Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 516
Filtrar
1.
Molecules ; 29(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731424

RESUMEN

Climate change, which causes periods with relatively high temperatures in winter in Poland, can lead to a shortening or interruption of the cold hardening of crops. Previous research indicates that cold acclimation is of key importance in the process of acquiring cereal tolerance to stress factors. The objective of this work was to verify the hypothesis that both natural temperature fluctuations and the plant genotype influence the content of metabolites as well as proteins, including antioxidant enzymes and photosystem proteins. The research material involved four winter triticale genotypes, differing in their tolerance to stress under controlled conditions. The values of chlorophyll a fluorescence parameters and antioxidant activity were measured in their seedlings. Subsequently, the contribution of selected proteins was verified using specific antibodies. In parallel, the profiling of the contents of chlorophylls, carotenoids, phenolic compounds, and proteins was carried out by Raman spectroscopy. The obtained results indicate that a better PSII performance along with a higher photosystem II proteins content and thioredoxin reductase abundance were accompanied by a higher antioxidant activity in the field-grown triticale seedlings. The Raman studies showed that the cold hardening led to a variation in photosynthetic dyes and an increase in the phenolic to carotenoids ratio in all DH lines.


Asunto(s)
Proteínas de Plantas , Plantones , Espectrometría Raman , Triticale , Plantones/metabolismo , Plantones/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Triticale/genética , Triticale/metabolismo , Espectrometría Raman/métodos , Clorofila/metabolismo , Temperatura , Carotenoides/metabolismo , Antioxidantes/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Estaciones del Año , Clorofila A/metabolismo
2.
BMC Plant Biol ; 24(1): 449, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783181

RESUMEN

Drosera intermedia grows in acidic bogs in parts of valleys that are flooded in winter, and that often dry out in summer. It is also described as the sundew of the most heavily hydrated habitats in peatlands, and it is often found in water and even underwater. This sundew is the only one that can tolerate long periods of submersion, and more importantly produces a typical submerged form that can live in such conditions for many years. Submerged habitats are occupied by D. intermedia relatively frequently. The aim of the study was to determine the environmental conditions and architecture of individuals in the submerged form of D. intermedia. The features of the morphological and anatomical structure and chlorophyll a fluorescence of this form that were measured were compared with analogous ones in individuals that occurred in emerged and peatland habitats. The submerged form occurred to a depth of 20 cm. Compared to the other forms, its habitat had the highest pH (4.71-4.92; Me = 4.71), the highest temperature and substrate hydration, and above all, the lowest photosynthetically active radiation (PAR; 20.4-59.4%). This form differed from the other forms in almost all of the features of the plant's architecture. It is particularly noteworthy that it had the largest main axis height among all of the forms, which exceeded 18 cm. The number of living leaves in a rosette was notable (18.1 ± 8.1), while the number of dead leaves was very low (6.9 ± 3.8). The most significant differences were in the shape of its submerged leaves, in which the length of the leaf blade was the lowest of all of the forms (0.493 ± 0.15 mm; p < 0.001) and usually the widest. The stem cross-sectional area was noticeably smaller in the submerged form than in the other forms, the xylem was less developed and collaterally closed vascular bundles occurred. Our analysis of the parameters of chlorophyll fluorescence in vivo revealed that the maximum quantum yield of the primary photochemistry of photosystem II is the highest for the submerged form (Me = 0.681), the same as the maximum quantum yield of the electron transport (Me φE0 = 0.183). The efficiency of energy use per one active reaction center of photosystem II (RC) was the lowest in the submerged form (Me = 2.978), same as the fraction of energy trapped by one active RC (Me = 1.976) and the non-photochemical energy dissipation (DI0/RC; Me = 0.916). The ET0/RC parameter, associated with the efficiency of the energy utilization for electron transport by one RC, in the submerged plant reached the highest value (Me = 0.489). The submerged form of D. intermedia clearly differed from the emerged and peatland forms in its plant architecture. The submerged plants had a thinner leaf blade and less developed xylem than the other forms, however, their stems were much longer. The relatively high photosynthetic efficiency of the submerged forms suggests that most of the trapped energy is utilized to drive photosynthesis with a minimum energy loss, which may be a mechanism to compensate for the relatively small size of the leaf blade.


Asunto(s)
Clorofila , Fotosíntesis , Fotosíntesis/fisiología , Clorofila/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/crecimiento & desarrollo , Ecosistema , Clorofila A/metabolismo , Temperatura , Concentración de Iones de Hidrógeno , Agua/metabolismo
3.
Toxins (Basel) ; 16(5)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38787058

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) occur in fresh water globally. These can degrade water quality and produce toxins, resulting in ecological and economic damages. Thus, short-term management methods (i.e., algaecides) are necessary to rapidly mitigate the negative impacts of cyanoHABs. In this study, we assess the efficacy of a hydrogen peroxide-based algaecide (PAK® 27) on a Microcystis dominated bloom which occurred within the Pahokee Marina on Lake Okeechobee, Florida, USA. We observed a significant reduction in chlorophyll a (96.81%), phycocyanin (93.17%), and Microcystis cell counts (99.92%), and a substantial reduction in microcystins (86.7%) 48 h after treatment (HAT). Additionally, there was a significant shift in bacterial community structure 48 HAT, which coincided with an increase in the relative abundance of photosynthetic protists. These results indicate that hydrogen peroxide-based algaecides are an effective treatment method for cyanoHAB control and highlight their effects on non-target microorganisms (i.e., bacteria and protists).


Asunto(s)
Floraciones de Algas Nocivas , Peróxido de Hidrógeno , Lagos , Florida , Peróxido de Hidrógeno/farmacología , Lagos/microbiología , Microcystis/efectos de los fármacos , Microcystis/crecimiento & desarrollo , Cianobacterias/efectos de los fármacos , Microbiota/efectos de los fármacos , Microcistinas , Ficocianina/farmacología , Clorofila A/metabolismo
4.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732056

RESUMEN

The involvement of the second pair of chlorophylls, termed A-1A and A-1B, in light-induced electron transfer in photosystem I (PSI) is currently debated. Asparagines at PsaA600 and PsaB582 are involved in coordinating the A-1B and A-1A pigments, respectively. Here we have mutated these asparagine residues to methionine in two single mutants and a double mutant in PSI from Synechocystis sp. PCC 6803, which we term NA600M, NB582M, and NA600M/NB582M mutants. (P700+-P700) FTIR difference spectra (DS) at 293 K were obtained for the wild-type and the three mutant PSI samples. The wild-type and mutant FTIR DS differ considerably. This difference indicates that the observed changes in the (P700+-P700) FTIR DS cannot be due to only the PA and PB pigments of P700. Comparison of the wild-type and mutant FTIR DS allows the assignment of different features to both A-1 pigments in the FTIR DS for wild-type PSI and assesses how these features shift upon cation formation and upon mutation. While the exact role the A-1 pigments play in the species we call P700 is unclear, we demonstrate that the vibrational modes of the A-1A and A-1B pigments are modified upon P700+ formation. Previously, we showed that the A-1 pigments contribute to P700 in green algae. In this manuscript, we demonstrate that this is also the case in cyanobacterial PSI. The nature of the mutation-induced changes in algal and cyanobacterial PSI is similar and can be considered within the same framework, suggesting a universality in the nature of P700 in different photosynthetic organisms.


Asunto(s)
Mutación , Complejo de Proteína del Fotosistema I , Synechocystis , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema I/genética , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Synechocystis/genética , Synechocystis/metabolismo , Clorofila/metabolismo , Transporte de Electrón/genética , Clorofila A/metabolismo
5.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38732065

RESUMEN

The research investigates the influence of different lighting conditions and soil treatments, in particular the application of food polymers separately and in combination with spores of Trichoderma consortium, on the growth and development of herbs-Thymus vulgaris and Thymus serpyllum. The metabolic analysis focuses on detecting changes in the levels of biologically active compounds such as chlorophyll a and b, anthocyanins, carotenoids, phenolic compounds (including flavonoids), terpenoids, and volatile organic compounds with potential health-promoting properties. By investigating these factors, the study aims to provide insights into how environmental conditions affect the growth and chemical composition of selected plants and to shed light on potential strategies for optimising the cultivation of these herbs for the improved quality and production of bioactive compounds. Under the influence of additional lighting, the growth of T. vulgaris and T. serpyllum seedlings was greatly accelerated, resulting in an increase in shoot biomass and length, and in the case of T. vulgaris, an increase in carotenoid and anthocyanin contents. Regarding secondary metabolites, the most pronounced changes were observed in total antioxidant capacity and flavonoid content, which increased significantly under the influence of additional lighting. The simultaneous or separate application of Trichoderma and food polymers resulted in an increase in flavonoid content in the leaves of both Thymus species. The increase in terpenoid content under supplemental light appears to be related to the presence of Trichoderma spores as well as food polymers added to the soil. However, the nature of these changes depends on the thyme species. Volatile compounds were analysed using an electronic nose (E-nose). Eight volatile compounds (VOCs) were tentatively identified in the vapours of T. vulgaris and T. serpyllum: α-pinene, myrcene, α-terpinene, γ-terpinene; 1,8-cineole (eucalyptol), thymol, carvacrol, and eugenol. Tendencies to increase the percentage of thymol and γ-terpinene under supplemental lighting were observed. The results also demonstrate a positive effect of food polymers and, to a lesser extent, Trichoderma fungi on the synthesis of VOCs with health-promoting properties. The effect of Trichoderma and food polymers on individual VOCs was positive in some cases for thymol and γ-terpinene.


Asunto(s)
Carotenoides , Luz , Thymus (Planta) , Trichoderma , Compuestos Orgánicos Volátiles , Thymus (Planta)/química , Thymus (Planta)/metabolismo , Trichoderma/metabolismo , Trichoderma/crecimiento & desarrollo , Carotenoides/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Clorofila/metabolismo , Terpenos/metabolismo , Flavonoides/metabolismo , Flavonoides/análisis , Antioxidantes/metabolismo , Antocianinas/metabolismo , Antocianinas/análisis , Clorofila A/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/química , Hojas de la Planta/crecimiento & desarrollo
6.
J Plant Physiol ; 297: 154261, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38705078

RESUMEN

Non-photochemical quenching (NPQ) protects plants from photodamage caused by excess light energy. Substantial variation in NPQ has been reported among different genotypes of the same species. However, comparatively little is known about how environmental perturbations, including nutrient deficits, impact natural variation in NPQ kinetics. Here, we analyzed a natural variation in NPQ kinetics of a diversity panel of 225 maize (Zea mays L.) genotypes under nitrogen replete and nitrogen deficient field conditions. Individual maize genotypes from a diversity panel exhibited a range of changes in NPQ in response to low nitrogen. Replicated genotypes exhibited consistent responses across two field experiments conducted in different years. At the seedling and pre-flowering stages, a similar portion of the genotypes (∼33%) showed decrease, no-change or increase in NPQ under low nitrogen relative to control. Genotypes with increased NPQ under low nitrogen also showed greater reductions in dry biomass and photosynthesis than genotypes with stable NPQ when exposed to low nitrogen conditions. Maize genotypes where an increase in NPQ was observed under low nitrogen also exhibited a reduction in the ratio of chlorophyll a to chlorophyll b. Our results underline that since thermal dissipation of excess excitation energy measured via NPQ helps to balance the energy absorbed with energy utilized, the NPQ changes are the reflection of broader molecular and biochemical changes which occur under the stresses such as low soil fertility. Here, we have demonstrated that variation in NPQ kinetics resulted from genetic and environmental factors, are not independent of each other. Natural genetic variation controlling plastic responses of NPQ kinetics to environmental perturbation increases the likelihood it will be possible to optimize NPQ kinetics in crop plants for different environments.


Asunto(s)
Clorofila A , Clorofila , Genotipo , Nitrógeno , Zea mays , Zea mays/genética , Zea mays/metabolismo , Zea mays/fisiología , Nitrógeno/metabolismo , Nitrógeno/deficiencia , Clorofila/metabolismo , Clorofila A/metabolismo , Fotosíntesis
7.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739806

RESUMEN

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Asunto(s)
Clorofila A , Cambio Climático , Fitoplancton , Estaciones del Año , Clorofila A/metabolismo , Clorofila A/análisis , Fitoplancton/fisiología , Fitoplancton/crecimiento & desarrollo , Estuarios , Ecosistema , Plancton/fisiología , Plancton/crecimiento & desarrollo , Biomasa , Clorofila/metabolismo
8.
Harmful Algae ; 134: 102623, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705613

RESUMEN

Microcystins release from bloom-forming cyanobacteria is considered a way to gain competitive advantage in Microcystis populations, which threaten water resources security and aquatic ecological balance. However, the effects of microcystins on microalgae are still largely unclear. Through simulated culture experiments and the use of UHPLC-MS-based metabolomics, the effects of two microcystin-LR (MC-LR) concentrations (400 and 1,600 µg/L) on the growth and antioxidant properties of three algae species, the toxic Microcystis aeruginosa, a non-toxic Microcystis sp., and Chlorella vulgaris, were studied. The MC-LR caused damage to the photosynthetic system and activated the protective mechanism of the photosynthetic system by decreasing the chlorophyll-a and carotenoid concentrations. Microcystins triggered oxidative stress in C. vulgaris, which was the most sensitive algae species studied, and secreted more glycolipids into the extracellular compartment, thereby destroying its cell structure. However, C. vulgaris eliminated reactive oxygen species (ROS) by secreting terpenoids, thereby resisting oxidative stress. In addition, two metabolic pathways, the vitamin B6 and the sphingolipid pathways, of C. vulgaris were significantly disturbed by microcystins, contributing to cell membrane and mitochondrial damage. Thus, both the low (400 µg/L) and the high (1,600 µg/L) MC-LR concentration inhibited algae growth within 3 to 7 days, and the inhibition rates increased with the increase in the MC-LR concentration. The above results indicate that the toxin-producing Microcystis species have a stronger toxin tolerance under longer-term toxin exposure in natural water environments. Thus, microcystins participates in interspecific interaction and phytoplankton population regulation and creates suitable conditions for the toxin-producing M. aeruginosa to become the dominant species in algae blooms.


Asunto(s)
Antioxidantes , Toxinas Marinas , Microcistinas , Microcystis , Fotosíntesis , Microcistinas/metabolismo , Fotosíntesis/efectos de los fármacos , Antioxidantes/metabolismo , Microcystis/efectos de los fármacos , Microcystis/crecimiento & desarrollo , Microcystis/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Chlorella vulgaris/efectos de los fármacos , Chlorella vulgaris/crecimiento & desarrollo , Chlorella vulgaris/metabolismo , Clorofila A/metabolismo
9.
Sci Rep ; 14(1): 9975, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693309

RESUMEN

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Asunto(s)
Clorofila A , Ecosistema , Fitoplancton , Estaciones del Año , Fitoplancton/crecimiento & desarrollo , Fitoplancton/fisiología , Mar Mediterráneo , Clorofila A/análisis , Clorofila A/metabolismo , Clorofila/análisis , Clorofila/metabolismo , Biomasa , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos
10.
Funct Plant Biol ; 512024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38669461

RESUMEN

Chlorophyll a fluorescence parameters related to PSII photochemistry, photoprotection and photoinhibition were investigated in four C3 plant species growing in their natural habitat: Prosopis juliflora ; Abutilon indicum ; Salvadora persica ; and Phragmites karka . This study compared the light reaction responses of P. juliflora , an invasive species, with three native co-existing species, which adapt to varying water deficit and high salt stress. Chlorophyll a fluorescence quenching analyses revealed that P. juliflora had the highest photochemical quantum efficiency and yield, regulated by higher fraction of open reaction centres and reduced photoprotective energy dissipation without compromising the integrity of photosynthetic apparatus due to photoinhibition. Moreover, the elevated values of parameters obtained through polyphasic chlorophyll a fluorescence induction kinetics, which characterise the photochemistry of PSII and electron transport, highlighted the superior performance index of energy conservation in the transition from excitation to the reduction of intersystem electron carriers for P. juliflora compared to other species. Enhanced pigment contents and their stoichiometry in P. juliflora apparently contributed to upregulating fluxes and yields of energy absorbance, trapping and transport. This enhanced photochemistry, along with reduced non-photochemical processes, could explain the proclivity for invasion advantage in P. juliflora across diverse stress conditions.


Asunto(s)
Clorofila A , Clorofila , Complejo de Proteína del Fotosistema II , Prosopis , Prosopis/efectos de los fármacos , Prosopis/química , Complejo de Proteína del Fotosistema II/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo , Estrés Salino/efectos de los fármacos , Plantas Tolerantes a la Sal/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Especies Introducidas , Fluorescencia
11.
J Hazard Mater ; 471: 134373, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678710

RESUMEN

The cyanobacterial response to pharmaceuticals is less frequently investigated compared to green algae. Pharmaceuticals can influence not only the growth rate of cyanobacteria culture, but can also cause changes at the cellular level. The effect of diclofenac (DCF) as one of the for cyanobacteria has been rarely tested, and DCF has never been applied with cellular biomarkers. The aim of this work was to test the response of two unicellular cyanobacteria (Synechocystis salina and Microcystis aeruginosa) toward DCF (100 mg L-1) under photoautotrophic growth conditions. Such endpoints were analyzed as cells number, DCF uptake, the change in concentrations of photosynthetic pigments, the production of toxins, and chlorophyll a in vivo fluorescence. It was noted that during a 96 h exposure, cell proliferation was not impacted. Nevertheless, a biochemical response was observed. The increased production of microcystin was noted for M. aeruginosa. Due to the negligible absorption of DCF into cells, it is possible that the biochemical changes are induced by an external signal. The application of non-standard biomarkers demonstrates the effect of DCF on microorganism metabolism without a corresponding effect on biomass. The high resistance of cyanobacteria to DCF and the stimulating effect of DCF on the secretion of toxins raise concerns for environment biodiversity.


Asunto(s)
Biomarcadores , Clorofila A , Diclofenaco , Microcystis , Synechocystis , Microcystis/efectos de los fármacos , Microcystis/metabolismo , Microcystis/crecimiento & desarrollo , Diclofenaco/toxicidad , Diclofenaco/metabolismo , Biomarcadores/metabolismo , Synechocystis/metabolismo , Synechocystis/efectos de los fármacos , Synechocystis/crecimiento & desarrollo , Clorofila A/metabolismo , Microcistinas/metabolismo , Clorofila/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/metabolismo , Fotosíntesis/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología
12.
Int J Mol Sci ; 25(8)2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38673998

RESUMEN

As one of the largest and most diverse classes of specialized metabolites in plants, terpenoids (oprenoid compounds, a type of bio-based material) are widely used in the fields of medicine and light chemical products. They are the most important secondary metabolites in coniferous species and play an important role in the defense system of conifers. Terpene synthesis can be promoted by regulating the expressions of terpene synthase genes, and the terpene biosynthesis pathway has basically been clarified in Pinus massoniana, in which there are multiple rate-limiting enzymes and the rate-limiting steps are difficult to determine, so the terpene synthase gene regulation mechanism has become a hot spot in research. Herein, we amplified a PmDXR gene (GenBank accession no. MK969119.1) of the MEP pathway (methyl-erythritol 4-phosphate) from Pinus massoniana. The DXR enzyme activity and chlorophyll a, chlorophyll b and carotenoid contents of overexpressed Arabidopsis showed positive regulation. The PmDXR gene promoter was a tissue-specific promoter and can respond to ABA, MeJA and GA stresses to drive the expression of the GUS reporter gene in N. benthamiana. The DXR enzyme was identified as a key rate-limiting enzyme in the MEP pathway and an effective target for terpene synthesis regulation in coniferous species, which can further lay the theoretical foundation for the molecularly assisted selection of high-yielding lipid germplasm of P. massoniana, as well as provide help in the pathogenesis of pine wood nematode disease.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Trementina , Ácido Abscísico/metabolismo , Acetatos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila/biosíntesis , Clorofila A/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Pinus/genética , Pinus/metabolismo , Pinus/parasitología , Pinus/enzimología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Terpenos/metabolismo , Trementina/química , Trementina/metabolismo
13.
Chemosphere ; 358: 142111, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663677

RESUMEN

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.


Asunto(s)
Atrazina , Chlorella vulgaris , Herbicidas , Sustancias Húmicas , Microplásticos , Estrés Oxidativo , Poliestirenos , Superóxido Dismutasa , Contaminantes Químicos del Agua , Chlorella vulgaris/efectos de los fármacos , Atrazina/toxicidad , Poliestirenos/toxicidad , Poliestirenos/química , Superóxido Dismutasa/metabolismo , Herbicidas/toxicidad , Herbicidas/química , Contaminantes Químicos del Agua/toxicidad , Microplásticos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microalgas/efectos de los fármacos , Clorofila/metabolismo , Malondialdehído/metabolismo , Antioxidantes/metabolismo , Biomasa , Clorofila A/metabolismo
14.
Bioresour Technol ; 400: 130651, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38570100

RESUMEN

Excessive proliferation of algae in water depletes dissolved oxygen, resulting in the demise of aquatic life and environmental damage. This study delves into the effectiveness of the dielectric barrier discharge (DBD) plasma activated peracetic acid (PAA) system in deactivating Chlorella. Within 15 min, the algae removal effectiveness reached 89 % under ideal trial conditions. DBD plasma activation of PAA augmented the concentration of reactive species such as ·OH, 1O2, and organic radicals (RO·) in the solution, which are involved in the process of cell inactivation. Reactive oxygen species (ROS) within Chlorella cells continued to rise as a result of treatment-induced damage to the morphological structure and cell membrane of the organism. DNA and chlorophyll-a (Chl-a), were oxidized and destroyed by these invasive active compounds. This study presents an efficient advanced oxidation method to destroy algal cells and adds an alternative strategy for algal control in areas where eutrophication occurs.


Asunto(s)
Chlorella , Ácido Peracético , Gases em Plasma , Especies Reactivas de Oxígeno , Chlorella/metabolismo , Chlorella/efectos de los fármacos , Ácido Peracético/farmacología , Gases em Plasma/farmacología , Especies Reactivas de Oxígeno/metabolismo , Clorofila/metabolismo , Clorofila A/metabolismo
15.
Methods Mol Biol ; 2790: 27-39, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649564

RESUMEN

Light is the driving force for photosynthesis. Two techniques are commonly employed to help characterize the relationship between the light environment and photosynthesis in plants.Chlorophyll a fluorescence analysis is used to examine both the capacity for and the efficiency of the conversion of absorbed light into energy for photosynthesis. Additionally, gas exchange analysis is used to assess the utilization of that energy for carbon fixation. These techniques are used either in isolation or in combination to acquire light response curves that measure the response of the plant to sequential changes in irradiance. Light response curves can help users understand photosynthetic mechanisms, evaluate how plants respond to light conditions, or assess the extent of physiological plasticity within plants. In this chapter, we provide a generalized method for acquiring light response curves suitable for both chlorophyll a fluorescence and gas exchange techniques using commercially available apparatus. Depending on the equipment available, these methods can be applied individually or combined to acquire data simultaneously. The methods are broadly applicable to most land plants but are ideally suited to help those that are unfamiliar with these techniques.


Asunto(s)
Clorofila , Luz , Fotosíntesis , Fotosíntesis/fisiología , Clorofila/metabolismo , Embryophyta/fisiología , Clorofila A/metabolismo , Fluorescencia
16.
Methods Mol Biol ; 2790: 269-292, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38649576

RESUMEN

The world we live in is very fragile. Sustainable food production is increasingly under intense pressure due to changing environmental conditions on many levels. Understanding the complexities of how to optimize food production under increasingly deleterious environmental conditions is dependent upon accurate and detailed analyses of plant productivity from the molecular-to-the-remote scales. One method that can link many of these scales has been around for decades, namely, pulse amplitude modulation (PAM) chlorophyll a fluorescence. This technique is used to measure an assortment of important parameters based on chlorophyll a fluorescence. One of the parameters measured by this method is termed the steady state maximum fluorescence yield ( Φ Fm ' ). This parameter, while extremely informative when used to quantify an assortment of processes of intense scientific interest, is nonetheless subject to intrinsic underestimation. A clever approach has evolved over several decades to more accurately estimate Φ Fm ' . The underlying rationale of the methodology requires a thorough and nuanced explanation, which is lacking in the literature. Herein, we systematically develop the essential rationale for accurately measuring Φ Fm ' based on the latest evolution of this approach, called multiphase flash (MPF) methodology.


Asunto(s)
Clorofila A , Fluorescencia , Clorofila A/análisis , Clorofila A/metabolismo , Clorofila/metabolismo , Clorofila/análisis , Luz , Fotosíntesis/fisiología , Espectrometría de Fluorescencia/métodos
17.
Chemosphere ; 356: 141937, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599327

RESUMEN

Based on their chemical structure and catalytic features, carbon dots (CDs) demonstrate great advantages for agricultural systems. The improvements in growth, photosynthesis, nutrient assimilation and resistance are provided by CDs treatments under control or adverse conditions. However, there is no data on how CDs can enhance the tolerance against chromium toxicity on gas exchange, photosynthetic machinery and ROS-based membrane functionality. The present study was conducted to evaluate the impacts of the different concentrations of orange peel derived-carbon dots (50-100-200-500 mg L-1 CD) on growth, chlorophyll fluorescence, phenomenological fluxes between photosystems, photosynthetic performance, ROS accumulation and antioxidant system under chromium stress (Cr, 100 µM chromium (VI) oxide) in Lactuca sativa. CDs removed the Cr-reduced changes in growth (RGR), water content (RWC) and proline (Pro) content. Compared to stress, CD exposures caused an alleviation in carbon assimilation rate, stomatal conductance, transpiration rate, carboxylation efficiency, chlorophyll fluorescence (Fv/Fm) and potential photochemical efficiency (Fv/Fo). Cr toxicity disrupted the energy fluxes (ABS/RC, TRo/RC, ETo/RC and DIo/RC), quantum yields and, efficiency (ΨEo and φRo), dissipation of energy (DIo/RC) and performance index (PIABS and PItotal). An amelioration in these parameters was provided by CD addition to Cr-applied plants. Stressed plants had high activities of superoxide dismutase (SOD), peroxidase (POX) and ascorbate peroxidase (APX), which could not prevent the increase of H2O2 and lipid peroxidation (TBARS content). While all CDs induced SOD and catalase (CAT) in response to stress, POX and enzyme/non-enzymes related to ascorbate-glutathione (AsA-GSH) cycle (APX, monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), the contents of AsA and, GSH) were activated by 50-100-200 mg L-1 CD. CDs were able to protect the AsA regeneration, GSH/GSSG and GSH redox status. The decreases in H2O2 content might be attributed to the increased activity of glutathione peroxidase (GPX). Therefore, all CD applications minimized the Cr stress-based disturbances (TBARS content) by controlling ROS accumulation, antioxidant system and photosynthetic machinery. In conclusion, CDs have the potential to be used as a biocompatible inducer in removing the adverse effects of Cr stress in lettuce plants.


Asunto(s)
Antioxidantes , Carbono , Clorofila A , Cromo , Lactuca , Oxidación-Reducción , Fotosíntesis , Cromo/toxicidad , Antioxidantes/metabolismo , Lactuca/efectos de los fármacos , Lactuca/metabolismo , Carbono/metabolismo , Fotosíntesis/efectos de los fármacos , Fluorescencia , Clorofila A/metabolismo , Puntos Cuánticos/toxicidad , Puntos Cuánticos/química , Cinética , Clorofila/metabolismo , Especies Reactivas de Oxígeno/metabolismo
18.
BMC Plant Biol ; 24(1): 265, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600480

RESUMEN

BACKGROUND: Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS: A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION: We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Solanum lycopersicum , Solanum lycopersicum/genética , Clorofila A/metabolismo , Filogenia , Cloroplastos/genética , Arabidopsis/genética , Mutación , Fenotipo , Hojas de la Planta/metabolismo , Carotenoides/metabolismo , MicroARNs/metabolismo , Precursores de Proteínas/metabolismo , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Proteínas de Arabidopsis/genética
19.
Physiol Plant ; 176(3): e14308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38666320

RESUMEN

Mixotrophy, the concurrent use of inorganic and organic carbon in the presence of light for microalgal growth, holds ecological and industrial significance. However, it is poorly explored in diatoms, especially in ecologically relevant species like Skeletonema marinoi. This study strategically employed mixotrophic metabolism to optimize the growth of a strain of Skeletonema marinoi (Sm142), which was found potentially important for biomass production on the west coast of Sweden in winter conditions. The aim of this study was to discern the most effective organic carbon sources by closely monitoring microalgal growth through the assessment of optical density, chlorophyll a fluorescence, and biomass concentration. The impact of various carbon sources on the physiology of Sm142 was investigated using photosynthetic and respiratory parameters. The findings revealed that glycerol exhibited the highest potential for enhancing the biomass concentration of Sm142 in a multi-cultivator under the specified experimental conditions, thanks to the increase in respiration activity. Furthermore, the stimulatory effect of glycerol was confirmed at a larger scale using environmental photobioreactors simulating the winter conditions on the west coast of Sweden; it was found comparable to the stimulation by CO2-enriched air versus normal air. These results were the first evidence of the ability of Skeletonema marinoi to perform mixotrophic metabolism during the winter and could explain the ecological success of this diatom on the Swedish west coast. These findings also highlight the importance of both organic and inorganic carbon sources for enhancing biomass productivity in harsh winter conditions.


Asunto(s)
Biomasa , Diatomeas , Fotosíntesis , Estaciones del Año , Diatomeas/crecimiento & desarrollo , Diatomeas/fisiología , Diatomeas/metabolismo , Fotosíntesis/fisiología , Suecia , Carbono/metabolismo , Microalgas/crecimiento & desarrollo , Microalgas/metabolismo , Microalgas/fisiología , Clorofila A/metabolismo , Clorofila/metabolismo , Glicerol/metabolismo
20.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491471

RESUMEN

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Asunto(s)
Cadmio , Giberelinas , Contaminantes del Suelo , Cadmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/metabolismo , Suelo/química , Malondialdehído/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA