Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros












Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6565, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39095373

RESUMEN

The legume albumin-1 gene family, arising after nodulation, encodes linear a- and b-chain peptides for nutrient storage and defense. Intriguingly, in one prominent legume, Clitoria ternatea, the b-chains are replaced by domains producing ultra-stable cyclic peptides called cyclotides. The mechanism of this gene hijacking is until now unknown. Cyclotides require recruitment of ligase-type asparaginyl endopeptidases (AEPs) for maturation (cyclization), necessitating co-evolution of two gene families. Here we compare a chromosome-level C. ternatea genome with grain legumes to reveal an 8 to 40-fold expansion of the albumin-1 gene family, enabling the additional loci to undergo diversification. Iterative rounds of albumin-1 duplication and diversification create four albumin-1 enriched genomic islands encoding cyclotides, where they are physically grouped by similar pI and net charge values. We identify an ancestral hydrolytic AEP that exhibits neofunctionalization and multiple duplication events to yield two ligase-type AEPs. We propose cyclotides arise by convergence in C. ternatea where their presence enhances defense from biotic attack, thus increasing fitness compared to lineages with linear b-chains and ultimately driving the replacement of b-chains with cyclotides.


Asunto(s)
Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Clitoria/metabolismo , Clitoria/genética , Ciclotidas/genética , Ciclotidas/química , Ciclotidas/metabolismo , Fijación del Nitrógeno/genética , Evolución Molecular , Ciclización , Filogenia , Familia de Multigenes , Duplicación de Gen , Fabaceae/genética , Fabaceae/metabolismo , Albúminas/metabolismo , Albúminas/genética , Genoma de Planta , Cisteína Endopeptidasas
2.
Sci Rep ; 10(1): 12658, 2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32728092

RESUMEN

Clitoria ternatea a perennial climber of the Fabaceae family, is well known for its agricultural and medical applications. It is also currently the only known member of the Fabaceae family that produces abundant amounts of the ultra-stable macrocyclic peptides, cyclotides, across all tissues. Cyclotides are a class of gene-encoded, disulphide-rich, macrocyclic peptides (26-37 residues) acting as defensive metabolites in several plant species. Previous transcriptomic studies have demonstrated the genetic origin of cyclotides from the Fabaceae plant family to be embedded in the albumin-1 genes, unlike its counterparts in other plant families. However, the complete mechanism of its biosynthesis and the repertoire of enzymes involved in cyclotide folding and processing remains to be understood. In this study, using RNA-Seq data and de novo transcriptome assembly of Clitoria ternatea, we have identified 71 precursor genes of cyclotides. Out of 71 unique cyclotide precursor genes obtained, 51 sequences display unique cyclotide domains, of which 26 are novel cyclotide sequences, arising from four individual tissues. MALDI-TOF mass spectrometry analysis of fractions from different tissue extracts, coupled with precursor protein sequences obtained from transcriptomic data, established the cyclotide diversity in this plant species. Special focus in this study has also been on identifying possible enzymes responsible for proper folding and processing of cyclotides in the cell. Transcriptomic mining for oxidative folding enzymes such as protein-disulphide isomerases (PDI), ER oxidoreductin-1 (ERO1) and peptidylprolyl cis-trans isomerases (PPIases)/cyclophilins, and their levels of expression are also reported. In particular, it was observed that the CtPDI genes formed plant-specific clusters among PDI genes as compared to those from other plant species. Collectively, this work provides insights into the biogenesis of the medicinally important cyclotides and establishes the expression of certain key enzymes participating in peptide biosynthesis. Also, several novel cyclotide sequences are reported and precursor sequences are analysed in detail. In the absence of a published reference genome, a comprehensive transcriptomics approach was adopted to provide an overview of diverse properties and constituents of C. ternatea.


Asunto(s)
Clitoria/genética , Ciclotidas/biosíntesis , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Clitoria/metabolismo , Ciclotidas/análisis , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Análisis de Secuencia de ARN , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
3.
Plant J ; 98(6): 988-999, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790358

RESUMEN

Plant asparaginyl endopeptidases (AEPs) are expressed as inactive zymogens that perform maturation of seed storage protein upon cleavage-dependent autoactivation in the low-pH environment of storage vacuoles. The AEPs have attracted attention for their macrocyclization reactions, and have been classified as cleavage or ligation specialists. However, we have recently shown that the ability of AEPs to produce either cyclic or acyclic products can be altered by mutations to the active site region, and that several AEPs are capable of macrocyclization given favorable pH conditions. One AEP extracted from Clitoria ternatea seeds (butelase 1) is classified as a ligase rather than a protease, presenting an opportunity to test for loss of cleavage activity. Here, making recombinant butelase 1 and rescuing an Arabidopsis thaliana mutant lacking AEP, we show that butelase 1 retains cleavage functions in vitro and in vivo. The in vivo rescue was incomplete, consistent with some trade-off for butelase 1 specialization toward macrocyclization. Its crystal structure showed an active site with only subtle differences from cleaving AEPs, suggesting the many differences in its peptide-binding region are the source of its efficient macrocyclization. All considered, it seems that either butelase 1 has not fully specialized or a requirement for autocatalytic cleavage is an evolutionary constraint upon macrocyclizing AEPs.


Asunto(s)
Arabidopsis/enzimología , Clitoria/enzimología , Cisteína Endopeptidasas/metabolismo , Ligasas/metabolismo , Arabidopsis/genética , Evolución Biológica , Catálisis , Dominio Catalítico , Clitoria/genética , Cristalografía por Rayos X , Ciclización , Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/genética , Ligasas/química , Ligasas/genética , Modelos Estructurales , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/metabolismo
4.
Ecotoxicol Environ Saf ; 164: 50-60, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30096603

RESUMEN

Air pollutants especially polyaromatic hydrocarbons pose countless threats to the environment. This issue demands for an effective phytoremediation technology. In this study we report the beneficial interactions of Clitoria ternatea and its plant growth promoting endophytic bacteria Bacillus cereus ERBP by inoculating it for the remediation of 5 ppm airborne ethylbenzene (EB). The percentage efficiency for ethylbenzene removal among B. cereus ERBP inoculated and non-inoculated sterile and natural C. ternatea has also been determined. The inoculation of B. cereus ERBP has significantly increased EB removal efficiency of both sterile and natural C. ternatea. The inoculated natural C. ternatea seedlings showed 100% removal efficiency within 84 h for the aforementioned pollutant compared with the sterile inoculated C. ternatea seedlings (108 h). The degradation of EB by C. ternatea seedlings with and without B. cereus ERBP was assessed by measuring the intermediates of EB including 1-phenylethanol, acetophenon, benzaldehyde and benzoic acid. In addition, cytochrome P450s monooxygenase (CYP83D1) and dehydrogenases (LOC100783159) involved in the oxidation of hydrocarbons are well reported for their bio catalytic activities under xenobiotic stress conditions. Hence, the co-effect of the native endophyte B. cereus ERBP inoculation and EB exposure on the expression level of CYP83D1 and dehydrogenase were also determined. The targeted genes CYP83D1and dehydrogenases have shown an increased expression level under the 5 ppm of EB exposure enabling C. ternatea to withstand and remediate the pollutant.


Asunto(s)
Contaminantes Atmosféricos/metabolismo , Bacillus cereus/fisiología , Derivados del Benceno/metabolismo , Clitoria/metabolismo , Clitoria/microbiología , Biodegradación Ambiental , Clitoria/genética , Endófitos , Genes de Plantas
5.
FEBS J ; 283(11): 2067-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27007913

RESUMEN

UNLABELLED: Cyclotides are plant-derived, cyclic miniproteins with three interlocking disulfide bonds that have attracted great interests because of their excellent stability and potential as peptide therapeutics. In this study, we characterize the cyclotides of the medicinal plant Clitoria ternatea (butterfly pea) and investigate their biological activities. Using a combined proteomic and transcriptomic method, we identified 41 novel cyclotide sequences, which we named cliotides, making C. ternatea one of the richest cyclotide-producing plants to date. Selected members of the cationic cliotides display potent antibacterial activity specifically against Gram-negative bacteria with minimal inhibitory concentrations as low as 0.5 µm. Remarkably, they also possess prominent immunostimulating activity. At a concentration of 1 µm, cationic cliotides are capable of augmenting the secretion of various cytokines and chemokines in human monocytes at both resting and lipopolysaccharide-stimulated states. Chemokines such as macrophage inflammatory proteins 1α and 1ß, interferon γ-induced protein 10, interleukin 8 and tumor necrosis factor α were among the most upregulated with up to 129-fold increase in secretion level. These findings suggest cyclotides can serve as potential candidates for novel immunomodulating therapeutics. DATABASE: The protein sequences reported in this paper (cT13-cT21) are available in the UniProt Knowledgebase under the accession numbers C0HJS0, C0HJS1, C0HJS2, C0HJS3, C0HJS4, C0HJS5, C0HJS6, C0HJS7 and C0HJS8, respectively. The transcriptome data in this paper are available at the Sequence Read Archive database (NCBI) under accession number SRR1613316. The protein precursors reported in this paper (ctc13, ctc15, ctc17-ctc19, ctc21-ctc53) are available at GenBank under the accession numbers KT732712, KT732713, KT732714, KT732715, KT732716, KT732717, KT732718, KT732719, KT732720, KT732721, KT732722, KT732723, KT732724, KT732725, KT732726, KT732727, KT732728, KT732729, KT732730, KT732731, KT732732, KT732733, KT732734, KT732735, KT732736, KT732737, KT732738, KT732739, KT732740, KT732741, KT732742, KT732743, KT732744, KT732745, KT732746, KT732747, KT732748 and KT732749, respectively.


Asunto(s)
Clitoria/genética , Ciclotidas/genética , Extractos Vegetales/genética , Proteínas de Plantas/genética , Antibacterianos/uso terapéutico , Clitoria/química , Ciclotidas/uso terapéutico , Bacterias Gramnegativas/efectos de los fármacos , Humanos , Inmunización , Datos de Secuencia Molecular , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/uso terapéutico , Precursores de Proteínas/genética , Proteómica
6.
Sci Rep ; 6: 23005, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-26965458

RESUMEN

Cyclotides are plant cyclic cysteine-rich peptides (CRPs). The cyclic nature is reported to be gene-determined with a precursor containing a cyclization-competent domain which contains an essential C-terminal Asn/Asp (Asx) processing signal recognized by a cyclase. Linear forms of cyclotides are rare and are likely uncyclizable because they lack this essential C-terminal Asx signal (uncyclotide). Here we show that in the cyclotide-producing plant Clitoria ternatea, both cyclic and acyclic products, collectively named cliotides, can be bioprocessed from the same cyclization-competent precursor. Using an improved peptidomic strategy coupled with the novel Asx-specific endopeptidase butelase 2 to linearize cliotides at a biosynthetic ligation site for transcriptomic analysis, we characterized 272 cliotides derived from 38 genes. Several types of post-translational modifications of the processed cyclotides were observed, including deamidation, oxidation, hydroxylation, dehydration, glycosylation, methylation, and truncation. Taken together, our results suggest that cyclotide biosynthesis involves 'fuzzy' processing of precursors into both cyclic and linear forms as well as post-translational modifications to achieve molecular diversity, which is a commonly found trait of natural product biosynthesis.


Asunto(s)
Clitoria/química , Ciclotidas/química , Cisteína/química , Proteínas de Plantas/química , Secuencia de Aminoácidos , Clitoria/genética , Ciclotidas/genética , Cisteína/genética , Perfilación de la Expresión Génica , Dominios Proteicos , Procesamiento Proteico-Postraduccional
7.
World J Microbiol Biotechnol ; 28(2): 729-39, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22806869

RESUMEN

Transformed rhizoclones were developed from Agrobacterium-treated explants of the medicinally important twinning legume Clitoria ternatea L. Several key factors influencing transformation events were optimized. A4T was the most infectious among the strains employed. Internode segments were more responsive than leaves, outdoor-grown explants preferred to those from in vitro cultures. High frequency transformation, resulting in up to 85.8% rhizogenesis, was attained using pre-pricked internodal explants for immersion (10 min) in Agrobacterium rhizogenes suspension grown overnight with acetosyringone (100 µM) to an OD(660) â‰… 0.6, diluted to a density of 10(9) cells ml(-1), followed by 5-day co-cultivation. Roots were individually cultured in MS0 supplemented with the bacteriostatic antibiotic cefotaxime (500 µg ml(-1)). Rhizoclones were renewed through successive subcultures in MS0 under diffused illumination. The T ( L )-DNA rolB and rolC ORF were detected in rhizoclones through PCR amplification. The T ( R )-DNA gene encoding mannopine synthase (man2) was revealed by positive amplification and opine gene expression substantiated by agropine and mannopine biosynthesis in all selected transformed rhizoclones. The implication of such findings is discussed on the context of utilization of such genetically transformed root cultures towards sustainable production of medicinally useful phytocompounds, besides providing a means for plant conservation.


Asunto(s)
Agrobacterium/fisiología , Clitoria/metabolismo , Clitoria/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/microbiología , Transformación Genética/genética , Clitoria/genética , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética
8.
J Biol Chem ; 286(27): 24275-87, 2011 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-21596752

RESUMEN

The tropical plant Clitoria ternatea is a member of the Fabaceae family well known for its medicinal values. Heat extraction of C. ternatea revealed that the bioactive fractions contained heat-stable cysteine-rich peptides (CRPs). The CRP family of A1b (Albumin-1 chain b/leginsulins), which is a linear cystine knot CRP, has been shown to present abundantly in the Fabaceae. In contrast, the cyclotide family, which also belongs to the cystine knot CRPs but with a cyclic structure, is commonly found in the Rubiaceae, Violaceae, and Cucurbitaceae families. In this study, we report the discovery of a panel of 15 heat-stable CRPs, of which 12 sequences (cliotide T1-T12) are novel. We show unambiguously that the cliotides are cyclotides and not A1bs, as determined by their sequence homology, disulfide connectivity, and membrane active properties indicated by their antimicrobial activities against Escherichia coli and cytotoxicities to HeLa cells. We also show that cliotides are prevalent in C. ternatea and are found in every plant tissue examined, including flowers, seeds, and nodules. In addition, we demonstrate that their precursors are chimeras, half from cyclotide and the other half from Albumin-1, with the cyclotide domain displacing the A1b domain in the precursor. Their chimeric structures likely originate from either horizontal gene transfer or convergent evolution in plant nuclear genomes, which are exceedingly rare events. Such atypical genetic arrangement also implies a different mechanism of biosynthetic processing of cyclotides in the Fabaceae and provides new understanding of their evolution in plants.


Asunto(s)
Clitoria , Ciclotidas , Evolución Molecular , Proteínas de Plantas , Precursores de Proteínas , Secuencia de Aminoácidos , Antiinfecciosos/metabolismo , Antiinfecciosos/farmacología , Clitoria/genética , Clitoria/metabolismo , Ciclotidas/genética , Ciclotidas/metabolismo , Ciclotidas/farmacología , Citotoxinas/genética , Citotoxinas/metabolismo , Citotoxinas/farmacología , Escherichia coli/crecimiento & desarrollo , Transferencia de Gen Horizontal/fisiología , Genoma de Planta/fisiología , Células HeLa , Humanos , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido
9.
Electron. j. biotechnol ; 11(4): 4-5, Oct. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-531930

RESUMEN

Genomic DNA sequences sharing homology with NBS region of resistance gene analogs were isolated and characterized from Pongamia glabra, Adenanthera pavonina, Clitoria ternatea and Solanum trilobatum using PCR based approach with primers designed from conserved regions of NBS domain. The presence of consensus motifs viz., kinase 1a, kinase 2, kinase 3a and hydrophobic domain provided evidence that the cloned sequences may belong to the NBS-LRR gene family. Conservation of tryptophan as the last residue of kinase-2 motif further confirms their position in non-TIR NBS-LRR family of resistance genes. The Resistance Gene Analogs (RGAs) cloned from P. glabra, A. pavonina, C. ternatea and S. trilobatum clustered together with well- characterized non-TIR-NBS-LRR genes leaving the TIR-NBS-LRR genes as a separate cluster in the average distance tree constructed based on BLOSUM62. All the four RGAs had high level of identity with NBS-LRR family of RGAs deposited in the GenBank. The extent of identity between the sequences at NBS region varied from 29 percent (P. glabra and S. trilobatum) to 78 percent (A. pavonina and C. ternatea), which indicates the diversity among the RGAs.


Asunto(s)
Clitoria/genética , Fabaceae/genética , Genes de Plantas/genética , Solanum/genética , Clonación Molecular , Reacción en Cadena de la Polimerasa
10.
Phytochemistry ; 64(6): 1133-9, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14568080

RESUMEN

Flavonoids in the petals of several C. ternatea lines with different petal colors were investigated with LC/MS/MS. Delphinidin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was newly isolated from the petals of a mauve line (wm) together with three known anthocyanins. They were identified structurally using UV, MS, and NMR spectroscopy. Although ternatins, a group of 15 (poly)acylated delphinidin glucosides, were identified in all the blue petal lines (WB, BM-1, 'Double Blue' and 'Albiflora'), WM accumulated delphinidin 3-O-(6"-O-malonyl)-beta-glucoside instead. The white petal line (WW) did not contain anthocyanins. Quantitative data showed that the total anthocyanin contents in WB and 'Double Blue' were ca. 8- and 10-fold higher than that in BM-1, a bud mutant of 'Double Blue', respectively. The total anthocyanin content in 'Albiflora' was less than 2 x 10(-3) times those in WB or 'Double Blue'. While all the lines contained the same set of 15 flavonol glycosides in similar relative ratios, the relative ratio of myricetin glycosides in ww and 'Albiflora' was ca. 30-70 times greater than those in the other lines. The change in flower color from blue to mauve was not due to a change in the structure of an anthocyanidin from delphinidin, but to the lack of (polyacylated) glucosyl group substitutions at both the 3'- and 5'-positions of ternatins. This implies that glucosylation at the 3'- and 5'-positions of anthocyanin is a critical step in producing blue petals in C. ternatea.


Asunto(s)
Clitoria/química , Flores/química , Antocianinas/análisis , Antocianinas/química , Clitoria/genética , Clitoria/fisiología , Flavonoides/análisis , Flavonoides/química , Flavonoides/aislamiento & purificación , Flores/fisiología , Glicósidos/análisis , Glicósidos/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas/métodos , Estructura Molecular , Pigmentos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...