Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Eur Rev Med Pharmacol Sci ; 28(4): 1356-1365, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38436168

RESUMEN

OBJECTIVE: Aripiprazole, risperidone, atomoxetine, and methylphenidate are drugs commonly prescribed for many psychiatric conditions and can be used alone or in combination in children and adolescents. This study aimed to investigate comparatively the possible genotoxic effects or genoprotective potentials of these drugs on human lymphocytes and HepG2 cells. MATERIALS AND METHODS: Cytotoxicity analysis was performed with the cell viability test on human lymphocytes and HepG2 cells, and half-maximal inhibitory concentration (IC50) values of the drugs were determined, and three different doses (» IC50, ½ IC50, and IC50) were applied for genetic analysis. For the determined doses, cells with and without DNA damage were examined by comet analysis. RESULTS: In lymphocytes, aripiprazole and risperidone increased DNA damage at moderate and maximum doses, whereas atomoxetine increased DNA damage only at the maximum dose. In HepG2 cells, risperidone reduced DNA damage at all doses, while atomoxetine increased DNA damage at all doses. On the other hand, in the DNA-damaged cells induced by hydrogen peroxide (H2O2), DNA damage decreased at all concentrations of all drugs in both lymphocytes and HepG2 cells. CONCLUSIONS: As a result, the genotoxicity of the drugs was found to be dose-dependent, and all drugs showed a genoprotective effect on DNA-damaged cells.


Asunto(s)
Antipsicóticos , Metilfenidato , Adolescente , Niño , Humanos , Antipsicóticos/farmacología , Risperidona/farmacología , Aripiprazol , Clorhidrato de Atomoxetina/farmacología , Metilfenidato/toxicidad , Células Hep G2 , Peróxido de Hidrógeno , Daño del ADN , Linfocitos , ADN
2.
Eur Addict Res ; 30(2): 114-120, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38219711

RESUMEN

INTRODUCTION: Regular cocaine use has been associated with hormonal dysfunction including hypogonadism, which can lead to fatigue, reduced stamina, sexual dysfunction, and impaired quality of life. However, cocaine's endocrine effects are largely under-reported in the scientific addiction literature and, in many cases, are not addressed within treatment services. The low profile of these adverse effects might be attributable to a lack of awareness and linkage with cocaine use, such that they are recognized only when an acute/emergency problem arises. METHODS: We assessed endocrine diurnal function (adrenocorticotrophic hormone [ACTH], cortisol, and testosterone) in 26 healthy and 27 cocaine-dependent men and examined changes in hormone levels in response to a single 40 mg dose of the noradrenaline re-uptake inhibitor atomoxetine in a double-blind, placebo-controlled experimental medicine study. RESULTS: When compared with healthy controls, diurnal and atomoxetine-induced changes in ACTH and cortisol showed greater variability in cocaine-dependent men. Interestingly, despite an exaggerated rise in ACTH following atomoxetine, an attenuated cortisol response was observed, and one-third of cocaine-dependent men had subnormal testosterone levels. CONCLUSION: Our findings point to a potential disconnection between the pituitary and adrenal responses in cocaine-dependent men, a higher rate of hypogonadism, and a pressing need for more research into the endocrine effects of cocaine and their clinical implications.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Hipogonadismo , Trastornos Relacionados con Sustancias , Masculino , Humanos , Hidrocortisona , Clorhidrato de Atomoxetina/farmacología , Calidad de Vida , Hormona Adrenocorticotrópica , Sistema Hipotálamo-Hipofisario , Testosterona , Sistema Hipófiso-Suprarrenal
3.
Cogn Affect Behav Neurosci ; 24(2): 351-367, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38253774

RESUMEN

The rapid serial visual presentation (RSVP) task and continuous performance tasks (CPT) are used to assess attentional impairments in patients with psychiatric and neurological conditions. This study developed a novel touchscreen task for rats based on the structure of a human RSVP task and used pharmacological manipulations to investigate their effects on different performance measures. Normal animals were trained to respond to a target image and withhold responding to distractor images presented within a continuous sequence. In a second version of the task, a false-alarm image was included, so performance could be assessed relative to two types of nontarget distractors. The effects of acute administration of stimulant and nonstimulant treatments for ADHD (amphetamine and atomoxetine) were tested in both tasks. Methylphenidate, ketamine, and nicotine were tested in the first task only. Amphetamine made animals more impulsive and decreased overall accuracy but increased accuracy when the target was presented early in the image sequence. Atomoxetine improved accuracy overall with a specific reduction in false-alarm responses and a shift in the attentional curve reflecting improved accuracy for targets later in the image sequence. However, atomoxetine also slowed responding and increased omissions. Ketamine, nicotine, and methylphenidate had no specific effects at the doses tested. These results suggest that stimulant versus nonstimulant treatments have different effects on attention and impulsive behaviour in this rat version of an RSVP task. These results also suggest that RSVP-like tasks have the potential to be used to study attention in rodents.


Asunto(s)
Anfetamina , Clorhidrato de Atomoxetina , Atención , Estimulantes del Sistema Nervioso Central , Ketamina , Metilfenidato , Nicotina , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/administración & dosificación , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/administración & dosificación , Atención/efectos de los fármacos , Atención/fisiología , Masculino , Ratas , Metilfenidato/farmacología , Metilfenidato/administración & dosificación , Nicotina/farmacología , Nicotina/administración & dosificación , Anfetamina/farmacología , Anfetamina/administración & dosificación , Ketamina/farmacología , Ketamina/administración & dosificación , Estimulación Luminosa/métodos , Inhibidores de Captación Adrenérgica/farmacología , Inhibidores de Captación Adrenérgica/administración & dosificación , Aprendizaje Seriado/efectos de los fármacos , Aprendizaje Seriado/fisiología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/fisiología , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología , Ratas Sprague-Dawley
4.
Psychopharmacology (Berl) ; 241(3): 555-567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38170320

RESUMEN

RATIONALE: Atypical attention orienting has been associated with some autistic symptoms, but the neural mechanisms remain unclear. The human Posner task, a classic attention orienting paradigm, was recently adapted for use with mice, supporting the investigation of the neurobiological underpinnings of atypical attention orienting in preclinical mouse models. OBJECTIVE: The current study tested mice expressing the autism-associated R451C gene mutation in neuroligin-3 (NL3) on the mouse-Posner (mPosner) task. METHODS: NL3R451C and wild-type (WT) mice were trained to respond to a validly or invalidly cued target on a touchscreen. The cue was a peripheral non-predictive flash in the exogenous task and a central spatially predictive image in the endogenous task. The effects of dopaminergic- and noradrenergic-modulating drugs, methylphenidate and atomoxetine, on task performance were assessed. RESULTS: In both tasks, mice were quicker and more accurate in the validly versus invalidly cued trials, consistent with results in the human Posner task. NL3R451C and WT mice showed similar response times and accuracy but responded differently when treated with methylphenidate and atomoxetine. Methylphenidate impaired exogenous attention disengagement in NL3R451C mice but did not significantly affect WT mice. Atomoxetine impaired endogenous orienting in WT mice but did not significantly affect NL3R451C mice. CONCLUSIONS: NL3R451C mice demonstrated intact attention orienting but altered responses to the pharmacological manipulation of the dopaminergic and noradrenergic networks. These findings expand our understanding of the NL3R451C mutation by suggesting that this mutation may lead to selective alterations in attentional processes.


Asunto(s)
Trastorno Autístico , Ratones , Humanos , Animales , Clorhidrato de Atomoxetina/farmacología , Neuroliginas , Mutación/genética , Atención
5.
Psychopharmacology (Berl) ; 241(4): 767-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38001266

RESUMEN

RATIONALE: Win-paired stimuli can promote risk taking in experimental gambling paradigms in both rats and humans. We previously demonstrated that atomoxetine, a noradrenaline reuptake inhibitor, and guanfacine, a selective α2A adrenergic receptor agonist, reduced risk taking on the cued rat gambling task (crGT), a rodent assay of risky choice in which wins are accompanied by salient cues. Both compounds also decreased impulsive premature responding. OBJECTIVE: The key neural loci mediating these effects were unknown. The lateral orbitofrontal cortex (lOFC) and the medial prefrontal cortex (mPFC), which are highly implicated in risk assessment, action selection, and impulse control, receive dense noradrenergic innervation. We therefore infused atomoxetine and guanfacine directly into either the lOFC or prelimbic (PrL) mPFC prior to task performance. RESULTS: When infused into the lOFC, atomoxetine improved decision making score and adaptive lose-shift behaviour in males, but not in females, without altering motor impulsivity. Conversely, intra-PrL atomoxetine improved impulse control in risk preferring animals of both sexes, but did not alter decision making. Guanfacine administered into the PrL, but not lOFC, also altered motor impulsivity in all subjects, though in the opposite direction to atomoxetine. CONCLUSIONS: These data highlight a double dissociation between the behavioural effects of noradrenergic signaling across frontal regions with respect to risky choice and impulsive action. Given that the influence of noradrenergic manipulations on motor impulsivity could depend on baseline risk preference, these data also suggest that the noradrenaline system may function differently in subjects that are susceptible to the risk-promoting lure of win-associated cues.


Asunto(s)
Señales (Psicología) , Guanfacina , Humanos , Masculino , Femenino , Ratas , Animales , Clorhidrato de Atomoxetina/farmacología , Guanfacina/farmacología , Conducta Impulsiva/fisiología , Norepinefrina/farmacología , Encéfalo , Corteza Prefrontal , Toma de Decisiones , Conducta de Elección
6.
Artículo en Inglés | MEDLINE | ID: mdl-37619670

RESUMEN

BACKGROUND: Cocaine use disorder is associated with cognitive deficits that reflect dysfunctional processing across neural systems. Because there are currently no approved medications, treatment centers provide behavioral interventions that have only short-term efficacy. This suggests that behavioral interventions are not sufficient by themselves to lead to the maintenance of abstinence in patients with cocaine use disorder. Self-control, which includes the regulation of attention, is critical for dealing with many daily challenges that would benefit from medication interventions that can ameliorate cognitive neural disturbances. METHODS: To address this important clinical gap, we conducted a randomized, double-blind, placebo-controlled, crossover design study in patients with cocaine use disorder (n = 23) and healthy control participants (n = 28). We assessed the modulatory effects of acute atomoxetine (40 mg) on attention and conflict monitoring and their associated neural activation and connectivity correlates during performance on the Eriksen flanker task. The Eriksen flanker task examines basic attentional processing using congruent stimuli and the effects of conflict monitoring and response inhibition using incongruent stimuli, the latter of which necessitates the executive control of attention. RESULTS: We found that atomoxetine improved task accuracy only in the cocaine group but modulated connectivity within distinct brain networks in both groups during congruent trials. During incongruent trials, the cocaine group showed increased task-related activation in the right inferior frontal and anterior cingulate gyri, as well as greater network connectivity than the control group across treatments. CONCLUSIONS: The findings of the current study support a modulatory effect of acute atomoxetine on attention and associated connectivity in cocaine use disorder.


Asunto(s)
Cocaína , Trastornos Relacionados con Sustancias , Humanos , Clorhidrato de Atomoxetina/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Encéfalo , Atención/fisiología , Función Ejecutiva/fisiología , Cocaína/efectos adversos
7.
Sleep Med ; 113: 13-18, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37979502

RESUMEN

STUDY OBJECTIVES: we aimed to compare the effects of atomoxetine and trazodone (A-T) in combination with placebo in patients with obstructive sleep apnea (OSA). METHODS: This randomized, placebo-controlled, double-blind, crossover trial study was conducted in adults with OSA referred to a Sleep Clinic. Participants with eligibility criteria were recruited. Patients were studied on two separate nights with one-week intervals, once treated with trazodone (50 mg) and atomoxetine (80 mg) combination and then with a placebo and the following polysomnography tests. RESULTS: A total of 18 patients with OSA completed the study protocol, 9(50%) were male, the mean age was 47.5 years (SD = 9.8) and the mean Body mass index of participants was 28.4 kg/m2 (SD = 3.4). Compared with the placebo, the A-T combination resulted in significant differences in AHI (28.3(A-T) vs. 42.7 (placebo), p = 0.025), duration of the REM stage (1.3%TST (A-T) vs. 13.1%TST (placebo), p = 0.001), and the number of REM cycles (0.8 (A-T) vs. 4.7 (placebo), p = 0.001), number of apneas (38.3 (A-T) vs. 79.3 (placebo), p = 0.011), number of obstructive apneas (37.2 (A-T) vs. 75.2 (placebo), p = 0.011), oxygen desaturation index (29.5 (A-T) vs. 42.3 (placebo), p = 0.022) and number of respiratory arousals (43.2 (A-T) vs. 68.5 (placebo), p = 0.048). This decrement effect did not change among those with a low-arousal phenotype of OSA. CONCLUSIONS: The A-T combination significantly improved respiratory events' indices compared with placebo in patients with OSA. This combination is recommended to be assessed in a large trial. It could be an alternative for those who do not adhere to the standard available treatments for OSA.


Asunto(s)
Apnea Obstructiva del Sueño , Trazodona , Adulto , Humanos , Masculino , Persona de Mediana Edad , Femenino , Trazodona/uso terapéutico , Clorhidrato de Atomoxetina/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Sueño , Polisomnografía/métodos , Método Doble Ciego
8.
Neuropharmacology ; 241: 109736, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774942

RESUMEN

Our ability to engage and perform daily activities relies on balancing the associated benefits and costs. Rewards, as benefits, act as powerful motivators that help us stay focused for longer durations. The noradrenergic (NA) system is thought to play a significant role in optimizing our performance. Yet, the interplay between reward and the NA system in shaping performance remains unclear, particularly when actions are driven by external incentives (reward). To explore this interaction, we tested four female rhesus monkeys performing a sustained Go/NoGo task under two reward sizes (low/high) and three pharmacological conditions (saline and two doses of atomoxetine, a NA reuptake inhibitor: ATX-0.5 mg/kg and ATX-1 mg/kg). We found that increasing either reward or NA levels equally enhanced the animal's engagement in the task compared to low reward saline; the animals also responded faster and more consistently under these circumstances. Notably, we identified differences between reward size and ATX. When combined with ATX, high reward further reduced the occurrence of false alarms (i.e., incorrect go trials on distractors), implying that it helped further suppress impulsive responses. In addition, ATX (but not reward size) consistently increased movement duration dose-dependently, while high reward did not affect movement duration but decreased its variability. We conclude that noradrenaline and reward modulate performance, but their effects are not identical, suggesting differential underlying mechanisms. Reward might energize/invigorate decisions and action, while ATX might help regulate energy expenditure, depending on the context, through the NA system.


Asunto(s)
Conducta Impulsiva , Motivación , Animales , Femenino , Clorhidrato de Atomoxetina/farmacología , Tiempo de Reacción , Recompensa
9.
Pharmacol Biochem Behav ; 230: 173618, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37595803

RESUMEN

Substance dependence is a disorder that alters the functioning of the nervous system due to frequent abuse of drugs. The role of dopamine in the addictive effect of psychostimulants is well known; however, the involvement of the noradrenergic system is still unclear and poorly understood, though drugs like cocaine and amphetamines are known to exert significant activity on this system. The drug modafinil (MOD) has no proven addictive effect. It promotes wakefulness by acting mainly on the dopaminergic system and, to a lesser degree, the noradrenergic (NOR) system. Atomoxetine (ATX) is a non-stimulant drug that acts only on the NOR system, enhancing its activity. The aims of the present study were to analyze the effect of co-activating the DA and NOR systems (with MOD and ATX, respectively) on motor activity and exploratory behavior, and to examine the possible emergence of rewarding properties of MOD and an MOD+ATX mixture. Male Wistar rats at postnatal day 60 were treated chronically (16 days) with either monotherapy with 2ATX, 4ATX, or 60MOD mg/kg, two combinations of these substances -60MOD + 2ATX and 60MOD + 4ATX- or a vehicle. The rats co-administered with 60MOD + 4ATX reduced the rearing behavior frequency induced by MOD, but this behavior was sensitized by self-administration of the MOD+ATX mixture after chronic treatment. The rats pre-treated with 60MOD + 4ATX showed higher self-administration of MOD and greater activity on an operant task to obtain the MOD+ATX mixture. In addition, the 60MOD, 2ATX, and 60MOD + 2ATX groups showed sensitization of exploratory behavior after ingesting the mixture. Results suggest that the noradrenergic system enhances the incentive value of MOD and a MOD+ATX mixture, while also playing an important role in the sensitization of exploratory behavior.


Asunto(s)
Conducta Exploratoria , Motivación , Masculino , Animales , Ratas , Ratas Wistar , Modafinilo/farmacología , Clorhidrato de Atomoxetina/farmacología , Dopamina
10.
Psychopharmacology (Berl) ; 240(10): 2045-2060, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37500785

RESUMEN

RATIONALE: Working memory deficits and associated neurofunctional abnormalities are frequently reported in attention-deficit/hyperactivity disorder (ADHD). Methylphenidate and atomoxetine improve working memory performance and increase activation of regions under-functioning in ADHD. Additionally, methylphenidate has been observed to modulate functional networks involved in working memory. No research, however, has examined the effects of atomoxetine or compared the two drugs. OBJECTIVES: This study aimed to test methylphenidate and atomoxetine effects on functional connectivity during working memory in boys with ADHD. METHODS: We tested comparative effects of methylphenidate and atomoxetine on functional connectivity during the n-back task in 19 medication-naïve boys with ADHD (10-15 years old) relative to placebo and assessed potential normalisation effects of brain dysfunctions under placebo relative to 20 age-matched neurotypical boys. Patients were scanned in a randomised, double-blind, cross-over design under single doses of methylphenidate, atomoxetine, and placebo. Controls were scanned once, unmedicated. RESULTS: Patients under placebo showed abnormally increased connectivity between right superior parietal gyrus (rSPG) and left central operculum/insula. This hyperconnectivity was not observed when patients were under methylphenidate or atomoxetine. Furthermore, under methylphenidate, patients showed increased connectivity relative to controls between right middle frontal gyrus (rMFG) and cingulo-temporo-parietal and striato-thalamic regions, and between rSPG and cingulo-parietal areas. Interrogating these networks within patients revealed increased connectivity between both rMFG and rSPG and right supramarginal gyrus under methylphenidate relative to placebo. Nonetheless, no differences across drug conditions were observed within patients at whole brain level. No drug effects on performance were observed. CONCLUSIONS: This study shows shared modulating effects of methylphenidate and atomoxetine on parieto-insular connectivity but exclusive effects of methylphenidate on connectivity increases in fronto-temporo-parietal and fronto-striato-thalamic networks in ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Masculino , Humanos , Niño , Adolescente , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Encéfalo , Lóbulo Frontal , Estimulantes del Sistema Nervioso Central/farmacología , Estimulantes del Sistema Nervioso Central/uso terapéutico , Imagen por Resonancia Magnética
11.
Pharmacol Rep ; 75(3): 746-752, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36914846

RESUMEN

BACKGROUND: Atomoxetine (ATX), a norepinephrine reuptake inhibitor (NRI), is used to attenuate the symptoms of Attention Deficit/Hyperactivity Disorder (AD/HD) by increasing neurotransmitter concentrations at the synaptic cleft. Although Nav1.2 voltage-gated sodium channels (VGSCs) are thought to play a role in monoamine transmitter release in the synaptic junction, it is unclear how atomoxetine affects Nav1.2 VGSCs. METHODS: In this study, we investigated the effect of ATX on Nav1.2 VGSC-transfected HEK293 cells with the whole-patch clamp technique. RESULTS: Nav1.2 VGSC current decreased by 51.15 ± 12.75% under treatment with 50 µM ATX in the resting state (holding membrane potential at - 80 mV). The IC50 of ATX against Nav1.2 VGSC current was 45.57 µM. The activation/inactivation curve of Nav1.2 VGSC currents was shifted toward hyperpolarization by 50 µM ATX. In addition, the inhibitory effect of ATX increased with membrane depolarization (holding membrane potential at - 50 mV) and its IC50 was 10.16 µM. Moreover, ATX showed the time-dependent interaction in the inactivation state. CONCLUSION: These findings suggest that ATX interacts with Nav1.2 VGSCs producing the inhibition of current and the modification of kinetic properties in the state-dependent manner.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2 , Humanos , Clorhidrato de Atomoxetina/farmacología , Células HEK293 , Potenciales de la Membrana
12.
Pharmacol Rep ; 75(2): 342-357, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36787018

RESUMEN

BACKGROUND: Methylphenidate and atomoxetine are used for the treatment of attention-deficit/hyperactivity disorder (ADHD). Our previous studies established the validity of the 6-hydroxydopamine (6-OHDA) mouse model of ADHD and demonstrated hypersensitivity to pain, in line with clinical reports in ADHD patients. Acute methylphenidate treatment reduces hyperactivity and increases attention, but does not affect pain behaviors in this mouse model. Whereas atomoxetine has been shown to be effective against some symptoms of ADHD, nothing is known about its possible action on comorbid pain hypersensitivity. The objectives of the present research are (1) to investigate the effects of acute and chronic treatment with atomoxetine on ADHD-like symptoms and nociceptive thresholds, and (2) to explore the catecholaminergic systems underlying these effects. METHODS: Sham and 6-OHDA cohorts of male mice were tested for hyperactivity (open field), attention and impulsivity (5-choice serial reaction time task test), and thermal (hot plate test) and mechanical (von Frey test) thresholds after acute or repeated treatment with vehicle or atomoxetine (1, 3 or 10 mg/kg). RESULTS: Acute administration of atomoxetine (10 mg/kg) reduced the hyperactivity and impulsivity displayed by 6-OHDA mice, without affecting attention or nociception. However, atomoxetine administered at 3 mg/kg/day for 7 days alleviated the ADHD-like core symptoms and attenuated the hyperalgesic responses. Furthermore, hyperlocomotion and anti-hyperalgesic activity were antagonized with phentolamine, propranolol, and sulpiride pre-treatments. CONCLUSION: These findings demonstrated that when administered chronically, atomoxetine has a significant effect on ADHD-associated pain hypersensitization, likely mediated by both α- and ß-adrenergic and D2/D3 dopaminergic receptors, and suggest new indications for atomoxetine that will need to be confirmed by well-designed clinical trials.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Metilfenidato , Masculino , Ratones , Animales , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Oxidopamina , Propilaminas/farmacología , Dolor/tratamiento farmacológico , Comorbilidad , Inhibidores de Captación Adrenérgica/efectos adversos
13.
J Clin Pharmacol ; 63(6): 640-653, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36731171

RESUMEN

We sought to understand the effect of current treatments for attention deficit hyperactivity disorder (ADHD) on executive functioning deficits, which are often comorbid with ADHD, via a systematic analysis of adult ADHD treatment studies evaluating change in behavioral measures beyond the core symptoms of Diagnostic and Statistical Manual of Mental Disorders ADHD. The standardized mean difference for behavioral measures of executive functioning was determined from controlled trials of adults with ADHD and compared with effects on core ADHD symptoms. Several studies of atomoxetine revealed small to large standardized mean differences. Nonreplicated studies revealed small to medium effects for triple-bead mixed amphetamine salts, lisdexamfetamine, and forms of cognitive behavioral therapy. Proportional effect versus core ADHD symptoms ranged from 0.78 to 1.16 for atomoxetine, and from 0.65 to 1.44 across all the studies. ADHD treatments have effects on executive functioning behavior beyond core ADHD symptoms in adults. Clinicians can measure and treat this morbidity using available clinical tools.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Adulto , Humanos , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Anfetamina/uso terapéutico , Dimesilato de Lisdexanfetamina/uso terapéutico , Función Ejecutiva , Estimulantes del Sistema Nervioso Central/uso terapéutico , Estimulantes del Sistema Nervioso Central/farmacología
14.
J Psychopharmacol ; 37(2): 204-215, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36648101

RESUMEN

BACKGROUND: Goal-directed attention involves the selective processing of behaviorally relevant sensory information. This selective processing is thought to be supported by glutamatergic and noradrenergic systems. Pharmacotherapies that simultaneously target these systems could therefore be effective treatments for impaired attention. AIMS: We first tested an N-methyl-D-aspartate (NMDA) receptor co-agonist (D-serine) for effects on attention (processing speed and attentional lapses). NMDA receptor activation is thought to support noradrenergic effects on sensory processing; therefore, we tested a combination treatment comprising D-serine and a norepinephrine reuptake inhibitor (atomoxetine). METHODS: D-serine was first tested in rats performing a two-choice visuospatial discrimination task. Combination treatments comprising relatively low doses of D-serine and atomoxetine were then tested in a separate group. RESULTS: In experiment 1, D-serine reduced the skew of initiation time (IT) distributions (IT devmode) at the highest dose tested (300 mg/kg). In experiment 2, low-dose D-serine (125 mg/kg) had no effect, while low-dose atomoxetine (0.3 mg/kg) reduced IT devmode and slowed movement speed. Importantly, the combination of these relatively low doses of D-serine and atomoxetine reduced IT devmode more than either drug alone without further slowing movement speed. CONCLUSIONS: IT devmode is thought to reflect attentional lapses; therefore, D-serine's effects on IT devmode suggest that NMDA receptors are involved in the preparatory deployment of attention. Greater effects following a combination of D-serine and atomoxetine suggest that preparatory attention can be facilitated by targeting glutamatergic and noradrenergic systems simultaneously. These results could inform the development of improved treatments for individuals with ADHD who experience abnormally high attentional lapses.


Asunto(s)
Inhibidores de Captación Adrenérgica , Trastorno por Déficit de Atención con Hiperactividad , Ratas , Masculino , Animales , Clorhidrato de Atomoxetina/farmacología , Inhibidores de Captación Adrenérgica/farmacología , Serina/farmacología , Atención , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Norepinefrina
15.
Psychopharmacology (Berl) ; 240(1): 41-58, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434307

RESUMEN

RATIONALE: Attention is compromised in many psychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). While dopamine and noradrenaline systems have been implicated in ADHD, their exact role in attentional processing is yet unknown. OBJECTIVES: We applied the theory of visual attention (TVA) model, adapted from human research, to the rat 5-choice serial reaction time task (5CSRTT) to investigate catecholaminergic modulation of visual attentional processing in healthy subjects of high- and low-attention phenotypes. METHODS: Rats trained on the standard 5CSRTT and tested with variable stimulus durations were treated systemically with noradrenergic and/or dopaminergic agents (atomoxetine, methylphenidate, amphetamine, phenylephrine and atipamezole). TVA modelling was applied to estimate visual processing speed for correct and incorrect visual perceptual categorisations, independent of motor reaction times, as measures of attentional capacity. RESULTS: Atomoxetine and phenylephrine decreased response frequencies, including premature responses, increased omissions and slowed responding. In contrast, methylphenidate, amphetamine and atipamezole sped up responding and increased premature responses. Visual processing speed was also affected differentially. Atomoxetine and phenylephrine slowed, whereas methylphenidate and atipamezole sped up, visual processing, both for correct and incorrect categorisations. Amphetamine selectively improved visual processing for correct, though not incorrect, responses in high-attention rats only, possibly reflecting improved attention. CONCLUSIONS: These data indicate that the application of TVA to the 5CSRTT provides an enhanced sensitivity to capturing attentional effects. Unexpectedly, we found overall slowing effects, including impaired visual processing, following drugs either increasing extracellular noradrenaline (atomoxetine) or activating the α1-adrenoceptor (phenylephrine), while also ameliorating premature responses (impulsivity). In contrast, amphetamine had potential pro-attentional effects by enhancing visual processing, probably due to central dopamine upregulation.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Metilfenidato , Ratas , Humanos , Animales , Tiempo de Reacción , Clorhidrato de Atomoxetina/farmacología , Dopamina/farmacología , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Anfetamina/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Norepinefrina/farmacología , Fenilefrina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología
16.
Neuropsychopharmacology ; 48(8): 1155-1163, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36400921

RESUMEN

ADHD is a highly prevalent neurodevelopmental disorder. The first-line therapeutic for ADHD, methylphenidate, can cause serious side effects including weight loss, insomnia, and hypertension. Therefore, the development of non-stimulant-based therapeutics has been prioritized. However, many of these also cause other effects, most notably somnolence. Here, we have used a uniquely powerful genetic model and unbiased drug screen to identify novel ADHD non-stimulant therapeutics. We first found that adgrl3.1 null (adgrl3.1-/-) zebrafish larvae showed a robust hyperactive phenotype. Although the hyperactivity was rescued by three ADHD non-stimulant therapeutics, all interfered significantly with sleep. Second, we used wild-type zebrafish larvae to characterize a simple behavioral phenotype generated by atomoxetine and screened the 1200 compound Prestwick Chemical Library® for a matching behavioral profile resulting in 67 hits. These hits were re-assayed in the adgrl3.1-/-. Using the previously identified non-stimulants as a positive control, we identified four compounds that matched the effect of atomoxetine: aceclofenac, amlodipine, doxazosin, and moxonidine. We additionally demonstrated cognitive effects of moxonidine in mice using a T-maze spontaneous alternation task. Moxonidine, has high affinity for imidazoline 1 receptors. We, therefore, assayed a pure imidazoline 1 agonist, LNP599, which generated an effect closely matching other non-stimulant ADHD therapeutics suggesting a role for this receptor system in ADHD. In summary, we introduce a genetic model of ADHD in zebrafish and identify five putative therapeutics. The findings offer a novel tool for understanding the neural circuits of ADHD, suggest a novel mechanism for its etiology, and identify novel therapeutics.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Estimulantes del Sistema Nervioso Central , Imidazolinas , Metilfenidato , Animales , Ratones , Clorhidrato de Atomoxetina/farmacología , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Trastorno por Déficit de Atención con Hiperactividad/genética , Pez Cebra , Metilfenidato/farmacología , Metilfenidato/uso terapéutico , Fenotipo , Imidazolinas/uso terapéutico , Estimulantes del Sistema Nervioso Central/efectos adversos
17.
Cell Biochem Biophys ; 81(1): 105-115, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346546

RESUMEN

Atomoxetine (ATX) is a presynaptic norepinephrine transporter (NET) inhibitor widely prescribed for attention-deficit/hyperactivity disorder (ADHD) due to its low abuse potential and absence of psychostimulant effects. While NET inhibition is implicated in the clinical response, several additional pharmacoactivities may contribute to clinical efficacy or unwanted side effects. We recently reported that ATX can dose-dependently alter mitochondrial function and cellular redox status. Here, we assessed potential alterations in mitochondrial biogenesis, mitochondrial dynamics and cellular antioxidant capacity following high- and low-dose ATX treatment of differentiated human neuroblastoma cells. Human SH-SY5Y neuroblastoma cells were treated with ATX (1, 5, 10, 20 and 50 µM) for 7 days under differentiation culture conditions. Changes in the expression levels of protein markers for mitochondrial biogenesis, fusion and fission as well as of antioxidant proteins were analysed by Western blot. High-dose ATX (50 µM) reduced while low-dose ATX (10 µM) increased mitochondrial biogenesis as evidenced by parallel changes in SDHA, COX-I, PGC1α and TFAM expression. High-dose ATX also reduced mitochondrial fusion as evidenced by OPA1 and MFN2 downregulation, and mitochondrial fission as indicated by DRP1 and Fis1 downregulation. In contrast, ATX did not alter expression of the antioxidant enzymes SOD1 and catalase, the phase II transcription factor Nfr2, or the Nfr2-regulated antioxidant enzyme NQO1. Clinical responses and side effects of ATX may be mediated by dose-dependent modulation of mitochondrial biogenesis and dynamics as well as NET inhibition.


Asunto(s)
Antioxidantes , Neuroblastoma , Humanos , Clorhidrato de Atomoxetina/farmacología , Antioxidantes/farmacología , Biogénesis de Organelos , Neuronas
18.
Sleep Breath ; 27(2): 495-503, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-35551600

RESUMEN

PURPOSE: Preliminary studies have shown a significant decrease in severity of obstructive sleep apnea (OSA) with the use of a combination of atomoxetine and oxybutynin, with patients having moderate pharyngeal collapsibility during sleep more likely to respond. This study evaluated the efficacy and safety of AD036 (atomoxetine 80 mg and oxybutynin 5 mg) in the treatment of OSA. METHODS: This trial was a phase 2, randomized, placebo-controlled crossover study comparing AD036, atomoxetine 80 mg alone, and placebo during three home sleep studies, each separated by about 1 week. The trial included patients with OSA and moderate pharyngeal collapsibility as defined by a higher proportion of hypopneas to apneas and mild oxygen desaturation. RESULTS: Of 62 patients who were randomized, 60 were included in efficacy analyses. The apnea-hypopnea index (AHI) from a median (interquartile range) of 14.2 (5.4 to 22.3) events/h on placebo to 6.2 (2.8 to 13.6) with AD036 and 4.8 (1.4 to 11.6) with atomoxetine alone (p < .0001). Both drugs also decreased the oxygen desaturation index (ODI) and the hypoxic burden (p < .0001). AD036, but not atomoxetine alone, reduced the respiratory arousal index and improved ventilation at the respiratory arousal threshold (greater Vactive). There was a trend for total sleep time to be decreased more with atomoxetine alone than with AD036. The most common adverse event was insomnia (12% with AD036, 18% with atomoxetine). CONCLUSION: AD036 significantly improved OSA severity in patients with moderate pharyngeal collapsibility. Atomoxetine may account for the majority of improvement in OSA severity, while the addition of oxybutynin may mitigate the disruptive effect of atomoxetine on sleep and further improve ventilation. TRIAL REGISTRATION: Clinical trial registered with www. CLINICALTRIALS: gov (NCT04445688).


Asunto(s)
Apnea Obstructiva del Sueño , Humanos , Clorhidrato de Atomoxetina/farmacología , Clorhidrato de Atomoxetina/uso terapéutico , Estudios Cruzados , Sueño
19.
Biomolecules ; 12(10)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36291693

RESUMEN

Changes in dopaminergic and noradrenergic transmission are considered to be the underlying cause of attention deficit and hyperactivity disorder (ADHD). Atomoxetine (ATX) is a selective norepinephrine transporter (NET) inhibitor that is currently used for ADHD treatment. In this study, we aimed to evaluate the effect of atomoxetine on the behavior and brain activity of dopamine transporter knockout (DAT-KO) rats, which are characterized by an ADHD-like behavioral phenotype. Prepulse inhibition (PPI) was assessed in DAT-KO and wild type rats after saline and ATX injections, as well as behavioral parameters in the Hebb-Williams maze and power spectra and coherence of electrophysiological activity. DAT-KO rats demonstrated a pronounced behavioral and electrophysiological phenotype, characterized by hyperactivity, increased number of errors in the maze, repetitive behaviors and disrupted PPI, changes in cortical and striatal power spectra and interareal coherence. Atomoxetine significantly improved PPI and decreased repetitive behaviors in DAT-KO rats and influenced behavior of wild-type rats. ATX also led to significant changes in power spectra and coherence of DAT-KO and wild type rats. Assessment of noradrenergic modulation effects in DAT-KO provides insight into the intricate interplay of monoaminergic systems, although further research is still required to fully understand the complexity of this interaction.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática , Ratas , Animales , Clorhidrato de Atomoxetina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Noradrenalina a través de la Membrana Plasmática/metabolismo , Cognición , Norepinefrina/farmacología , Cuerpo Estriado
20.
J Neurosci ; 42(43): 8113-8124, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36109167

RESUMEN

Sustained attention describes our ability to keep a constant focus on a given task. This ability is modulated by our physiological state of arousal. Although lapses of sustained attention have been linked with dysregulations of arousal, the underlying physiological mechanisms remain unclear. An emerging body of work proposes that the intrusion during wakefulness of sleep-like slow waves, a marker of the transition toward sleep, could mechanistically account for attentional lapses. This study aimed to expose, via pharmacological manipulations of the monoamine system, the relationship between the occurrence of sleep-like slow waves and the behavioral consequences of sustained attention failures. In a double-blind, randomized-control trial, 32 healthy human male participants received methylphenidate, atomoxetine, citalopram or placebo during four separate experimental sessions. During each session, electroencephalography (EEG) was used to measure neural activity while participants completed a visual task requiring sustained attention. Methylphenidate, which increases wake-promoting dopamine and noradrenaline across cortical and subcortical areas, improved behavioral performance whereas atomoxetine, which increases dopamine and noradrenaline predominantly over frontal cortices, led to more impulsive responses. Additionally, citalopram, which increases sleep-promoting serotonin, led to more missed trials. Based on EEG recording, citalopram was also associated with an increase in sleep-like slow waves. Importantly, compared with a classical marker of arousal such as α power, only slow waves differentially predicted both misses and faster responses in a region-specific fashion. These results suggest that a decrease in arousal can lead to local sleep intrusions during wakefulness which could be mechanistically linked to impulsivity and sluggishness.SIGNIFICANCE STATEMENT We investigated whether the modulation of attention and arousal could not only share the same neuromodulatory pathways but also rely on similar neuronal mechanisms; for example, the intrusion of sleep-like activity within wakefulness. To do so, we pharmacologically manipulated noradrenaline, dopamine, and serotonin in a four-arm, randomized, placebo-controlled trial and examined the consequences on behavioral and electroencephalography (EEG) indices of attention and arousal. We showed that sleep-like slow waves can predict opposite behavioral signatures: impulsivity and sluggishness. Slow waves may be a candidate mechanism for the occurrence of attentional lapses since the relationship between slow-wave occurrence and performance is region-specific and the consequences of these local sleep intrusions are in line with the cognitive functions carried by the underlying brain regions.


Asunto(s)
Citalopram , Metilfenidato , Masculino , Humanos , Citalopram/farmacología , Dopamina , Clorhidrato de Atomoxetina/farmacología , Serotonina , Sueño/fisiología , Vigilia/fisiología , Electroencefalografía/métodos , Atención , Norepinefrina , Metilfenidato/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA