Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.163
Filtrar
1.
J Control Release ; 367: 572-586, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301926

RESUMEN

The cytoskeleton facilitates tumor cells invasion into the bloodstream via vasculogenic mimicry (VM) for "attack", and protects cells against external threats through cytoskeletal remodeling and tunneling nanotubes (TNTs) for "defense". However, the existing strategies involving cytoskeleton are not sufficient to eliminate tumor metastasis due to mitochondrial energy supply, both within tumor cells and from outside microenvironment. Here, considering the close relationship between cytoskeleton and mitochondria both in location and function, we construct a nano-platform that combats the "attack" and "defense" of cytoskeleton in the cascading metastasis. The nano-platform is composed of KFCsk@LIP and KTMito@LIP for the cytoskeletal collapse and mitochondrial dysfunction. KFCsk@LIP prevents the initiation and circulation of cascading tumor metastasis, but arouses limited suppression in tumor cell proliferation. KTMito@LIP impairs mitochondria to trigger apoptosis and impede energy supply both from inside and outside, leading to an amplified effect for metastasis suppression. Further mechanisms studies reveal that the formation of VM and TNTs are seriously obstructed. Both in situ and circulating tumor cells are disabled. Subsequently, the broken metastasis cascade results in a remarkable anti-metastasis effect. Collectively, based on the nano-platform, the cytoskeletal collapse with synchronous mitochondrial dysfunction provides a potential therapeutic strategy for cascading tumor metastasis suppression.


Asunto(s)
Enfermedades Mitocondriales , Neovascularización Patológica , Humanos , Neovascularización Patológica/tratamiento farmacológico , Línea Celular Tumoral , Citoesqueleto/patología , Movimiento Celular
2.
Neuro Oncol ; 26(4): 625-639, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-37936324

RESUMEN

BACKGROUND: Glioblastomas have highly infiltrative growth patterns that contribute to recurrence and poor survival. Despite infiltration being a critical therapeutic target, no clinically useful therapies exist that counter glioblastoma invasion. Here, we report that inhibition of ataxia telangiectasia and Rad 3 related kinase (ATR) reduces invasion of glioblastoma cells through dysregulation of cytoskeletal networks and subsequent integrin trafficking. METHODS: Glioblastoma motility and invasion were assessed in vitro and in vivo in response to ATR inhibition (ATRi) and ATR overexpression using time-lapse microscopy, two orthotopic glioblastoma models, and intravital imaging. Disruption to cytoskeleton networks and endocytic processing were investigated via high-throughput, super-resolution and intravital imaging. RESULTS: High ATR expression was associated with significantly poorer survival in clinical datasets while histological, protein expression, and spatial transcriptomics using glioblastoma tumor specimens revealed higher ATR expression at infiltrative margins. Pharmacological inhibition with two different compounds and RNAi targeting of ATR opposed the invasion of glioblastoma, whereas overexpression of ATR drove migration. Subsequent investigation revealed that cytoskeletal dysregulation reduced macropinocytotic internalization of integrins at growth-cone-like structures, resulting in a tumor microtube retraction defect. The biological relevance and translational potential of these findings were confirmed using two orthotopic in vivo models of glioblastoma and intravital imaging. CONCLUSIONS: We demonstrate a novel role for ATR in determining invasion in glioblastoma cells and propose that pharmacological targeting of ATR could have far-reaching clinical benefits beyond radiosensitization.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Integrinas/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/patología , Invasividad Neoplásica , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
3.
J Pathol ; 261(3): 361-371, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37735782

RESUMEN

Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFß1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFß1 levels were highly correlated with PDE4 expression. TGFß1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFß1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.


Asunto(s)
Actinas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Animales , Humanos , Ratones , Actinas/metabolismo , Movimiento Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Proteómica , Rolipram/metabolismo
4.
Turk Neurosurg ; 33(6): 982-989, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37614213

RESUMEN

AIM: To evaluate the effects of c-Jun N-terminal kinase (JNK) inhibition and signal blocking on hypoxia (hypoxia-inducible factor 1-alpha (HIF-1α)), differentiation and neurogenesis (bone morphogenetic protein (BMP4)), and the cytoskeleton (F-actin) in glioblastoma multiforme cells (GBMCs). MATERIAL AND METHODS: We evaluated the differences between GBMCs and astrocytes in terms of the abovementioned parameters and assessed them with the aim of studying human GBMCs (U-87 MG) and astrocytes (SVG p12). The cells were exposed to different doses of the JNK inhibitor, SP600125, for 24, 48, and 72 hours. HIF-1α, BMP4, and F-actin expressions were evaluated using immunofluorescence image analysis. RESULTS: The half-maximal inhibitory concentration value for SP600125 was determined to be 10 µM at 24 hours of exposure. After SP600125 administration, elevated levels of HIF-1α and BMP4 were detected in GBMCs and astrocytes. F-actin level only increased in GBMCs after SP600125 administration. CONCLUSION: JNKs are important for cell proliferation, differentiation, survival, and death; thus, research on JNKs has become important for the treatment of many human diseases, especially brain tumors, Parkinson's disease, and Alzheimer's disease. The results of this study involving immunofluorescence techniques should be investigated and supported by studies that involve comprehensive molecular techniques.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/patología , Astrocitos , Actinas/metabolismo , Hipoxia/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Neurogénesis , Técnica del Anticuerpo Fluorescente
5.
Pathol Res Pract ; 249: 154723, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37544131

RESUMEN

In this paper, we aimed to evaluate the mechanism of actin cytoskeleton disruption, in oral squamous cell carcinoma (OSCC). A total of 43 patients with surgically resected OSCCs located in non-oropharyngeal regions were randomly selected. The expression of E-cadherin, ß-catenin, smooth muscle actin (SMA), Mena, maspin, V-set and immunoglobulin domain containing 1 (VSIG1), ß human chorionic gonadotropin (ßhCG), and angiotensin-converting enzyme (ACE) was assessed via immunohistochemistry (IHC) and evaluated in association with the prevalence of high-risk human papillomavirus (HPV). Mena positivity (n = 30; 69.77%) was more frequent in poorly differentiated OSCC of the tongue and lips with high-risk HPV viral DNA and a lymph node ratio (LNR) ≤ 2.5. Loss of E-cadherin was more prevalent among poorly differentiated stage pT4N1 tumors with an LNR ≤ 2.5 and perineural invasion. These cases were classified as SMA-high tumors. Independent negative prognostic factors included high Mena expression, loss of E-cadherin, high SMA expression, and the presence of high-risk HPV. No VSIG1 positivity was observed. In conclusion, in non-oropharyngeal OSCC, cytoskeleton activity might be driven by the Mena/E-cadherin/SMA axis, reflecting active epithelial-mesenchymal interaction. High Mena intensity is an indicator of poorly differentiated carcinomas with high-risk HPV and unfavorable prognosis.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Infecciones por Papillomavirus , Humanos , Neoplasias de la Boca/patología , Carcinoma de Células Escamosas de Cabeza y Cuello , Carcinoma de Células Escamosas/patología , Cadherinas/metabolismo , Pronóstico , Citoesqueleto/metabolismo , Citoesqueleto/patología
6.
Environ Int ; 178: 108093, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37459689

RESUMEN

Exposure to perfluorooctanoate (PFOA; a type of perfluoroalkyl carboxylates [PFACs]) may be correlated with the incidence of kidney cancer in individuals exposed to high levels of PFOA. However, mechanistic studies on the influence of PFACs on renal cell carcinoma (RCC) development are lacking. We explored the effects of five types of PFACs on RCC using in vitro and in vivo models to fill this knowledge gap and provide information for environmental/usage regulations. Using 2D/3D cultures of Caki-1 cells, a human clear cell RCC line, we examined the effects of short-chain (SC) PFACs and long-chain (LC) PFACs on RCC physio/pathological markers, including the cytoskeleton, epithelial-mesenchymal transition (EMT)-related proteins, and Na+/K+-ATPase. We also administered three different PFACs orally to mice harboring Caki-1 xenografts to assess the impact of these compounds on engrafted RCC in vivo. Compared with the effects of SCPFACs, mice with Caki-1 xenografts treated with LCPFACs showed increased EMT-related protein expression and exhibited liver toxicity. Therefore, LCPFACs induced EMT, influencing cancer metastasis activity, and displayed higher toxicity in vivo compared with SCPFACs. These findings improve our understanding of the effects of PFACs on RCC development and their corresponding in vivo toxicity, which is crucial for regulating these substances to protect public health.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Animales , Ratones , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Transición Epitelial-Mesenquimal , Xenoinjertos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Línea Celular Tumoral
7.
Hum Mol Genet ; 32(16): 2587-2599, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37228035

RESUMEN

Reticulon (RTN) proteins are a family of proteins biochemically identified for shaping tubular endoplasmic reticulum, a subcellular structure important for vesicular transport and cell-to-cell communication. In our recent study of mice with knockout of both reticulon 1 (Rtn1) and Rtn3, we discovered that Rtn1-/-;Rtn3-/- (brief as R1R3dKO) mice exhibited neonatal lethality, despite the fact that mice deficient in either RTN1 or RTN3 alone exhibit no discernible phenotypes. This has been the first case to find early lethality in animals with deletion of partial members of RTN proteins. The complete penetrance for neonatal lethality can be attributed to multiple defects including the impaired neuromuscular junction found in the diaphragm. We also observed significantly impaired axonal growth in a regional-specific manner, detected by immunohistochemical staining with antibodies to neurofilament light chain and neurofilament medium chain. Ultrastructural examination by electron microscopy revealed a significant reduction in synaptic active zone length in the hippocampus. Mechanistic exploration by unbiased proteomic assays revealed reduction of proteins such as FMR1, Staufen2, Cyfip1, Cullin-4B and PDE2a, which are known components in the fragile X mental retardation pathway. Together, our results reveal that RTN1 and RTN3 are required to orchestrate neurofilament organization and intact synaptic structure of the central nervous system.


Asunto(s)
Axones , Citoesqueleto , Hipocampo , Proteínas del Tejido Nervioso , Animales , Ratones , Genes Letales , Ratones Noqueados , Axones/metabolismo , Axones/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Proteínas del Tejido Nervioso/metabolismo , Retículo Endoplásmico/metabolismo , Sinapsis , Hipocampo/metabolismo , Hipocampo/patología
8.
Gut Liver ; 17(6): 916-925, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36700300

RESUMEN

Background/Aims: The involvement of long noncoding RNAs in the carcinogenesis of hepatocellular carcinoma (HCC) has been well documented by substantial evidence. However, whether cytoskeleton regulator RNA (CYTOR) could affect the progression of HCC remains unclear. Methods: The relative expression of CYTOR, miR-125a-5p and HS1-associated protein X-1 (HAX-1) mRNA in HCC cells were determined via quantitative real-time polymerase chain reaction. The viability of treated HCC cells was measured by Cell Counting Kit-8 assay. Cell apoptosis was estimated by flow cytometry analysis, assessment of caspase-9 activity and terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, and Western blot of apoptosis-related proteins. The interplay between CYTOR or HAX-1 and miR-125a-5p was validated by dual-luciferase reporter assay. Results: CYTOR was upregulated and miR-125a-5p was downregulated in HCC cells. CYTOR silencing inhibited cell proliferation and promoted cell apoptosis in HepG2 and SMMC-7721 cells. miR-125a-5p was sponged and negatively regulated by CYTOR, and HAX-1 was directly targeted and negatively modulated by miR-125a-5p. Overexpression of miR-125a-5p enhanced the repressive effects of CYTOR knockdown on HCC cells, and knockdown of HAX-1 enhanced the inhibitory effects of miR-125a-5p mimics on HCC cells. Conclusions: CYTOR silencing facilitates HCC cell apoptosis in vitro via the miR-125a-5p/HAX-1 axis.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , ARN Largo no Codificante/genética , Caspasa 9/genética , Caspasa 9/metabolismo , Línea Celular Tumoral , Citoesqueleto/metabolismo , Citoesqueleto/patología , Apoptosis/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
9.
Cell Mol Neurobiol ; 43(5): 1867-1884, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36352320

RESUMEN

Neurodegenerative diseases represent a large group of disorders characterized by gradual loss of neurons and functions of the central nervous systems. Their course is usually severe, leading to high morbidity and subsequent inability of patients to independent functioning. Vast majority of neurodegenerative diseases is currently untreatable, and only some symptomatic drugs are available which efficacy is usually very limited. To develop novel therapies for this group of diseases, it is crucial to understand their pathogenesis and to recognize factors which can influence the disease course. One of cellular structures which dysfunction appears to be relatively poorly understood in the light of neurodegenerative diseases is tubulin cytoskeleton. On the other hand, its changes, both structural and functional, can considerably influence cell physiology, leading to pathological processes occurring also in neurons. In this review, we summarize and discuss dysfunctions of tubulin cytoskeleton in various neurodegenerative diseases different than primary tubulinopathies (caused by mutations in genes encoding the components of the tubulin cytoskeleton), especially Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, prion diseases, and neuronopathic mucopolysaccharidoses. It is also proposed that correction of these disorders might attenuate the progress of specific diseases, thus, finding newly recognized molecular targets for potential drugs might become possible.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Tubulina (Proteína)/uso terapéutico , Citoesqueleto/patología , Microtúbulos , Enfermedad de Alzheimer/genética
10.
Cancer Gene Ther ; 30(2): 375-387, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36357564

RESUMEN

Esophageal squamous cell carcinoma (ESCC) is one of the most common malignant tumors in China. However, there are no targets to treat ESCC because the molecular mechanism behind the cancer is still unclear. Here, we found a novel long noncoding RNA LINC02820 was upregulated in ESCC and associated with the ESCC clinicopathological stage. Through a series of functional experiments, we observed that LINC02820 only promoted the migration and invasion capabilities of ESCC cell lines. Mechanically, we found that LINC02820 may affect the cytoskeletal remodeling, interact with splice factor 3B subunit 3 (SF3B3), and cooperate with TNFα to amplify the NF-κB signaling pathway, which can lead to ESCC metastasis. Overall, our findings revealed that LINC02820 is a potential biomarker and therapeutic target for the diagnosis and treatment of ESCC.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , ARN Largo no Codificante , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Neoplasias Esofágicas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Transducción de Señal , Citoesqueleto/genética , Citoesqueleto/metabolismo , Citoesqueleto/patología , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica
11.
Clin Exp Nephrol ; 27(2): 101-109, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36482266

RESUMEN

BACKGROUND: Genetic nephrotic syndrome is caused by pathogenic variants in genes encoding proteins necessary for the stability and functionality of the glomerular filtration barrier. To date, more than 70 genes associated with steroid-resistant nephrotic syndrome have been identified. We review the clinical and molecular aspects of genetic nephrotic syndrome with a particular focus on genes associated with slit membrane and podocyte cytoskeleton defects. Sanger sequencing and next-generation sequencing are widely used in the identification of novel gene variants and help us gain a better understanding of the disease. Despite these findings, therapy is mainly supportive and focused on the reduction of proteinuria and management of chronic kidney disease with an unfavorable outcome for a significant proportion of cases. Positive therapeutic effects of immunosuppressive drugs have been reported in some patients; however, their long-time administration cannot be generally recommended. CONCLUSION: Personalized treatment based on understanding the distinct disease pathogenesis is needed. With this, it will be possible to avoid harmful immunosuppressive therapy and improve outcomes and quality of life for pediatric patients suffering from genetic nephrotic syndrome.


Asunto(s)
Enfermedades Renales , Síndrome Nefrótico , Podocitos , Humanos , Niño , Podocitos/metabolismo , Síndrome Nefrótico/etiología , Calidad de Vida , Glomérulos Renales/patología , Enfermedades Renales/patología , Citoesqueleto/metabolismo , Citoesqueleto/patología
12.
Brain Behav ; 13(2): e2870, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579576

RESUMEN

BACKGROUND AND AIM: Traumatic spinal cord injury (SCI) is a common and devastating central nervous disease, the treatment of which faces many challenges to the medical community and society as a whole. Treatment measures based on oxidative stress of spinal motor neurons during SCI are expected to help restore biological functions of neurons under injury conditions. However, to date, there are no systematic reports regarding oxidative stress on spinal motor neuron injury. Our aim is to better understand and explain the influences and mechanisms of oxidative stress on spinal motor neurons during SCI. METHODS: We first exposed VSC4.1 motor neurons to hydrogen peroxide (H2 O2 ) and evaluated the effects on cell viability, morphology, cycling, and apoptosis, with an emphasis on the changes to the cytoskeleton and the effect of N-acetyl-l-cysteine (NAC) on these changes. Then, we investigated the effects of NAC on these cytoskeletal changes in vitro and in vivo. RESULTS: We found that H2 O2 caused severe damage to the normal cytoskeleton, leading to a reduction in neurite length and number, rearrangement of the actin cytoskeleton, and disorder of the microtubules and neurofilaments in VSC4.1. Importantly, NAC attenuated the oxidative damage of spinal motor neurons in vitro and in vivo, promoting the recovery of hindlimb motor ability in mice with SCI at the early stage of injury. CONCLUSION: This study shows that oxidative stress plays an important role in the cytoskeleton destruction of spinal motor neurons in SCI, and treatment of SCI on this basis is a promising strategy. These findings will help to elucidate the role of oxidative stress in spinal motor neuron injury in SCI and provide references for further research into the study of the pathology and underlying mechanism of SCI.


Asunto(s)
Neuronas Motoras , Traumatismos de la Médula Espinal , Ratones , Animales , Estrés Oxidativo , Traumatismos de la Médula Espinal/terapia , Citoesqueleto/patología , Microtúbulos/patología , Médula Espinal
13.
Bioengineered ; 13(6): 14605-14615, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35758029

RESUMEN

Cytoskeletal reorganization and epithelial-to-mesenchymal transition (EMT) are key processes and typical characteristics of metastatic cancer cells. Rho GTPase­activating protein 35 (ARHGAP35) is a GTPase-activating protein, which has a significant effect on cell motility. However, the particular function of ARHGAP35 in gastric cancer (GC) remains unknown. In the present study, the role of ARHGAP35 in GC was investigated by in vitro loss-of-function and gain-of-function experiments. Cytoskeletal reorganization in GC cells was evaluated using immunofluorescence staining and the protein expression levels of key molecules and active RhoA were detected by western blot analysis. Additionally, the clinical evaluation of proteins in human GC tissues was assessed by immunohistochemistry. The results showed that ARHGAP35, a tumor suppressor, was downregulated in GC tissues and its decreased expression was associated with the metastatic status of GC. Additionally, Transwell and wound healing assays demonstrated that ARHGAP35 knockdown promoted cell motility in vitro. However, the above effects were abrogated following ectopic ARHGAP35 expression. Furthermore, ARHGAP35 could affect cytoskeletal reorganization via directly regulating RhoA activation. In addition, ARHGAP35 upregulated E-cadherin and attenuated EMT in GC cells. Both ARHGAP35 and E-cadherin were associated with overall survival in patients with GC, while their combination allowed for an even greater capacity for distinguishing GC patients with different prognosis. Overall, the results of the current study suggested that ARHGAP35 could directly regulate cell morphology and motility via affecting cytoskeletal reorganization and EMT via targeting RhoA and E-cadherin, respectively. Targeting the ARHGAP35/RhoA/E-cadherin pathway could be a potential approach for treating GC.


Asunto(s)
Citoesqueleto , Factores de Intercambio de Guanina Nucleótido , Proteínas Represoras , Neoplasias Gástricas , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular , Citoesqueleto/metabolismo , Citoesqueleto/patología , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Humanos , Metástasis de la Neoplasia , Proteínas Represoras/metabolismo , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
14.
Nat Rev Cardiol ; 19(6): 364-378, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35440741

RESUMEN

The microtubule network of cardiac muscle cells has unique architectural and biophysical features to accommodate the demands of the working heart. Advances in live-cell imaging and in deciphering the 'tubulin code' have shone new light on this cytoskeletal network and its role in heart failure. Microtubule-based transport orchestrates the growth and maintenance of the contractile apparatus through spatiotemporal control of translation, while also organizing the specialized membrane systems required for excitation-contraction coupling. To withstand the high mechanical loads of the working heart, microtubules are post-translationally modified and physically reinforced. In response to stress to the myocardium, the microtubule network remodels, typically through densification, post-translational modification and stabilization. Under these conditions, physically reinforced microtubules resist the motion of the cardiomyocyte and increase myocardial stiffness. Accordingly, modified microtubules have emerged as a therapeutic target for reducing stiffness in heart failure. In this Review, we discuss the latest evidence on the contribution of microtubules to cardiac mechanics, the drivers of microtubule network remodelling in cardiac pathologies and the therapeutic potential of targeting cardiac microtubules in acquired heart diseases.


Asunto(s)
Citoesqueleto , Insuficiencia Cardíaca , Citoesqueleto/patología , Citoesqueleto/fisiología , Insuficiencia Cardíaca/patología , Humanos , Microtúbulos/patología , Microtúbulos/fisiología , Miocitos Cardíacos/patología , Tubulina (Proteína)
15.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164287

RESUMEN

Gastric cancer is a type of malignant tumor that seriously threatens human life and health. Invasion and metastasis present difficulties in the treatment of gastric cancer, and the remodeling of the tumor cytoskeleton plays an important role in mediating the ability of tumor cells to achieve invasion and metastasis. Previous experimental results suggest that Celastrus orbiculatus extract can regulate cytoskeletal remodeling in gastric cancer, but the active component has not been determined. Betulonic acid, as an effective component of COE, inhibits the invasion and metastasis of gastric cancer cells by regulating cytoskeletal remodeling in vitro; its specific mechanisms have been studied here. After betulonic acid was dissolved, it was diluted to various working concentrations in RPMI-1640 medium and added to AGS, HGC-27 and GES-1 cell lines. Cell viability was assessed by CCK-8 and colony formation assays. Cytoskeleton staining was used to detect changes in cytoskeleton morphology. Functional assays including wound healing assays and transwell assays were used to detect the invasion and migration of cells. The effect of betulonic acid on cell invasion and migration was clearly and precisely observed by high-content imaging technology. Western blotting was used to detect the regulation of matrix metalloproteinase-related proteins and epithelial-mesenchymal transformation-related proteins. We found that betulonic acid inhibited the migration and invasion of gastric cancer cells. Therefore, betulonic acid inhibits the invasion and metastasis of gastric cancer cells by mediating cytoskeletal remodeling and regulating epithelial mesenchymal transformation.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Celastrus , Citoesqueleto/efectos de los fármacos , Invasividad Neoplásica/prevención & control , Ácido Oleanólico/análogos & derivados , Neoplasias Gástricas/tratamiento farmacológico , Antineoplásicos Fitogénicos/química , Celastrus/química , Línea Celular Tumoral , Citoesqueleto/patología , Humanos , Invasividad Neoplásica/patología , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Neoplasias Gástricas/patología
16.
Ann Vasc Surg ; 79: 335-347, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34648856

RESUMEN

BACKGROUND: Superficial thrombophlebitis (ST) is a frequent pathology, but its exact incidence remains to be determined. This study tested the hypothesis whether relationships exist among smooth muscle cells (SMCs) derived from ST, varicose great saphenous veins (VGSVs), and normal great saphenous veins (GSVs). METHODS: Forty-one samples of ST, VGSVs, and GSVs were collected. SMCs were isolated and cultured. Proliferation, migration, adhesion, and senescence in SMCs from the three vein walls were compared by various methods. Bax, Bcl-2, caspase-3, matrix metalloproteinase-2 (MMP-2), MMP-9, tissue inhibitor of metalloproteinase-1 (TIMP-1), and TIMP-2 messenger RNA (mRNA) and protein expressions were detected by fluorescence quantitative PCR and Western blot. RESULTS: An obvious decrease in cytoskeletal filaments was observed in thrombophlebitic vascular smooth muscle cells (TVSMCs). The quantity of proliferation, migration, adhesion, and senescence in TVSMCs was significantly higher than in varicose vascular smooth muscle cells and normal vascular smooth muscle cells (NVSMCs) (all P < 0.05). Bax and caspase-3 mRNA and protein expression were decreased, while Bcl-2 mRNA and protein expression were increased in the TVSMCs compared with the varicose vascular smooth muscle cells and the NVSMCs (all P < 0.05). MMP-2, MMP-9, TIMP-1, and TIMP-2 mRNA and protein expression were significantly increased in the TVSMCs compared with the VVGSVs and the NVSMCs (all P < 0.05). CONCLUSION: SMCs derived from ST are more dedifferentiated and demonstrate increased cell proliferation, migration, adhesion, and senescence, as well as obviously decreased cytoskeletal filaments. These results suggest that the phenotypic and functional differences could be related to the presence of atrophic and hypertrophic vein segments during the disease course among SMCs derived from ST, VGSVs, and GSVs.


Asunto(s)
Desdiferenciación Celular , Citoesqueleto/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Tromboflebitis/patología , Várices/patología , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Estudios de Casos y Controles , Adhesión Celular , Movimiento Celular , Proliferación Celular , Células Cultivadas , Senescencia Celular , Citoesqueleto/metabolismo , Femenino , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Fenotipo , Vena Safena/metabolismo , Vena Safena/patología , Tromboflebitis/genética , Tromboflebitis/metabolismo , Inhibidor Tisular de Metaloproteinasa-1/genética , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Inhibidor Tisular de Metaloproteinasa-2/genética , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Várices/genética , Várices/metabolismo
17.
Cardiovasc Res ; 118(2): 503-516, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33624748

RESUMEN

AIMS: Hutchinson-Gilford progeria syndrome (HGPS) is an ultrarare laminopathy caused by expression of progerin, a lamin A variant, also present at low levels in non-HGPS individuals. HGPS patients age and die prematurely, predominantly from cardiovascular complications. Progerin-induced cardiac repolarization defects have been described previously, although the underlying mechanisms are unknown. METHODS AND RESULTS: We conducted studies in heart tissue from progerin-expressing LmnaG609G/G609G (G609G) mice, including microscopy, intracellular calcium dynamics, patch-clamping, in vivo magnetic resonance imaging, and electrocardiography. G609G mouse cardiomyocytes showed tubulin-cytoskeleton disorganization, t-tubular system disruption, sarcomere shortening, altered excitation-contraction coupling, and reductions in ventricular thickening and cardiac index. G609G mice exhibited severe bradycardia, and significant alterations of atrio-ventricular conduction and repolarization. Most importantly, 50% of G609G mice had altered heart rate variability, and sinoatrial block, both significant signs of premature cardiac aging. G609G cardiomyocytes had electrophysiological alterations, which resulted in an elevated action potential plateau and early afterdepolarization bursting, reflecting slower sodium current inactivation and long Ca+2 transient duration, which may also help explain the mild QT prolongation in some HGPS patients. Chronic treatment with low-dose paclitaxel ameliorated structural and functional alterations in G609G hearts. CONCLUSIONS: Our results demonstrate that tubulin-cytoskeleton disorganization in progerin-expressing cardiomyocytes causes structural, cardiac conduction, and excitation-contraction coupling defects, all of which can be partially corrected by chronic treatment with low dose paclitaxel.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/tratamiento farmacológico , Citoesqueleto/efectos de los fármacos , Acoplamiento Excitación-Contracción/efectos de los fármacos , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Paclitaxel/farmacología , Progeria/tratamiento farmacológico , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Modelos Animales de Enfermedad , Femenino , Predisposición Genética a la Enfermedad , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Masculino , Ratones Mutantes , Mutación , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Progeria/genética , Progeria/metabolismo , Progeria/fisiopatología , Periodo Refractario Electrofisiológico/efectos de los fármacos , Porcinos , Porcinos Enanos , Tubulina (Proteína)/metabolismo
18.
Cancer Lett ; 526: 155-167, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826548

RESUMEN

Obscurins, encoded by the OBSCN gene, are giant cytoskeletal proteins with structural and regulatory roles. Large scale omics analyses reveal that OBSCN is highly mutated across different types of cancer, exhibiting a 5-8% mutation frequency in pancreatic cancer. Yet, the functional role of OBSCN in pancreatic cancer progression and metastasis has to be delineated. We herein show that giant obscurins are highly expressed in normal pancreatic tissues, but their levels are markedly reduced in pancreatic ductal adenocarcinomas. Silencing of giant obscurins in non-tumorigenic Human Pancreatic Ductal Epithelial (HPDE) cells and obscurin-expressing Panc5.04 pancreatic cancer cells induces an elongated, spindle-like morphology and faster cell migration via cytoskeletal remodeling. Specifically, depletion of giant obscurins downregulates RhoA activity, which in turn results in reduced focal adhesion density, increased microtubule growth rate and faster actin dynamics. Although OBSCN knockdown is not sufficient to induce de novo tumorigenesis, it potentiates tumor growth in a subcutaneous implantation model and exacerbates metastasis in a hemispleen murine model of pancreatic cancer metastasis, thereby shortening survival. Collectively, these findings reveal a critical role of giant obscurins as tumor suppressors in normal pancreatic epithelium whose loss of function induces RhoA-dependent cytoskeletal remodeling, and promotes cell migration, tumor growth and metastasis.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Citoesqueleto/metabolismo , Citoesqueleto/patología , Femenino , Xenoinjertos , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Metástasis de la Neoplasia , Neoplasias Pancreáticas/patología
19.
World J Gastroenterol ; 28(47): 6769-6787, 2022 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-36620343

RESUMEN

BACKGROUND: Gastric cancer (GC) is a common malignant tumor with high incidence and mortality rates globally, especially in East Asian countries. Helicobacter pylori (H. pylori) infection is a significant and independent risk factor for GC. However, its underlying mechanism of action is not fully understood. Dickkopf-related protein (DKK) 1 is a Wnt signaling antagonist, and cytoskeleton-associated protein (CKAP) 4 is a newly identified DKK1 receptor. Recent studies found that the binding of DKK1 to CAKP4 mediated the procancer signaling of DKK1 inde-pendent of Wnt signaling. We hypothesize that H. pylori-induced activation of DKK1/CKAP4 signaling contributes to the initiation and progression of GC. AIM: To investigate the interaction of H. pylori infection, DKK1 and CAKP4 in GC, as well as the underlying molecular mechanisms. METHODS: RNA sequencing was used to identify differentially expressed genes (DEGs) between H. pylori-infected and uninfected primary GC cells. Gain- and loss-of-function experiments were performed to verify the H. pylori-induced upregulation of activator protein-1 (AP-1) in GC cells. A dual-luciferase reporter assay and co-immunoprecipitation were used to determine the binding of AP-1 to the DKK1 promoter and DKK1 to CKAP4. Western blotting and immunohistochemistry detected the expression of DKK1, CKAP4, and phos-phatidylinositol 3-kinase (PI3K) pathway-related proteins in GC cells and tissues. Functional experiments and tumorigenicity in nude mice detected malignant behavior of GC cells in vitro and in vivo. RESULTS: We identified 32 DEGs between primary GC cells with and without H. pylori infection, including JUN, fos-like antigen-1 (FOSL1), and DKK1, and confirmed that the three proteins and CKAP4 were highly expressed in H. pylori-infected GC cells, H. pylori-infected gerbil gastric tissues, and human GC tissues. JUN and FOSL1 form AP-1 to transcriptionally activate DKK1 expression by binding to the DKK1 promoter. Activated DKK1 bound to CKAP4, but not the most common Wnt coreceptor low-density lipoprotein receptor-related protein 5/6, to promote GC cell growth, colony formation, migration, invasion, and xenograft tumor growth in nude mice. All these effects were driven by activation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway. Targeting the PI3K signaling pathway by LY294002 inhibited DKK1-mediated CKAP4/PI3K signaling activity and the malignant behavior of GC cells. CONCLUSION: H. pylori induces JUN and FOSL1 expression to form AP-1, which transcriptionally activates DKK1. Binding of DKK1 to KAKP4 contributes to gastric tumorigenesis via the PI3K/AKT/mTOR pathway.


Asunto(s)
Infecciones por Helicobacter , Péptidos y Proteínas de Señalización Intercelular , Neoplasias Gástricas , Animales , Humanos , Ratones , Línea Celular Tumoral , Transformación Celular Neoplásica , Citoesqueleto/metabolismo , Citoesqueleto/patología , Infecciones por Helicobacter/patología , Helicobacter pylori/fisiología , Ratones Desnudos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción AP-1/metabolismo , Vía de Señalización Wnt , Péptidos y Proteínas de Señalización Intercelular/metabolismo
20.
Toxins (Basel) ; 13(11)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822560

RESUMEN

Pseudomonas (P.) aeruginosa is an opportunistic pathogen that causes serious infections and hospital-acquired pneumonia in immunocompromised patients. P. aeruginosa accounts for up to 20% of all cases of hospital-acquired pneumonia, with an attributable mortality rate of ~30-40%. The poor clinical outcome of P. aeruginosa-induced pneumonia is ascribed to its ability to disrupt lung barrier integrity, leading to the development of lung edema and bacteremia. Airway epithelial and endothelial cells are important architecture blocks that protect the lung from invading pathogens. P. aeruginosa produces a number of virulence factors that can modulate barrier function, directly or indirectly, through exploiting cytoskeleton networks and intercellular junctional complexes in eukaryotic cells. This review summarizes the current knowledge on P. aeruginosa virulence factors, their effects on the regulation of the cytoskeletal network and associated components, and molecular mechanisms regulating barrier function in airway epithelial and endothelial cells. A better understanding of these processes will help to lay the foundation for new therapeutic approaches against P. aeruginosa-induced pneumonia.


Asunto(s)
Citoesqueleto/patología , Pulmón/fisiopatología , Infecciones por Pseudomonas/fisiopatología , Pseudomonas aeruginosa/fisiología , Factores de Virulencia/fisiología , Bacteriemia/microbiología , Edema/metabolismo , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA