Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Intervalo de año de publicación
1.
Sci Rep ; 14(1): 18175, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107431

RESUMEN

Cytoglobin (CYGB) is a member of the oxygen-binding globin superfamily. In this study we generated stable CYGB overexpressing A375 melanoma cells and performed RNA-sequencing to comprehensively explore the CYGB-dependent transcriptome. Our findings reveal that ectopic expression of CYGB dysregulated multiple cancer-associated genes, including the mTORC1 and AKT/mTOR signaling pathways, which are frequently overactivated in tumors. Moreover, several cancer-associated pathways, such as epithelial-mesenchymal transition (EMT) mediated by CSPG4, were downregulated upon CYGB overexpression. Intriguingly, ectopic expression suggested anti-inflammatory potential of CYGB, as exemplified by downregulation of key inflammasome-associated genes, including NLRP1, CASP1 and CD74, which play pivotal roles in cytokine regulation and inflammasome activation. Consistent with established globin functions, CYGB appears to be involved in redox homeostasis. Furthermore, our study indicates CYGB's association to DNA repair mechanisms and its regulation of NOX4, reinforcing its functional versatility. Additionally, multiple significantly enriched pathways in CYGB overexpressing cells were consistently dysregulated in opposite direction in CYGB depleted cells. Collectively, our RNA-sequencing based investigations illustrate the diverse functions of CYGB in melanoma cells, pointing to its putative roles in cellular protection against oxidative stress, inflammation, and cancer-associated pathways. These findings pave the way for further research into the physiological role of CYGB and its potential as a candidate therapeutic target in melanoma.


Asunto(s)
Citoglobina , Regulación Neoplásica de la Expresión Génica , Inflamación , Melanoma , Estrés Oxidativo , Transcriptoma , Citoglobina/metabolismo , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Inflamación/genética , Inflamación/metabolismo , Línea Celular Tumoral , Transducción de Señal , Transición Epitelial-Mesenquimal/genética , NADPH Oxidasa 4/metabolismo , NADPH Oxidasa 4/genética , Perfilación de la Expresión Génica
2.
Anticancer Res ; 44(2): 561-565, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38307547

RESUMEN

BACKGROUND/AIM: Cytoglobin (Cygb), a protein involved in cellular oxygen metabolism and protection, has garnered attention owing to its potential role in the initiation and progression of cancer, particularly colon cancer (CC). This study investigated the expression and significance of Cygb in CC. PATIENTS AND METHODS: This study included 145 patients who underwent R0 surgery for CC (clinical stage II/III) at our institution between January 2007 and December 2014. Immunohistochemical analysis was performed to evaluate the Cygb expression patterns in CC tissues. Additionally, the correlation between Cygb expression levels and the clinicopathological characteristics of patients with CC was investigated. RESULTS: Colon cancer tissues were categorized into high-expression (95 cases) and low-expression (50 cases) groups. Cygb was highly expressed in well-differentiated cases, whereas its expression decreased in poorly differentiated cases. No significant differences in other clinicopathological factors were observed between the two groups. Cygb expression had no significant effect on recurrence-free survival or overall survival. CONCLUSION: This study contributes to the growing understanding of Cygb expression and its significance in CC. The expression of Cygb in CC was found to be unrelated to the recurrence rate and prognosis, but showed a correlation with differentiation status.


Asunto(s)
Neoplasias del Colon , Globinas , Humanos , Citoglobina , Globinas/metabolismo
3.
J Inorg Biochem ; 250: 112405, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37977965

RESUMEN

The vertebrate respiratory protein cytoglobin (Cygb) is thought to exert multiple cellular functions. Here we studied the phenotypic effects of a Cygb knockout (KO) in mouse on the transcriptome level. RNA sequencing (RNA-Seq) was performed for the first time on sites of major endogenous Cygb expression, i.e. quiescent and activated hepatic stellate cells (HSCs) and two brain regions, hippocampus and hypothalamus. The data recapitulated the up-regulation of Cygb during HSC activation and its expression in the brain. Differential gene expression analyses suggested a role of Cygb in the response to inflammation in HSCs and its involvement in retinoid metabolism, retinoid X receptor (RXR) activation-induced xenobiotics metabolism, and RXR activation-induced lipid metabolism and signaling in activated cells. Unexpectedly, only minor effects of the Cygb KO were detected in the transcriptional profiles in hippocampus and hypothalamus, precluding any enrichment analyses. Furthermore, the transcriptome data pointed at a previously undescribed potential of the Cygb- knockout allele to produce cis-acting effects, necessitating future verification studies.


Asunto(s)
Globinas , Células Estrelladas Hepáticas , Animales , Ratones , Citoglobina/genética , Citoglobina/metabolismo , Citoglobina/farmacología , Perfilación de la Expresión Génica , Globinas/genética , Globinas/metabolismo , Células Estrelladas Hepáticas/metabolismo , Hipocampo/metabolismo , Ratones Noqueados , Transcriptoma
4.
Nat Commun ; 14(1): 8333, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097556

RESUMEN

Cytoglobin is a heme protein with unresolved physiological function. Genetic deletion of zebrafish cytoglobin (cygb2) causes developmental defects in left-right cardiac determination, which in humans is associated with defects in ciliary function and low airway epithelial nitric oxide production. Here we show that Cygb2 co-localizes with cilia and with the nitric oxide synthase Nos2b in the zebrafish Kupffer's vesicle, and that cilia structure and function are disrupted in cygb2 mutants. Abnormal ciliary function and organ laterality defects are phenocopied by depletion of nos2b and of gucy1a, the soluble guanylate cyclase homolog in fish. The defects are rescued by exposing cygb2 mutant embryos to a nitric oxide donor or a soluble guanylate cyclase stimulator, or with over-expression of nos2b. Cytoglobin knockout mice also show impaired airway epithelial cilia structure and reduced nitric oxide levels. Altogether, our data suggest that cytoglobin is a positive regulator of a signaling axis composed of nitric oxide synthase-soluble guanylate cyclase-cyclic GMP that is necessary for normal cilia motility and left-right patterning.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Humanos , Ratones , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Citoglobina/genética , Tipificación del Cuerpo/genética , Óxido Nítrico/metabolismo , Guanilil Ciclasa Soluble/genética , Guanilil Ciclasa Soluble/metabolismo , Cilios/metabolismo , Óxido Nítrico Sintasa/metabolismo
5.
Biol. Res ; 52: 23, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-1011425

RESUMEN

BACKGROUND: Conjunctival filtering bleb scar formation is the main reason for the failure of glaucoma filtration surgery. Cytoglobin (Cygb) has been reported to play an important role in extracellular matrix (ECM) remodeling, fibrosis and tissue damage repairing. This study aimed to investigate the role of Cygb in anti-scarring during excessive conjunctival wound healing after glaucoma filtration surgery. METHODS: Cygb was overexpressed in human tenon fibroblasts (hTFs) by transfecting hTFs with lentiviral particles encoding pLenti6.2-FLAG-Cygb. Changes in the mRNA and protein levels of fibronectin, collagen I, collagen III, TGF-ß1, and HIF1α were determined by RT-PCR and western blotting respectively. RESULTS: After Cygb overexpression, hTFs displayed no significant changes in visual appearance and cell counts compared to controls. Whereas, Cygb overexpression significantly decreased the mRNA and protein expression levels of collagen I, collagen III and fibronectin compared with control (p < 0.01). There was also a statistically significant decrease in the mRNA and protein levels of TGF-ß1 and HIF-1α in hTFs with overexpressed Cygb compared with control group (p < 0.05). CONCLUSION: Our study provided evidence that overexpression of Cygb decreased the expression levels of fibronectin, collagen I, collagen III, TGF-ß1 and HIF-1α in hTFs. Therefore, therapies targeting Cygb expression in hTFs may pave a new way for clinicians to solve the problem of post-glaucoma surgery scarring.


Asunto(s)
Humanos , Matriz Extracelular/metabolismo , Cápsula de Tenon/metabolismo , Fibroblastos/metabolismo , Citoglobina/metabolismo , ARN Mensajero/análisis , Colágeno/análisis , Fibronectinas/análisis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Matriz Extracelular/efectos de los fármacos , Citoglobina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...