Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 127
Filtrar
Más filtros












Intervalo de año de publicación
1.
Microb Ecol ; 83(1): 216-235, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33890146

RESUMEN

Invasive aspergillosis and scedosporiosis are life-threatening fungal infections with similar clinical manifestations in immunocompromised patients. Contrarily, Scedosporium apiospermum is susceptible to some azole derivative but often resistant to amphotericin B. Histopathological examination alone cannot diagnose these two fungal species. Pathogenesis studies could contribute to explore candidate protein markers for new diagnosis and treatment methods leading to a decrease in mortality. In the present study, proteomics was conducted to identify significantly altered proteins in A549 cells infected with or without Aspergillus fumigatus and S. apiospermum as measured at initial invasion. Protein validation was performed with immunogold labelling alongside immunohistochemical techniques in infected A549 cells and lungs from murine models. Further, cytokine production was measured, using the Bio-Plex-Multiplex immunoassay. The cytoskeletal proteins HSPA9, PA2G4, VAT1, PSMA2, PEX1, PTGES3, KRT1, KRT9, CLIP1 and CLEC20A were mainly changed during A. fumigatus infection, while the immunologically activated proteins WNT7A, GAPDH and ANXA2 were principally altered during S. apiospermum infection. These proteins are involved in fungal internalisation and structural destruction leading to pulmonary disorders. Interleukin (IL)-21, IL-1α, IL-22, IL-2, IL-8, IL-12, IL-17A, interferon-γ and tumour necrosis factor-α were upregulated in both aspergillosis and scedosporiosis, although more predominately in the latter, in accordance with chitin synthase-1 and matrix metalloproteinase levels. Our results demonstrated that during invasion, A. fumigatus primarily altered host cellular integrity, whereas S. apiospermum chiefly induced and extensively modulated host immune responses.


Asunto(s)
Aspergillus fumigatus , Citoesqueleto/microbiología , Epitelio/microbiología , Micosis , Scedosporium , Células A549 , Animales , Humanos , Pulmón , Ratones
2.
mBio ; 12(6): e0239721, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34903051

RESUMEN

Chlamydia trachomatis is an obligate intracellular bacterium that has developed sophisticated mechanisms to survive inside its infectious compartment, the inclusion. Notably, Chlamydia weaves an extensive network of microtubules (MTs) and actin filaments to enable interactions with host organelles and enhance its stability. Despite the global health and economic burden caused by this sexually transmitted pathogen, little is known about how actin and MT scaffolds are integrated into an increasingly complex virulence system. Previously, we established that the chlamydial effector InaC interacts with ARF1 to stabilize MTs. We now demonstrate that InaC regulates RhoA to control actin scaffolds. InaC relies on cross talk between ARF1 and RhoA to coordinate MTs and actin, where the presence of RhoA downregulates stable MT scaffolds and ARF1 activation inhibits actin scaffolds. Understanding how Chlamydia hijacks complex networks will help elucidate how this clinically significant pathogen parasitizes its host and reveal novel cellular signaling pathways. IMPORTANCE Chlamydia trachomatis is a major cause of human disease worldwide. The ability of Chlamydia to establish infection and cause disease depends on the maintenance of its parasitic niche, called the inclusion. To accomplish this feat, Chlamydia reorganizes host actin and microtubules around the inclusion membrane. How Chlamydia orchestrates these complex processes, however, is largely unknown. Here, we discovered that the chlamydial effector InaC activates Ras homolog family member A (RhoA) to control the formation of actin scaffolds around the inclusion, an event that is critical for inclusion stability. Furthermore, InaC directs the kinetics of actin and posttranslationally modified microtubule scaffolds by mediating cross talk between the GTPases that control these cytoskeletal elements, RhoA and ADP-ribosylation factor 1 (ARF1). The precise timing of these events is essential for the maintenance of the inclusion. Overall, this study provides the first evidence of ARF1-RhoA-mediated cross talk by a bacterial pathogen to coopt the host cytoskeleton.


Asunto(s)
Factor 1 de Ribosilacion-ADP/metabolismo , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/fisiología , Citoesqueleto/microbiología , Proteína de Unión al GTP rhoA/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Actinas/genética , Actinas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Chlamydia/genética , Infecciones por Chlamydia/microbiología , Chlamydia trachomatis/genética , Citoesqueleto/metabolismo , Células HeLa , Interacciones Huésped-Patógeno , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/microbiología , Unión Proteica , Virulencia , Proteína de Unión al GTP rhoA/genética
3.
mBio ; 12(1)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33468693

RESUMEN

Chlamydia trachomatis is a medically significant human pathogen and is an epithelial-tropic obligate intracellular parasite. Invasion of nonprofessional phagocytes represents a crucial step in the infection process and has likely promoted the evolution of a redundant mechanism and routes of entry. Like many other viral and invasive bacterial pathogens, manipulation of the host cell cytoskeleton represents a focal point in Chlamydia entry. The advent of genetic techniques in C. trachomatis, such as creation of complete gene deletions via fluorescence-reported allelic exchange mutagenesis (FRAEM), is providing important tools to unravel the contributions of bacterial factors in these complex pathways. The type III secretion chaperone Slc1 directs delivery of at least four effectors during the invasion process. Two of these, TarP and TmeA, have been associated with manipulation of actin networks and are essential for normal levels of invasion. The functions of TarP are well established, whereas TmeA is less well characterized. We leverage chlamydial genetics and proximity labeling here to provide evidence that TmeA directly targets host N-WASP to promote Arp2/3-dependent actin polymerization. Our work also shows that TmeA and TarP influence separate, yet synergistic pathways to accomplish chlamydial entry. These data further support an appreciation that a pathogen, confined by a reductionist genome, retains the ability to commit considerable resources to accomplish bottle-neck steps during the infection process.IMPORTANCE The increasing genetic tractability of Chlamydia trachomatis is accelerating the ability to characterize the unique infection biology of this obligate intracellular parasite. These efforts are leading to a greater understanding of the molecular events associated with key virulence requirements. Manipulation of the host actin cytoskeleton plays a pivotal role throughout Chlamydia infection, yet a thorough understanding of the molecular mechanisms initiating and orchestrating actin rearrangements has lagged. Our work highlights the application of genetic manipulation to address open questions regarding chlamydial invasion, a process essential to survival. We provide definitive insight regarding the role of the type III secreted effector TmeA and how that activity relates to another prominent effector, TarP. In addition, our data implicate at least one source that contributes to the functional divergence of entry mechanisms among chlamydial species.


Asunto(s)
Actinas/genética , Proteínas Bacterianas/genética , Chlamydia trachomatis/genética , Citoesqueleto/metabolismo , Chaperonas Moleculares/genética , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína 2 Relacionada con la Actina/genética , Proteína 2 Relacionada con la Actina/metabolismo , Proteína 3 Relacionada con la Actina/genética , Proteína 3 Relacionada con la Actina/metabolismo , Actinas/metabolismo , Proteínas Bacterianas/metabolismo , Línea Celular , Chlamydia trachomatis/crecimiento & desarrollo , Chlamydia trachomatis/metabolismo , Citoesqueleto/microbiología , Citoesqueleto/ultraestructura , Células Epiteliales/microbiología , Regulación de la Expresión Génica , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Chaperonas Moleculares/metabolismo , Polimerizacion , Transducción de Señal , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
4.
Acta Biochim Pol ; 67(4): 435-440, 2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33090749

RESUMEN

Chemically, the Nod factors (NFs) are lipochitooligosaccharides, produced mainly by bacteria of the Rhizobium genus. They are the main signaling molecules involved in the initiation of symbiosis between rhizobia and legume plants. Nod factors affect plant tissues at very low concentrations, even as low as 10-12 mol/L. They induce root hair deformation, cortical cell division, and root nodules' formation in the host plant. At the molecular level, the cytoskeleton is reorganized and expression of genes encoding proteins called nodulins is induced in response to Nod factors in the cell. Action of Nod factors is highly specific because it depends on the structure of a particular Nod factor involved, as well as the plant receptor reacting with it.


Asunto(s)
Fabaceae/microbiología , Lipopolisacáridos/biosíntesis , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Raíces de Plantas/microbiología , Rhizobium/fisiología , Simbiosis/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Citoesqueleto/ultraestructura , Fabaceae/genética , Fabaceae/crecimiento & desarrollo , Fabaceae/metabolismo , Regulación de la Expresión Génica de las Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Lipopolisacáridos/química , Proteínas de la Membrana/biosíntesis , Células Vegetales/metabolismo , Células Vegetales/microbiología , Células Vegetales/ultraestructura , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/biosíntesis , Nodulación de la Raíz de la Planta/genética , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Transducción de Señal
5.
Cells ; 9(9)2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887298

RESUMEN

Rho proteins of plants (ROPs) form a specific clade of Rho GTPases, which are involved in either plant immunity or susceptibility to diseases. They are intensively studied in grass host plants, in which ROPs are signaling hubs downstream of both cell surface immune receptor kinases and intracellular nucleotide-binding leucine-rich repeat receptors, which activate major branches of plant immune signaling. Additionally, invasive fungal pathogens may co-opt the function of ROPs for manipulation of the cytoskeleton, cell invasion and host cell developmental reprogramming, which promote pathogenic colonization. Strikingly, mammalian bacterial pathogens also initiate both effector-triggered susceptibility for cell invasion and effector-triggered immunity via Rho GTPases. In this review, we summarize central concepts of Rho signaling in disease and immunity of plants and briefly compare them to important findings in the mammalian research field. We focus on Rho activation, downstream signaling and cellular reorganization under control of Rho proteins involved in disease progression and pathogen resistance.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/inmunología , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Unión al GTP rho/genética , Animales , Arabidopsis/inmunología , Arabidopsis/microbiología , Citoesqueleto/inmunología , Citoesqueleto/microbiología , Resistencia a la Enfermedad/genética , Hordeum/genética , Hordeum/inmunología , Hordeum/microbiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Proteínas Repetidas Ricas en Leucina , Oryza/genética , Oryza/inmunología , Oryza/microbiología , Células Vegetales/inmunología , Células Vegetales/microbiología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/inmunología , Proteínas/genética , Proteínas/inmunología , Transducción de Señal , Proteínas de Unión al GTP rho/inmunología
6.
Front Immunol ; 11: 607945, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33679696

RESUMEN

The immune system has to cope with a wide range of irregularly shaped pathogens that can actively move (e.g., by flagella) and also dynamically remodel their shape (e.g., transition from yeast-shaped to hyphal fungi). The goal of this review is to draw general conclusions of how the size and geometry of a pathogen affect its uptake and processing by phagocytes of the immune system. We compared both theoretical and experimental studies with different cells, model particles, and pathogenic microbes (particularly fungi) showing that particle size, shape, rigidity, and surface roughness are important parameters for cellular uptake and subsequent immune responses, particularly inflammasome activation and T cell activation. Understanding how the physical properties of particles affect immune responses can aid the design of better vaccines.


Asunto(s)
Hongos/patogenicidad , Sistema Inmunológico/microbiología , Animales , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Endocitosis , Hongos/inmunología , Interacciones Huésped-Patógeno , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Inflamasomas/metabolismo , Activación de Linfocitos , Modelos Teóricos , Tamaño de la Partícula , Fagocitosis , Propiedades de Superficie , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/microbiología , Virión/inmunología , Virión/patogenicidad , Virus/inmunología , Virus/patogenicidad
7.
Fish Shellfish Immunol ; 93: 940-948, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31419531

RESUMEN

The Brown Ring Disease is an infection caused by the bacterium Vibrio tapetis on the Manila clam Ruditapes philippinarum. The process of infection, in the extrapallial fluids (EPFs) of clams, involves alteration of immune functions, in particular on hemocytes which are the cells responsible of phagocytosis. Disorganization of the actin-cytoskeleton in infected clams is a part of what leads to this alteration. This study is the first transcriptomic approach based on collection of extrapallial fluids on living animals experimentally infected by V. tapetis. We performed differential gene expression analysis of EPFs in two experimental treatments (healthy-against infected-clams by V. tapetis), and showed the deregulation of 135 genes. In infected clams, a downregulation of transcripts implied in immune functions (lysosomal activity and complement- and lectin-dependent PRR pathways) was observed during infection. We also showed a deregulation of transcripts encoding proteins involved in the actin cytoskeleton organization such as an overexpression of ß12-Thymosin (which is an actin sequestration protein) or a downregulation of proteins that closely interact with capping proteins such as Coactosin, that counteract action of capping proteins, or Profilin. We validated these transcriptomic results by cellular physiological analyses that showed a decrease of the lysosome amounts and the disorganization of actin cytoskeleton in infected hemocytes.


Asunto(s)
Bivalvos/inmunología , Citoesqueleto/microbiología , Inmunidad Innata/genética , Transcriptoma/inmunología , Vibrio/fisiología , Animales , Bivalvos/genética , Perfilación de la Expresión Génica
8.
J Cell Sci ; 132(9)2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040222

RESUMEN

Septins are widely recognized as a component of the cytoskeleton that is essential for cell division, and new work has shown that septins can recognise cell shape by assembling into filaments on membrane regions that display micrometer-scale curvature (e.g. at the cytokinetic furrow). Moreover, infection biology studies have illuminated important roles for septins in mediating the outcome of host-microbe interactions. In this Review, we discuss a selection of mechanistic insights recently gained from studying three infection paradigms: the rice blast fungus Magnaporthe oryzae, the poxvirus family member vaccinia virus and the Gram-negative bacterium Shigella flexneri These studies have respectively discovered that higher-order septin assemblies enable fungal invasion into plant cells, entrap viral particles at the plasma membrane and recognize dividing bacterial cells for delivery to lysosomes. Collectively, these insights illustrate how studying septin biology during microbial infection can provide fundamental advances in both cell and infection biology, and suggest new concepts underlying infection control.


Asunto(s)
Interacciones Microbiota-Huesped/fisiología , Oryza/microbiología , Oryza/virología , Enfermedades de las Plantas , Septinas , Membrana Celular/metabolismo , Membrana Celular/microbiología , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Magnaporthe/patogenicidad , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/virología , Septinas/biosíntesis , Septinas/química , Septinas/genética , Septinas/metabolismo , Shigella flexneri/patogenicidad , Virus Vaccinia/patogenicidad
9.
Curr Top Microbiol Immunol ; 412: 59-80, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-27197645

RESUMEN

Chlamydiae are obligate intracellular pathogens. They undergo a biphasic developmental cycle differentiating between the infectious but metabolically quiescent elementary body and the vegetative, but non-infectious reticulate body. Chlamydia spends a significant portion of its development in the non-infectious stage, demanding an effective strategy of manipulating the host cells to ensure its intracellular survival and replication. A common target of all Chlamydia species studied so far is the host cell cytoskeleton, with past and recent findings revealing crucial roles in invasion, inclusion maintenance, nutrient acquisition, and egress. The molecular details of how Chlamydia co-opts the cytoskeleton is becoming clearer, with bacterial factors and their corresponding host cell targets identified.


Asunto(s)
Chlamydia/patogenicidad , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Interacciones Huésped-Patógeno , Animales , Humanos
10.
Front Biosci (Landmark Ed) ; 22(11): 1830-1844, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28410148

RESUMEN

The obligate intracellular pathogen Anaplasma phagocytophilum infects vertebrate and tick hosts. In this study, a genome-wide search for cytoskeleton components was performed in the tick vector, Ixodes scapularis. The available transcriptomics and proteomics data was then used to characterize the mRNA and protein levels of I. scapularis cytoskeleton components in response to A. phagocytophilum infection. The results showed that cytoskeleton components described in other model organisms were present in the I. scapularis genome. One type of intermediate filaments (lamin), a family of septins that was recently implicated in the cellular response to intracellular pathogens, and several members of motor proteins (kinesins and dyneins) that could be implicated in the cytoplasmic movements of A. phagocytophilum were found. The results showed that levels of tubulin, actin, septin, actin-related proteins and motor proteins were affected by A. phagocytophilum, probably to facilitate infection in I. scapularis. Functional studies demonstrated a role for selected cytoskeleton components in pathogen infection. These results provided a more comprehensive view of the cytoskeletal components involved in the response to A. phagocytophilum infection in ticks.


Asunto(s)
Citoesqueleto/genética , Perfilación de la Expresión Génica/métodos , Ixodes/genética , Proteómica/métodos , Actinas/genética , Actinas/metabolismo , Anaplasma phagocytophilum/fisiología , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Línea Celular , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Interacciones Huésped-Patógeno , Ixodes/metabolismo , Ixodes/microbiología , Microscopía Confocal , Filogenia , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Septinas/clasificación , Septinas/genética , Septinas/metabolismo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(15): 3915-3920, 2017 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-28348208

RESUMEN

To establish infections, Salmonella injects virulence effectors that hijack the host actin cytoskeleton and phosphoinositide signaling to drive pathogen invasion. How effectors reprogram the cytoskeleton network remains unclear. By reconstituting the activities of the Salmonella effector SopE, we recapitulated Rho GTPase-driven actin polymerization at model phospholipid membrane bilayers in cell-free extracts and identified the network of Rho-recruited cytoskeleton proteins. Knockdown of network components revealed a key role for myosin VI (MYO6) in Salmonella invasion. SopE triggered MYO6 localization to invasion foci, and SopE-mediated activation of PAK recruited MYO6 to actin-rich membranes. We show that the virulence effector SopB requires MYO6 to regulate the localization of PIP3 and PI(3)P phosphoinositides and Akt activation. SopE and SopB target MYO6 to coordinate phosphoinositide production at invasion foci, facilitating the recruitment of cytoskeleton adaptor proteins to mediate pathogen uptake.


Asunto(s)
Interacciones Huésped-Patógeno/fisiología , Cadenas Pesadas de Miosina/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Salmonella typhimurium/patogenicidad , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Células HeLa , Humanos , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/genética , Fosfatidilinositoles/metabolismo , Salmonella typhimurium/metabolismo , Transducción de Señal , Factores de Virulencia/metabolismo
12.
Handb Exp Pharmacol ; 238: 67-85, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28181005

RESUMEN

Exoenzyme Y (ExoY) was identified as a component of the Pseudomonas aeruginosa type 3 secretion system secretome in 1998. It is a common contributor to the arsenal of type 3 secretion system effectors, as it is present in approximately 90% of Pseudomonas isolates. ExoY has adenylyl cyclase activity that is dependent upon its association with a host cell cofactor. However, recent evidence indicates that ExoY is not just an adenylyl cyclase; rather, it is a promiscuous cyclase capable of generating purine and pyrimidine cyclic nucleotide monophosphates. ExoY's enzymatic activity causes a characteristic rounding of mammalian cells, due to microtubule breakdown. In endothelium, this cell rounding disrupts cell-to-cell junctions, leading to loss of barrier integrity and an increase in tissue edema. Microtubule breakdown seems to depend upon tau phosphorylation, where the elevation of cyclic nucleotide monophosphates activates protein kinases A and G and causes phosphorylation of endothelial microtubule associated protein tau. Phosphorylation is a stimulus for tau release from microtubules, leading to microtubule instability. Phosphorylated tau accumulates inside endothelium as a high molecular weight, oligomeric form, and is then released from the cell. Extracellular high molecular weight tau causes a transmissible cytotoxicity that significantly hinders cellular repair following infection. Thus, ExoY may contribute to bacterial virulence in at least two ways; first, by microtubule breakdown leading to loss of endothelial cell barrier integrity, and second, by promoting release of a high molecular weight tau cytotoxin that impairs cellular recovery following infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosiltransferasas/metabolismo , Infecciones por Pseudomonas/enzimología , Pseudomonas aeruginosa/enzimología , Adenilil Ciclasas/metabolismo , Animales , Permeabilidad Capilar , Citoesqueleto/enzimología , Citoesqueleto/microbiología , Células Endoteliales/enzimología , Células Endoteliales/microbiología , Guanilato Ciclasa/metabolismo , Interacciones Huésped-Patógeno , Humanos , Fosforilación , Pseudomonas aeruginosa/patogenicidad , Sistemas de Mensajero Secundario , Virulencia , Proteínas tau/metabolismo
13.
J Proteome Res ; 16(1): 87-105, 2017 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-27740763

RESUMEN

The effectiveness of macrophages in the response to systemic candidiasis is crucial to an effective clearance of the pathogen. The secretion of proteins, mRNAs, noncoding RNAs and lipids through extracellular vesicles (EVs) is one of the mechanisms of communication between immune cells. EVs change their cargo to mediate different responses, and may play a role in the response against infections. Thus we have undertaken the first quantitative proteomic analysis on the protein composition of THP-1 macrophage-derived EVs during the interaction with Candida albicans. This study revealed changes in EVs sizes and in protein composition, and allowed the identification and quantification of 717 proteins. Of them, 133 proteins changed their abundance due to the interaction. The differentially abundant proteins were involved in functions relating to immune response, signaling, or cytoskeletal reorganization. THP-1-derived EVs, both from control and from Candida-infected macrophages, had similar effector functions on other THP-1-differenciated macrophages, activating ERK and p38 kinases, and increasing both the secretion of proinflammatory cytokines and the candidacidal activity; while in THP-1 nondifferenciated monocytes, only EVs from infected macrophages increased significantly the TNF-α secretion. Our findings provide new information on the role of macrophage-derived EVs in response to C. albicans infection and in macrophages communication.


Asunto(s)
Candida albicans/patogenicidad , Vesículas Extracelulares/inmunología , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Proteoma/inmunología , Candida albicans/crecimiento & desarrollo , Diferenciación Celular , Línea Celular , Biología Computacional , Citocinas/genética , Citocinas/inmunología , Citoesqueleto/inmunología , Citoesqueleto/microbiología , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/inmunología , Vesículas Extracelulares/química , Vesículas Extracelulares/microbiología , Regulación de la Expresión Génica/inmunología , Ontología de Genes , Humanos , Macrófagos/microbiología , Anotación de Secuencia Molecular , Proteoma/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología
14.
Int J Mol Sci ; 17(1)2016 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-26760998

RESUMEN

The interferon (IFN)-regulated endoribonuclease RNase-L is involved in multiple aspects of the antimicrobial innate immune response. It is the terminal component of an RNA cleavage pathway in which dsRNA induces the production of RNase-L-activating 2-5A by the 2'-5'-oligoadenylate synthetase. The active nuclease then cleaves ssRNAs, both cellular and viral, leading to downregulation of their expression and the generation of small RNAs capable of activating retinoic acid-inducible gene-I (RIG-I)-like receptors or the nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome. This leads to IFNß expression and IL-1ß activation respectively, in addition to broader effects on immune cell function. RNase-L is also one of a growing number of innate immune components that interact with the cell cytoskeleton. It can bind to several cytoskeletal proteins, including filamin A, an actin-binding protein that collaborates with RNase-L to maintain the cellular barrier to viral entry. This antiviral activity is independent of catalytic function, a unique mechanism for RNase-L. We also describe here the interaction of RNase-L with the E3 ubiquitin ligase and scaffolding protein, ligand of nump protein X (LNX), a regulator of tight junction proteins. In order to better understand the significance and context of these novel binding partners in the antimicrobial response, other innate immune protein interactions with the cytoskeleton are also discussed.


Asunto(s)
Infecciones Bacterianas/inmunología , Citoesqueleto/inmunología , Citoesqueleto/microbiología , Endorribonucleasas/inmunología , Inmunidad Innata , Virosis/inmunología , Animales , Bacterias/inmunología , Infecciones Bacterianas/enzimología , Humanos , Virosis/enzimología , Virus/inmunología
15.
Curr Opin Microbiol ; 28: 36-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26291501

RESUMEN

The integration of biochemical and biomechanical elements is at the heart of morphogenesis. While animal cells are relatively soft objects which shape and mechanics is mostly regulated by cytoskeletal networks, walled cells including those of plants, fungi and bacteria are encased in a rigid cell wall which resist high internal turgor pressure. How these particular mechanical properties may influence basic cellular processes, such as growth, shape and division remains poorly understood. Recent work using the model fungal cell fission yeast, Schizosaccharomyces pombe, highlights important contribution of cell mechanics to various morphogenesis processes. We envision this genetically tractable system to serve as a novel standard for the mechanobiology of walled cell.


Asunto(s)
Schizosaccharomyces/citología , Schizosaccharomyces/fisiología , Actinas/fisiología , Pared Celular/fisiología , Pared Celular/ultraestructura , Citocinesis , Citoesqueleto/microbiología , Citoesqueleto/fisiología , Citoesqueleto/ultraestructura , Endocitosis , Morfogénesis , Schizosaccharomyces/crecimiento & desarrollo
16.
PLoS One ; 10(6): e0128301, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029930

RESUMEN

Interferon-gamma (Ifnγ), a key macrophage activating cytokine, plays pleiotropic roles in host immunity. In this study, the ability of Ifnγ to induce the aggregation of resident mouse adherent peritoneal exudate cells (APECs), consisting primarily of macrophages, was investigated. Cell-cell interactions involve adhesion molecules and, upon addition of Ifnγ, CD11b re-localizes preferentially to the sites of interaction on APECs. A functional role of CD11b in enhancing aggregation is demonstrated using Reopro, a blocking reagent, and siRNA to Cd11b. Studies with NG-methyl-L-arginine (LNMA), an inhibitor of Nitric oxide synthase (Nos), NO donors, e.g., S-nitroso-N-acetyl-DL-penicillamine (SNAP) or Diethylenetriamine/nitric oxide adduct (DETA/NO), and Nos2-/- mice identified Nitric oxide (NO) induced by Ifnγ as a key regulator of aggregation of APECs. Further studies with Nos2-/- APECs revealed that some Ifnγ responses are independent of NO: induction of MHC class II and CD80. On the other hand, Nos2 derived NO is important for other functions: motility, phagocytosis, morphology and aggregation. Studies with cytoskeleton depolymerizing agents revealed that Ifnγ and NO mediate the cortical stabilization of Actin and Tubulin which contribute to aggregation of APECs. The biological relevance of aggregation of APECs was delineated using infection experiments with Salmonella Typhimurium (S. Typhimurium). APECs from orally infected, but not uninfected, mice produce high amounts of NO and aggregate upon ex vivo culture in a Nos2-dependent manner. Importantly, aggregated APECs induced by Ifnγ contain fewer intracellular S. Typhimurium compared to their single counterparts post infection. Further experiments with LNMA or Reopro revealed that both NO and CD11b are important for aggregation; in addition, NO is bactericidal. Overall, this study elucidates novel roles for Ifnγ and Nos2 in regulating Actin, Tubulin, CD11b, motility and morphology during the aggregation response of APECs. The implications of aggregation or "group behavior" of APECs are discussed in the context of host resistance to infectious organisms.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Interferón gamma/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Cavidad Peritoneal/citología , Salmonella typhimurium/fisiología , Actinas/metabolismo , Animales , Antígeno CD11b/metabolismo , Adhesión Celular/efectos de los fármacos , Agregación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Citoesqueleto/microbiología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/deficiencia , Cavidad Peritoneal/microbiología , Estabilidad Proteica/efectos de los fármacos , Tubulina (Proteína)/metabolismo
17.
Infect Immun ; 83(8): 3114-25, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26015478

RESUMEN

Bacillus anthracis secretes the edema toxin (ET) that disrupts the cellular physiology of endothelial and immune cells, ultimately affecting the adherens junction integrity of blood vessels that in turn leads to edema. The effects of ET on the cytoskeleton, which is critical in cell physiology, have not been described thus far on macrophages. In this study, we have developed different adhesive micropatterned surfaces (L and crossbow) to control the shape of bone marrow-derived macrophages (BMDMs) and primary peritoneal macrophages. We found that macrophage F-actin cytoskeleton adopts a specific polar organization slightly different from classical human HeLa cells on the micropatterns. Moreover, ET induced a major quantitative reorganization of F-actin within 16 h with a collapse at the nonadhesive side of BMDMs along the nucleus. There was an increase in size and deformation into a kidney-like shape, followed by a decrease in size that correlates with a global cellular collapse. The collapse of F-actin was correlated with a release of focal adhesion on the patterns and decreased cell size. Finally, the cell nucleus was affected by actin reorganization. By using this technology, we could describe many previously unknown macrophage cellular dysfunctions induced by ET. This novel tool could be used to analyze more broadly the effects of toxins and other virulence factors that target the cytoskeleton.


Asunto(s)
Carbunco/metabolismo , Antígenos Bacterianos/metabolismo , Bacillus anthracis/metabolismo , Toxinas Bacterianas/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Animales , Carbunco/microbiología , Antígenos Bacterianos/genética , Bacillus anthracis/genética , Toxinas Bacterianas/genética , Citoesqueleto/microbiología , Femenino , Humanos , Ratones Endogámicos C57BL
18.
mBio ; 6(1)2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25670778

RESUMEN

UNLABELLED: To establish intracellular infections, Salmonella bacteria trigger host cell membrane ruffling and invasion by subverting cellular Arf guanine nucleotide exchange factors (GEFs) that activate Arf1 and Arf6 GTPases by promoting GTP binding. A family of cellular Arf GTPase-activating proteins (GAPs) can downregulate Arf signaling by stimulating GTP hydrolysis, but whether they do this during infection is unknown. Here, we uncovered a remarkable role for distinct Arf GAP family members in Salmonella invasion. The Arf6 GAPs ACAP1 and ADAP1 and the Arf1 GAP ASAP1 localized at Salmonella-induced ruffles, which was not the case for the plasma membrane-localized Arf6 GAPs ARAP3 and GIT1 or the Golgi-associated Arf1 GAP1. Surprisingly, we found that loss of ACAP1, ADAP1, or ASAP1 impaired Salmonella invasion, revealing that GAPs cannot be considered mere terminators of cytoskeleton remodeling. Salmonella invasion was restored in Arf GAP-depleted cells by expressing fast-cycling Arf derivatives, demonstrating that Arf GTP/GDP cycles facilitate Salmonella invasion. Consistent with this view, both constitutively active and dominant-negative Arf derivatives that cannot undergo GTP/GDP cycles inhibited invasion. Furthermore, we demonstrated that Arf GEFs and GAPs colocalize at invading Salmonella and collaborate to drive Arf1-dependent pathogen invasion. This study revealed that Salmonella bacteria exploit a remarkable interplay between Arf GEFs and GAPs to direct cycles of Arf GTPase activation and inactivation. These cycles drive Salmonella cytoskeleton remodeling and enable intracellular infections. IMPORTANCE: To initiate infections, the Salmonella bacterial pathogen remodels the mammalian actin cytoskeleton and invades host cells by subverting host Arf GEFs that activate Arf1 and Arf6 GTPases. Cellular Arf GAPs deactivate Arf GTPases and negatively regulate cell processes, but whether they target Arfs during infection is unknown. Here, we uncovered an important role for the Arf GAP family in Salmonella invasion. Surprisingly, we found that Arf1 and Arf6 GAPs cooperate with their Arf GEF counterparts to facilitate cycles of Arf GTPase activation and inactivation, which direct pathogen invasion. This report illustrates that GAP proteins promote actin-dependent processes and are not necessarily restricted to negatively regulating cellular signaling. It uncovers a remarkable interplay between Arf GEFs and GAPs that is exploited by Salmonella to establish infection and expands our understanding of Arf GTPase-regulated cytoskeleton remodeling.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Familia de Multigenes , Infecciones por Salmonella/enzimología , Salmonella typhimurium/fisiología , Citoesqueleto/enzimología , Citoesqueleto/microbiología , Proteínas Activadoras de GTPasa/genética , Interacciones Huésped-Patógeno , Humanos , Infecciones por Salmonella/genética , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética
19.
Int J Mol Sci ; 15(10): 18253-66, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25310650

RESUMEN

Pathogen-induced reorganization of the host cell cytoskeleton is a common strategy utilized in host cell invasion by many facultative intracellular bacteria, such as Shigella, Listeria, enteroinvasive E. coli and Salmonella. Shigella is an enteroinvasive intracellular pathogen that preferentially infects human epithelial cells and causes bacillary dysentery. Invasion of Shigella into intestinal epithelial cells requires extensive remodeling of the actin cytoskeleton with the aid of pathogenic effector proteins injected into the host cell by the activity of the type III secretion system. These so-called Shigella invasins, including IpaA, IpaC, IpgB1, IpgB2 and IpgD, modulate the actin-regulatory system in a concerted manner to guarantee efficient entry of the bacteria into host cells.


Asunto(s)
Proteínas Bacterianas/metabolismo , Citoesqueleto/microbiología , Citoesqueleto/patología , Disentería Bacilar/metabolismo , Disentería Bacilar/patología , Interacciones Huésped-Patógeno , Shigella/fisiología , Secuencia de Aminoácidos , Animales , Antígenos Bacterianos/análisis , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/análisis , Citoesqueleto/metabolismo , Disentería Bacilar/microbiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular
20.
J Vis Exp ; (91): e51601, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25226510

RESUMEN

Shigella flexneri is an intracellular pathogen that can escape from phagosomes to reach the cytosol, and polymerize the host actin cytoskeleton to promote its motility and dissemination. New work has shown that proteins involved in actin-based motility are also linked to autophagy, an intracellular degradation process crucial for cell autonomous immunity. Strikingly, host cells may prevent actin-based motility of S. flexneri by compartmentalizing bacteria inside 'septin cages' and targeting them to autophagy. These observations indicate that a more complete understanding of septins, a family of filamentous GTP-binding proteins, will provide new insights into the process of autophagy. This report describes protocols to monitor autophagy-cytoskeleton interactions caused by S. flexneri in vitro using tissue culture cells and in vivo using zebrafish larvae. These protocols enable investigation of intracellular mechanisms that control bacterial dissemination at the molecular, cellular, and whole organism level.


Asunto(s)
Disentería Bacilar/microbiología , Shigella flexneri/citología , Animales , Autofagia/fisiología , Citoesqueleto/microbiología , Citoesqueleto/patología , Disentería Bacilar/patología , Femenino , Masculino , Shigella flexneri/patogenicidad , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...