Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 18.480
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000074

RESUMEN

Chloroplasts is the site for photosynthesis, which is the main primary source of energy for plants. Golden2-like (GLK) is a key transcription factor that regulates chloroplast development and chlorophyll synthesis. However, most studies on GLK genes are performed in crops and model plants with less attention to woody plants. In this study, we identified the LhGLK1 and LhGLK2 genes in the woody plant Liriodendron hybrid, and they are specifically expressed in green tissues. We showed that overexpression of the LhGLK1 gene improves rosette leaf chlorophyll content and induces ectopic chlorophyll biogenesis in primary root and petal vascular tissue in Arabidopsis. Although these exhibit a late-flowering phenotype, transgenic lines accumulate more biomass in vegetative growth with improved photochemical quenching (qP) and efficiency of photosystem II. Taken together, we verified a conserved and ancient mechanism for regulating chloroplast biogenesis in Liriodendron hybrid and evaluated its effect on photosynthesis and rosette biomass accumulation in the model plant Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Clorofila , Regulación de la Expresión Génica de las Plantas , Liriodendron , Fotosíntesis , Plantas Modificadas Genéticamente , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Clorofila/metabolismo , Liriodendron/genética , Liriodendron/metabolismo , Fotosíntesis/genética , Plantas Modificadas Genéticamente/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo
2.
Sci Rep ; 14(1): 15109, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956388

RESUMEN

Clematis nannophylla is a perennial shrub of Clematis with ecological, ornamental, and medicinal value, distributed in the arid and semi-arid areas of northwest China. This study successfully determined the chloroplast (cp) genome of C. nannophylla, reconstructing a phylogenetic tree of Clematis. This cp genome is 159,801 bp in length and has a typical tetrad structure, including a large single-copy, a small single-copy, and a pair of reverse repeats (IRa and IRb). It contains 133 unique genes, including 89 protein-coding, 36 tRNA, and 8 rRNA genes. Additionally, 66 simple repeat sequences, 50 dispersed repeats, and 24 tandem repeats were found; many of the dispersed and tandem repeats were between 20-30 bp and 10-20 bp, respectively, and the abundant repeats were located in the large single copy region. The cp genome was relatively conserved, especially in the IR region, where no inversion or rearrangement was observed, further revealing that the coding regions were more conserved than the noncoding regions. Phylogenetic analysis showed that C. nannophylla is more closely related to C. fruticosa and C. songorica. Our analysis provides reference data for molecular marker development, phylogenetic analysis, population studies, and cp genome processes to better utilise C. nannophylla.


Asunto(s)
Clematis , Evolución Molecular , Genoma del Cloroplasto , Filogenia , Genoma del Cloroplasto/genética , Clematis/genética , Clematis/clasificación , Cloroplastos/genética
3.
Methods Mol Biol ; 2827: 377-383, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38985283

RESUMEN

Chloroplast isolation protocols have been extensively developed for various species of plants, particularly model organisms with easily manipulable physical characteristics. However, succulent plants, such as Agave angustifolia Haw., which possess adaptations for arid environments like the Crassulacean acid metabolism (CAM) and a thicker cuticle, have received less attention, resulting in a potential knowledge gap. This chapter presents a specialized protocol focusing on isolating chloroplast from A. angustifolia, a species exhibiting adaptations to arid conditions and holding ecological and economic significance due to its role in producing bacanora and mezcal beverages. By successfully isolating chloroplast from A. angustifolia plant growth in ex vitro and in vitro conditions, this protocol enables comprehensive future analyses to elucidate metabolic processes and explore potential applications in related species. Consequently, this research aims to bridge this knowledge gap in chloroplast isolation for succulent plants, providing new insights for future investigations in the field.


Asunto(s)
Agave , Cloroplastos , Cloroplastos/metabolismo , Fraccionamiento Celular/métodos
4.
Int J Mol Sci ; 25(13)2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-39000008

RESUMEN

RNC1, a plant-specific gene, is known for its involvement in splicing group II introns within maize chloroplast. However, its role in chloroplast development and global gene expression remains poorly understood. This study aimed to investigate the role of RNC1 in chloroplast development and identify the genes that mediate its function in the development of entire tomato plants. Consistent with findings in maize, RNC1 silencing induced dwarfism and leaf whitening in tomato plants. Subcellular localization analysis revealed that the RNC1 protein is localized to both the nucleus and cytoplasm, including the stress granule and chloroplasts. Electron microscopic examination of tomato leaf transverse sections exposed significant disruptions in the spatial arrangement of the thylakoid network upon RNC1 silencing, crucial for efficient light energy capture and conversion into chemical energy. Transcriptome analysis suggested that RNC1 silencing potentially impacts tomato plant development through genes associated with all three categories (biological processes, cellular components, and molecular functions). Overall, our findings contribute to a better understanding of the critical role of RNC1 in chloroplast development and its significance in plant physiology.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Perfilación de la Expresión Génica
5.
Protist ; 175(4): 126048, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38981407

RESUMEN

The genomes of peridinin-containing dinoflagellate chloroplasts have a very unusual organisation. These genomes are highly fragmented and greatly reduced, with most of the usual complement of chloroplast genes relocated to the nucleus. Dinoflagellate chloroplasts highlight evolutionary changes that are found to varying extents in a number of other organelle genomes. These include the chloroplast genome of the green alga Boodlea and other Cladophorales, and the mitochondrial genomes of blood-sucking and chewing lice, the parasitic plant Rhopalocnemis phalloides, the red alga Rhodosorus marinus and other members of the Stylonematophyceae, diplonemid flagellates, and some Cnidaria. Consideration of the coding content of the remnant chloroplast genomes indicates that organelles may preferentially retain genes for proteins important in initiating assembly of complexes, and the same is largely true for mitochondria. We propose a new principle, of CO-location for COntrol of Assembly (COCOA), indicating the importance of retaining these genes in the organelle. This adds to, but does not invalidate, the existing hypotheses of the multisubunit completion principle, CO-location for Redox Regulation (CORR) and Control by Epistasy of Synthesis (CES).


Asunto(s)
Cloroplastos , Dinoflagelados , Dinoflagelados/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Genoma del Cloroplasto
6.
Proc Natl Acad Sci U S A ; 121(28): e2309244121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968115

RESUMEN

DNA is organized into chromatin-like structures that support the maintenance and regulation of genomes. A unique and poorly understood form of DNA organization exists in chloroplasts, which are organelles of endosymbiotic origin responsible for photosynthesis. Chloroplast genomes, together with associated proteins, form membrane-less structures known as nucleoids. The internal arrangement of the nucleoid, molecular mechanisms of DNA organization, and connections between nucleoid structure and gene expression remain mostly unknown. We show that Arabidopsis thaliana chloroplast nucleoids have a unique sequence-specific organization driven by DNA binding to the thylakoid membranes. DNA associated with the membranes has high protein occupancy, has reduced DNA accessibility, and is highly transcribed. In contrast, genes with low levels of transcription are further away from the membranes, have lower protein occupancy, and have higher DNA accessibility. Membrane association of active genes relies on the pattern of transcription and proper chloroplast development. We propose a speculative model that transcription organizes the chloroplast nucleoid into a transcriptionally active membrane-associated core and a less active periphery.


Asunto(s)
Arabidopsis , Cloroplastos , Tilacoides , Arabidopsis/genética , Arabidopsis/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Tilacoides/metabolismo , Tilacoides/genética , Tilacoides/ultraestructura , Regulación de la Expresión Génica de las Plantas , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transcripción Genética , ADN de Cloroplastos/genética , ADN de Cloroplastos/metabolismo
7.
Sci Adv ; 10(25): eadj3268, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896607

RESUMEN

Chloroplasts are the powerhouse of the plant cell, and their activity must be matched to plant growth to avoid photooxidative damage. We have identified a posttranslational mechanism linking the eukaryotic target of rapamycin (TOR) kinase that promotes growth and the guanosine tetraphosphate (ppGpp) signaling pathway of prokaryotic origins that regulates chloroplast activity and photosynthesis in particular. We find that RelA SpoT homolog 3 (RSH3), a nuclear-encoded enzyme responsible for ppGpp biosynthesis, interacts directly with the TOR complex via a plant-specific amino-terminal region which is phosphorylated in a TOR-dependent manner. Down-regulating TOR activity causes a rapid increase in ppGpp synthesis in RSH3 overexpressors and reduces photosynthetic capacity in an RSH-dependent manner in wild-type plants. The TOR-RSH3 signaling axis therefore regulates the equilibrium between chloroplast activity and plant growth, setting a precedent for the regulation of organellar function by TOR.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Fotosíntesis , Transducción de Señal , Cloroplastos/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Fosforilación , Procesamiento Proteico-Postraduccional , Regulación de la Expresión Génica de las Plantas , Guanosina Tetrafosfato/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Fosfatidilinositol 3-Quinasas
8.
Cells ; 13(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38891020

RESUMEN

Improving the drought resistance of rice is of great significance for expanding the planting area and improving the stable yield of rice. In our previous work, we found that ROLLED AND ERECT LEAF1 (REL1) protein promoted enhanced tolerance to drought stress by eliminating reactive oxygen species (ROS) levels and triggering the abscisic acid (ABA) response. However, the mechanism through which REL1 regulates drought tolerance by removing ROS is unclear. In this study, we identified REL1 interacting protein 5 (RIP5) and found that it directly combines with REL1 in the chloroplast. We found that RIP5 was strongly expressed in ZH11 under drought-stress conditions, and that the rip5-ko mutants significantly improved the tolerance of rice plants to drought, whereas overexpression of RIP5 resulted in greater susceptibility to drought. Further investigation suggested that RIP5 negatively regulated drought tolerance in rice by decreasing the content of ascorbic acid (AsA), thereby reducing ROS clearance. RNA sequencing showed that the knockout of RIP5 caused differential gene expression that is chiefly associated with ascorbate and aldarate metabolism. Furthermore, multiple experimental results suggest that REL1 is involved in regulating drought tolerance by inhibiting RIP5. Collectively, our findings reveal the importance of the inhibition of RIP5 by REL1 in affecting the rice's response to drought stress. This work not only explains the drought tolerance mechanism of rice, but will also help to improve the drought tolerance of rice.


Asunto(s)
Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Especies Reactivas de Oxígeno , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico , Ácido Abscísico/metabolismo , Cloroplastos/metabolismo , Adaptación Fisiológica/genética , Plantas Modificadas Genéticamente , Ácido Ascórbico/metabolismo , Unión Proteica , Resistencia a la Sequía
9.
Proc Natl Acad Sci U S A ; 121(26): e2318570121, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38905238

RESUMEN

Hydrogen isotope ratios (δ2H) represent an important natural tracer of metabolic processes, but quantitative models of processes controlling H-fractionation in aquatic photosynthetic organisms are lacking. Here, we elucidate the underlying physiological controls of 2H/1H fractionation in algal lipids by systematically manipulating temperature, light, and CO2(aq) in continuous cultures of the haptophyte Gephyrocapsa oceanica. We analyze the hydrogen isotope fractionation in alkenones (αalkenone), a class of acyl lipids specific to this species and other haptophyte algae. We find a strong decrease in the αalkenone with increasing CO2(aq) and confirm αalkenone correlates with temperature and light. Based on the known biosynthesis pathways, we develop a cellular model of the δ2H of algal acyl lipids to evaluate processes contributing to these controls on fractionation. Simulations show that longer residence times of NADPH in the chloroplast favor a greater exchange of NADPH with 2H-richer intracellular water, increasing αalkenone. Higher chloroplast CO2(aq) and temperature shorten NADPH residence time by enhancing the carbon fixation and lipid synthesis rates. The inverse correlation of αalkenone to CO2(aq) in our cultures suggests that carbon concentrating mechanisms (CCM) do not achieve a constant saturation of CO2 at the Rubisco site, but rather that chloroplast CO2 varies with external CO2(aq). The pervasive inverse correlation of αalkenone with CO2(aq) in the modern and preindustrial ocean also suggests that natural populations may not attain a constant saturation of Rubisco with the CCM. Rather than reconstructing growth water, αalkenone may be a powerful tool to elucidate the carbon limitation of photosynthesis.


Asunto(s)
Dióxido de Carbono , Haptophyta , Lípidos , Fotosíntesis , Dióxido de Carbono/metabolismo , Haptophyta/metabolismo , Lípidos/química , Hidrógeno/metabolismo , Cloroplastos/metabolismo , Deuterio/metabolismo , NADP/metabolismo , Temperatura , Fraccionamiento Químico/métodos , Metabolismo de los Lípidos
10.
Planta ; 260(1): 28, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38878167

RESUMEN

MAIN CONCLUSION: We generated transplastomic tobacco lines that stably express a human Basic Fibroblast Growth Factor (hFGFb) in their chloroplasts stroma and purified a biologically active recombinant hFGFb. MAIN: The use of plants as biofactories presents as an attractive technology with the potential to efficiently produce high-value human recombinant proteins in a cost-effective manner. Plastid genome transformation stands out for its possibility to accumulate recombinant proteins at elevated levels. Of particular interest are recombinant growth factors, given their applications in animal cell culture and regenerative medicine. In this study, we produced recombinant human Fibroblast Growth Factor (rhFGFb), a crucial protein required for animal cell culture, in tobacco chloroplasts. We successfully generated two independent transplastomic lines that are homoplasmic and accumulate rhFGFb in their leaves. Furthermore, the produced rhFGFb demonstrated its biological activity by inducing proliferation in HEK293T cell lines. These results collectively underscore plastid genome transformation as a promising plant-based bioreactor for rhFGFb production.


Asunto(s)
Cloroplastos , Factor 2 de Crecimiento de Fibroblastos , Nicotiana , Plantas Modificadas Genéticamente , Proteínas Recombinantes , Nicotiana/genética , Nicotiana/metabolismo , Humanos , Factor 2 de Crecimiento de Fibroblastos/genética , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células HEK293 , Proliferación Celular , Hojas de la Planta/metabolismo , Hojas de la Planta/genética
11.
Genes (Basel) ; 15(6)2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38927652

RESUMEN

With more than 200 species of native Rubus, China is considered a center of diversity for this genus. Due to a paucity of molecular markers, the phylogenetic relationships for this genus are poorly understood. In this study, we sequenced and assembled the plastomes of 22 out of 204 Chinese Rubus species (including varieties) from three of the eight sections reported in China, i.e., the sections Chamaebatus, Idaeobatus, and Malachobatus. Plastomes were annotated and comparatively analyzed with the inclusion of two published plastomes. The plastomes of all 24 Rubus species were composed of a large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs), and ranged in length from 155,464 to 156,506 bp. We identified 112 unique genes, including 79 protein-coding genes, 29 transfer RNAs, and four ribosomal RNAs. With highly consistent gene order, these Rubus plastomes showed strong collinearity, and no significant changes in IR boundaries were noted. Nine divergent hotspots were identified based on nucleotide polymorphism analysis: trnH-psbA, trnK-rps16, rps16-trnQ-psbK, petN-psbM, trnT-trnL, petA-psbJ, rpl16 intron, ndhF-trnL, and ycf1. Based on whole plastome sequences, we obtained a clearer phylogenetic understanding of these Rubus species. All sampled Rubus species formed a monophyletic group; however, sections Idaeobatus and Malachobatus were polyphyletic. These data and analyses demonstrate the phylogenetic utility of plastomes for systematic research within Rubus.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Rubus , Genoma del Cloroplasto/genética , China , Rubus/genética , Rubus/clasificación , Cloroplastos/genética
12.
Genes (Basel) ; 15(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38927655

RESUMEN

The citrus cultivar 'Local Juhong', which has historically been used as a traditional Chinese medicinal material, originated in Yuanjiang County, Hunan Province.Its parental type and genetic background are indistinct as of yet. Morphological observation shows that 'Local Juhong' has a slight oblateness in fruit shape, a relatively smooth pericarp, a fine and slightly raised oil vacuole, and an inward concave at the blossom end. The tree form and fruit and leaf morphology of 'Local Juhong' are similar to those of 'Huangpi' sour orange. To reveal the genetic background of 'Local Juhong', 21 citrus accessions were evaluated using nuclear and chloroplast SSR markers and whole-genome SNP information. 'Local Juhong' was grouped with mandarins and sub-grouped with 'Miyagawa Wase' and 'Yanxi Wanlu' in a nuclear SSR analysis, which indicated that its pollen parent might be mandarins. It was closely clustered with orange and pummelo in the chloroplast SSR analysis. The genomic sequence similarity rate of 'Local Juhong' with mandarin and pummelo heterozygosity was 70.88%; the main part was the heterozygosity, except for the unknown (19.66%), mandarin (8.73%), and pummelo (3.9%) parts. Thus, 'Local Juhong' may be an F1 hybrid with pummelo as the female parent and mandarin as the male parent, sharing sisterhood with 'Huangpi' sour orange.


Asunto(s)
Citrus , Repeticiones de Microsatélite , Citrus/genética , Repeticiones de Microsatélite/genética , Polimorfismo de Nucleótido Simple , Plantas Medicinales/genética , Genómica/métodos , Genoma de Planta , Marcadores Genéticos , Filogenia , Cloroplastos/genética
13.
Genes (Basel) ; 15(6)2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38927697

RESUMEN

The chloroplast genome plays a crucial role in elucidating genetic diversity and phylogenetic relationships. Vitis vinifera L. (grapevine) is an economically important species, prompting exploration of wild genetic resources to enhance stress resilience. We meticulously assembled the chloroplast genomes of two Korean Vitis L. species, V. flexuosa Thunb. and V. amurensis Rupr., contributing valuable data to the Korea Crop Wild Relatives inventory. Through exhaustive specimen collection spanning diverse ecological niches across South Korea, we ensured comprehensive representation of genetic diversity. Our analysis, which included rigorous codon usage bias assessment and repeat analysis, provides valuable insights into amino acid preferences and facilitates the identification of potential molecular markers. The assembled chloroplast genomes were subjected to meticulous annotation, revealing divergence hotspots enriched with nucleotide diversity, thereby presenting promising candidates for DNA barcodes. Additionally, phylogenetic analysis reaffirmed intra-genus relationships and identified related crops, shedding light on evolutionary patterns within the genus. Comparative examination with chloroplast genomes of other crops uncovered conserved sequences and variable regions, offering critical insights into genetic evolution and adaptation. Our study advances the understanding of chloroplast genomes, genetic diversity, and phylogenetic relationships within Vitis species, thereby laying a foundation for enhancing grapevine genetic diversity and resilience to environmental challenges.


Asunto(s)
Genoma del Cloroplasto , Filogenia , Vitis , Vitis/genética , Genoma del Cloroplasto/genética , Evolución Molecular , Variación Genética , República de Corea , Cloroplastos/genética , Genoma de Planta
14.
Methods Mol Biol ; 2832: 145-161, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869793

RESUMEN

Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.


Asunto(s)
Hojas de la Planta , Estrés Fisiológico , Hojas de la Planta/metabolismo , Fotosíntesis , Cloroplastos/metabolismo , Estrés Oxidativo , Pruebas de Enzimas/métodos , Respiración de la Célula , Vitamina K 3/farmacología , Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/fisiología , Luz
15.
Methods Mol Biol ; 2832: 3-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38869784

RESUMEN

Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.


Asunto(s)
Aclimatación , Transducción de Señal , Estrés Fisiológico , Plantas/metabolismo , Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Cloroplastos/metabolismo , Fenómenos Fisiológicos de las Plantas , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología
16.
J Hazard Mater ; 475: 134815, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885582

RESUMEN

Nanoplastics (NPs), especially those with different charges, as one of emerging contaminants pose a threat to aquatic ecosystems. Although differentially charged NPs could induce distinct biological effects, mechanistic understanding of the critical physiological processes of aquatic organisms from an integrated multilevel perspective on aquatic organisms is still uncertain. Herein, multi-effects of differentially charged nanosized polystyrene (nPS) including neutral nPS, nPS-COOH, and nPS-NH2 on the photosynthesis-related physiological processes of algae were explored at the population, individual, subcellular, protein, and transcriptional levels. Results demonstrated that both nPS and nPS-COOH exhibited hormesis to algal photosynthesis but nPS-NH2 triggered severe inhibition. As for nPS-NH2, the integrity of algal subcellular structure, chlorophyll biosynthesis, and expression of photosynthesis-related proteins and genes were interfered. Intracellular NPs' content in nPS treatment was 25.64 % higher than in nPS-COOH treatment, and the content of chloroplasts in PS and nPS-COOH treatment were 3.09 % and 4.56 % higher than control, respectively. Furthermore, at the molecular levels, more photosynthesis-related proteins and genes were regulated under nPS-COOH exposure than those exposed to nPS. Light-harvesting complex II could be recognized as an underlying explanation for different effects between nPS and nPS-COOH. This study first provides a novel approach to assess the ecological risks of NPs at an integrated multilevel.


Asunto(s)
Fotosíntesis , Poliestirenos , Contaminantes Químicos del Agua , Fotosíntesis/efectos de los fármacos , Poliestirenos/toxicidad , Poliestirenos/química , Contaminantes Químicos del Agua/toxicidad , Nanopartículas/toxicidad , Nanopartículas/química , Clorofila/metabolismo , Microplásticos/toxicidad , Cloroplastos/efectos de los fármacos , Cloroplastos/metabolismo
17.
Plant Cell Rep ; 43(7): 168, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864883

RESUMEN

KEY MESSAGE: Immunofluorescence staining with frozen sections of plant tissues and a nest tube is convenient and effective, and broadens the applicability of immunofluorescence staining. Immunofluorescence staining is an indispensable and extensively employed technique for determining the subcellular localization of chloroplast division proteins. At present, it is difficult to effectively observe the localization of target proteins in leaves that are hard, or very thin, or have epidermal hair or glands with the current immunofluorescence staining methods. Moreover, signals of target proteins were predominantly detected in mesophyll cells, not the cells of other types. Thus, the method of immunofluorescence staining was further explored for improvement in this study. The plant tissue was embedded with 50% PEG4000 at -60℃, which was then cut into sections by a cryomacrotome. The sections were immediately immersed in fixation solution. Then, the sample was transferred into a special nested plastic tube, which facilitated the fixation and immunofluorescence staining procedures. The use of frozen sections in this method enabled a short processing time and reduced material requirements. By optimizing the thickness of the sections, a large proportion of the cells could be well stained. With this method, we observed the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis and various chloroplast division mutants. Meanwhile, the localization of FtsZ1 was also observed not only in mesophyll cells, but also in guard cells and epidermal cells in a lot of other plant species, including many species with hard leaf tissues. This method is not only easy to use, but also expands the scope of applicability for immunofluorescence staining.


Asunto(s)
Arabidopsis , Proteínas de Cloroplastos , Cloroplastos , Técnica del Anticuerpo Fluorescente , Secciones por Congelación , Coloración y Etiquetado , Arabidopsis/metabolismo , Arabidopsis/citología , Secciones por Congelación/métodos , Técnica del Anticuerpo Fluorescente/métodos , Cloroplastos/metabolismo , Coloración y Etiquetado/métodos , Proteínas de Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/citología , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células del Mesófilo/metabolismo , Células del Mesófilo/citología
18.
Plant Physiol Biochem ; 213: 108868, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917738

RESUMEN

The chloroplast biogenesis occurs in cotyledon during alfalfa seed germination before true leaf formation, and is extremely important for the followed plant development and growth. In this study, we conducted a simulation of alfalfa seed germination in the soil by using tin foil and focused on 10 pivotal time points of chloroplast biogenesis in cotyledons before and after light exposure, which showed significant differences in multispectral images, and covered the whole process of chloroplast biogenesis from proplastid, etioplast to mature chloroplast. We revealed three phases that referred to the programmed involvements of photosynthesis promotion, ultrastructure maturity, transcriptomic expression, and protein complex construction, and observed distinct transcriptional expressions of genes from nuclear and chloroplast genomes. In phase I at dark germination before light exposure, chloroplast-encoded genes showed up-regulated expressions together with the importation of chloroplast proteins. In phase II for the first day after light exposure, nuclear-encoded genes' expressions were initiated at 2 h after light exposure (E2h), followed by swift assembly of chloroplast thylakoid membrane protein complexes, and roaring Fv/Fm and contents of chlorophyll a, chlorophyll b and carotenoid. The initiation at E2h was pronounced by the observation of gradual accumulation of single lamella, and facilitated the formation of granum stacks (thylakoid) at E8h in phase II. In phase III from the second day after light exposure, chloroplast became gradually complete with the fully established photosynthetic capacity. Altogether, our results layed a theoretical foundation for enhancing potential photosynthetic efficiency in alfalfa and related species.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Germinación , Medicago sativa , Fotosíntesis , Cloroplastos/metabolismo , Cloroplastos/ultraestructura , Medicago sativa/genética , Medicago sativa/metabolismo , Medicago sativa/crecimiento & desarrollo , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Clorofila/metabolismo
19.
Physiol Plant ; 176(3): e14369, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38828612

RESUMEN

High temperature (HT) affects the production of chlorophyll (Chl) pigment and inhibits cellular processes that impair photosynthesis, and growth and development in plants. However, the molecular mechanisms underlying heat stress in rice are not fully understood yet. In this study, we identified two mutants varying in leaf color from the ethylmethanesulfonate mutant library of indica rice cv. Zhongjiazao-17, which showed pale-green leaf color and variegated leaf phenotype under HT conditions. Mut-map revealed that both mutants were allelic, and their phenotype was controlled by a single recessive gene PALE GREEN LEAF 10 (PGL10) that encodes NADPH:protochlorophyllide oxidoreductase B, which is required for the reduction of protochlorophyllide into chlorophyllide in light-dependent tetrapyrrole biosynthetic pathway-based Chl synthesis. Overexpression-based complementation and CRISPR/Cas9-based knockout analyses confirmed the results of Mut-map. Moreover, qRT-PCR-based expression analysis of PGL10 showed that it expresses in almost all plant parts with the lowest expression in root, followed by seed, third leaf, and then other green tissues in both mutants, pgl10a and pgl10b. Its protein localizes in chloroplasts, and the first 17 amino acids from N-terminus are responsible for signals in chloroplasts. Moreover, transcriptome analysis performed under HT conditions revealed that the genes involved in the Chl biosynthesis and degradation, photosynthesis, and reactive oxygen species detoxification were differentially expressed in mutants compared to WT. Thus, these results indicate that PGL10 is required for maintaining chloroplast function and plays an important role in rice adaptation to HT stress conditions by controlling photosynthetic activity.


Asunto(s)
Oryza , Fotosíntesis , Proteínas de Plantas , Oryza/genética , Oryza/fisiología , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Cloroplastos/metabolismo , Calor , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Clorofila/metabolismo , Mutación , Respuesta al Choque Térmico/genética , Mutación con Pérdida de Función , Fenotipo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH
20.
Funct Integr Genomics ; 24(4): 116, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38910225

RESUMEN

Chloroplasts are not only critical photosynthesis sites in plants, but they also participate in plastidial retrograde signaling in response to developmental and environmental signals. MEcPP (2-C-Methyl-D-erythritol-2,4-cyclopyrophosphate) is an intermediary in the methylerythritol phosphate (MEP) pathway in chloroplasts. It is a critical precursor for the synthesis of isoprenoids and terpenoid derivatives, which play crucial roles in plant growth and development, photosynthesis, reproduction, and defense against environmental constraints. Accumulation of MEcPP under stressful conditions triggers the expression of IMPα-9 and TPR2, contributing to the activation of abiotic stress-responsive genes. In this correspondence, we discuss plastidial retrograde signaling in support of a recently published paper in Molecular Plant (Zeng et al. 2024). We hope that it can shed more insight on the retrograde signaling cascade.


Asunto(s)
Cloroplastos , Estrés Fisiológico , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Transducción de Señal , Arabidopsis/genética , Arabidopsis/metabolismo , Eritritol/metabolismo , Eritritol/análogos & derivados , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosfatos de Azúcar/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...