PGx drugs was higher in the dialysis group compared to the non-dialysis group. The most frequently prescribed drugs with AG were metoprolol, pantoprazole, atorvastatin, simvastatin and warfarin. CONCLUSION: This study demonstrated that a substantial proportion of patients with CKD are exposed to drugs or drug combinations for which there exists AG related to PGx of CYP2D6, CYP2C19, CYP2C9 and SLCO1B1.


Asunto(s)
Medicamentos bajo Prescripción , Insuficiencia Renal Crónica , Humanos , Farmacogenética , Citocromo P-450 CYP2C19 , Estudios Retrospectivos , Citocromo P-450 CYP2D6 , Citocromo P-450 CYP2C9/genética , Diálisis Renal , Medicamentos bajo Prescripción/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Dinamarca , Transportador 1 de Anión Orgánico Específico del Hígado/genética
19.
Gene ; 907: 148252, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38350514

RESUMEN

Epidemiological studies have shown the association of genetic variants with risks of occupational and environmentally induced cancers, including bladder (BC). The current review summarizes the effects of variants in genes encoding phase I and II enzymes in well-designed studies to highlight their contribution to BC susceptibility and prognosis. Polymorphisms in genes codifying drug-metabolizing proteins are of particular interest because of their involvement in the metabolism of exogenous genotoxic compounds, such as tobacco and agrochemicals. The prognosis between muscle-invasive and non-muscle-invasive diseases is very different, and it is difficult to predict which will progress worse. Web of Science, PubMed, and Medline were searched to identify studies published between January 1, 2010, and February 2023. We included 73 eligible studies, more than 300 polymorphisms, and 46 genes/loci. The most studied candidate genes/loci of phase I metabolism were CYP1B1, CYP1A1, CYP1A2, CYP3A4, CYP2D6, CYP2A6, CYP3E1, and ALDH2, and those in phase II were GSTM1, GSTT1, NAT2, GSTP1, GSTA1, GSTO1, and UGT1A1. We used the 46 genes to construct a network of proteins and to evaluate their biological functions based on the Reactome and KEGG databases. Lastly, we assessed their expression in different tissues, including normal bladder and BC samples. The drug-metabolizing pathway plays a relevant role in BC, and our review discusses a list of genes that could provide clues for further exploration of susceptibility and prognostic biomarkers.


Asunto(s)
Arilamina N-Acetiltransferasa , Neoplasias de la Vejiga Urinaria , Humanos , Glutatión Transferasa/genética , Polimorfismo Genético , Citocromo P-450 CYP1A1/genética , Neoplasias de la Vejiga Urinaria/genética , Citocromo P-450 CYP2D6/genética , Predisposición Genética a la Enfermedad , Genotipo , Estudios de Casos y Controles , Factores de Riesgo , Arilamina N-Acetiltransferasa/genética , Aldehído Deshidrogenasa Mitocondrial/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA