RESUMEN
This review comprehensively examines the phenomenon of photoinhibition in plants, focusing mainly on the intricate relationship between photodamage and photosystem II (PSII) repair and the role of PSII extrinsic proteins and protein phosphorylation in these processes. In natural environments, photoinhibition occurs together with a suite of concurrent stress factors, including extreme temperatures, drought and salinization. Photoinhibition, primarily caused by high irradiance, results in a critical imbalance between the rate of PSII photodamage and its repair. Central to this process is the generation of reactive oxygen species (ROS), which not only impair the photosynthetic apparatus first PSII but also play a signalling role in chloroplasts and other cellulular structures. ROS generated under stress conditions inhibit the repair of photodamaged PSII by suppressing D1 protein synthesis and affecting PSII protein phosphorylation. Furthermore, this review considers how environmental stressors exacerbate PSII damage by interfering with PSII repair primarily by reducing de novo protein synthesis. In addition to causing direct damage, these stressors also contribute to ROS production by restricting CO2 fixation, which also reduces the intensity of protein synthesis. This knowledge has significant implications for agricultural practices and crop improvement under stressful conditions.
Asunto(s)
Luz , Complejo de Proteína del Fotosistema II , Plantas , Especies Reactivas de Oxígeno , Estrés Fisiológico , Complejo de Proteína del Fotosistema II/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/efectos de la radiación , Plantas/metabolismo , Plantas/efectos de la radiación , Fotosíntesis/efectos de la radiación , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , FosforilaciónRESUMEN
Cadmium (Cd) is one of the most toxic heavy metals for plants and humans. Reactive oxygen species (ROS) are some of the primary signaling molecules produced after Cd treatment in plants but the contribution of different organelles and specific cell types, together with the impact of light is unknown. We used Arabidopsis lines expressing GRX1-roGFP2 (glutaredoxin1-roGFP) targeted to different cell compartments and analysed changes in redox state over 24 h light/dark cycle in Cd-treated leaf discs. We imaged redox state changes in peroxisomes and chloroplasts in leaf tissue. Chloroplasts and peroxisomes were the most affected organelles in the dark and blocking the photosynthetic electron transport chain (pETC) by DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea) promotes higher Cd-dependent oxidation in all organelles. Peroxisomes underwent the most rapid changes in redox state in response to Cd and DCMU and silencing chloroplastic NTRC (NADPH thioredoxin reductase C) considerably increases peroxisome oxidation. Total NAD(P)H and cytosolic NADH decreased during exposure to Cd, while Ca+2 content in chloroplasts and cytosol increased in the dark period. Our results demonstrate a Cd-, time- and light-dependent increase of oxidation of all organelles analysed, that could be in part triggered by disturbances in pETC and photorespiration, the decrease of NAD(P)H availability, and differential antioxidants expression at subcellular level.
Asunto(s)
Arabidopsis , Cadmio , Cloroplastos , Oxidación-Reducción , Peroxisomas , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Arabidopsis/efectos de la radiación , Cadmio/toxicidad , Cloroplastos/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/efectos de la radiación , Peroxisomas/metabolismo , Peroxisomas/efectos de los fármacos , Luz , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Calcio/metabolismo , Diurona/toxicidad , Diurona/farmacologíaRESUMEN
Woody plants display some photosynthetic activity in stems, but the biological role of stem photosynthesis and the specific contributions of bark and wood to carbon uptake and oxygen evolution remain poorly understood. We aimed to elucidate the functional characteristics of chloroplasts in stems of different ages in Fraxinus ornus. Our investigation employed diverse experimental approaches, including microsensor technology to assess oxygen production rates in whole stem, bark, and wood separately. Additionally, we utilized fluorescence lifetime imaging microscopy (FLIM) to characterize the relative abundance of photosystems I and II (PSI : PSII chlorophyll ratio) in bark and wood. Our findings revealed light-induced increases in O2 production in whole stem, bark, and wood. We present the radial profile of O2 production in F. ornus stems, demonstrating the capability of stem chloroplasts to perform light-dependent electron transport. Younger stems exhibited higher light-induced O2 production and dark respiration rates than older ones. While bark emerged as the primary contributor to net O2 production under light conditions, our data underscored that wood chloroplasts are also photosynthetically active. The FLIM analysis unveiled a lower PSI abundance in wood than in bark, suggesting stem chloroplasts are not only active but also acclimate to the spectral composition of light reaching inner compartments.
Asunto(s)
Luz , Oxígeno , Tallos de la Planta , Madera , Tallos de la Planta/metabolismo , Tallos de la Planta/efectos de la radiación , Oxígeno/metabolismo , Madera/metabolismo , Oscuridad , Fraxinus/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Corteza de la Planta/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismoRESUMEN
Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.
Asunto(s)
Cloroplastos , Luz , Marchantia , Fototropinas , Plantas Modificadas Genéticamente , Transducción de Señal , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/fisiología , Fototropinas/metabolismo , Fototropinas/genética , Marchantia/fisiología , Marchantia/efectos de la radiación , Marchantia/genética , Marchantia/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
Chloroplast-actin (cp-actin) filaments are crucial for light-induced chloroplast movement, and appear in the front region of moving chloroplasts when visualized using GFP-mouse Talin. They are short and thick, exist between a chloroplast and the plasma membrane, and move actively and rapidly compared to cytoplasmic long actin filaments that run through a cell. The average period during which a cp-actin filament was observed at the same position was less than 0.5 s. The average lengths of the cp-actin filaments calculated from those at the front region of the moving chloroplast and those around the chloroplast periphery after stopping the movement were almost the same, approximately 0.8 µm. Each cp-actin filament is shown as a dotted line consisting of 4-5 dots. The vector sum of cp-actin filaments in a moving chloroplast is parallel to the moving direction of the chloroplast, suggesting that the direction of chloroplast movement is regulated by the vector sum of cp-actin filaments. However, once the chloroplasts stopped moving, the vector sum of the cp-actin filaments around the chloroplast periphery was close to zero, indicating that the direction of movement was undecided. To determine the precise structure of cp-actin filaments under electron microscopy, Arabidopsis leaves and fern Adiantum capillus-veneris gametophytes were frozen using a high-pressure freezer, and observed under electron microscopy. However, no bundled microfilaments were found, suggesting that the cp-actin filaments were unstable even under high-pressure freezing.
Asunto(s)
Citoesqueleto de Actina , Arabidopsis , Cloroplastos , Luz , Cloroplastos/fisiología , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/ultraestructura , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Adiantum/fisiología , Adiantum/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Actinas/metabolismo , MovimientoRESUMEN
Phosphorus (Pi) starvation prevents a good match between light energy absorption and photosynthetic carbon metabolism, generating photo-reactive oxygen species (photo-ROS) in chloroplasts. Plants have evolved to withstand photo-oxidative stress, but the key regulatory mechanism underlying it remains unclear. In rice (Oryza sativa), DEEP GREEN PANICLE1 (DGP1) is robustly up-regulated in response to Pi deficiency. DGP1 decreases the DNA-binding capacities of the transcriptional activators GLK1/2 on the photosynthetic genes involved in chlorophyll biosynthesis, light harvesting, and electron transport. This Pi-starvation-induced mechanism dampens both electron transport rates through photosystem I and II (ETRI and ETRII) and thus mitigates the electron-excessive stress in mesophyll cells. Meanwhile, DGP1 hijacks glycolytic enzymes GAPC1/2/3, redirecting glucose metabolism toward the pentose phosphate pathway with superfluous NADPH production. Phenotypically, light irradiation induces O2 - production in Pi-starved WT leaves but is observably accelerated in dgp1 mutant and impaired in GAPCsRNAi and glk1glk2 lines. Interestingly, overexpressed DGP1 in rice caused hyposensitivity to ROS-inducers (catechin and methyl viologen), but the dgp1 mutant shows a similar inhibitory phenotype with the WT seedlings. Overall, the DGP1 gene serves as a specific antagonizer against photo-ROS in Pi-starved rice plants, which coordinates light-absorbing and anti-oxidative systems by orchestrating transcriptional and metabolic regulations, respectively.
Asunto(s)
Oryza , Especies Reactivas de Oxígeno/metabolismo , Oryza/genética , Oryza/metabolismo , Fosfatos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiaciónRESUMEN
Stomatal opening requires the provision of energy in the form of ATP for proton pumping across the guard cell (GC) plasma membrane and for associated metabolic rearrangements. The source of ATP for GCs is a matter of ongoing debate that is mainly fuelled by controversies around the ability of GC chloroplasts (GCCs) to perform photosynthesis. By imaging compartment-specific fluorescent ATP and NADPH sensor proteins in Arabidopsis, we show that GC photosynthesis is limited and mitochondria are the main source of ATP. Unlike mature mesophyll cell (MC) chloroplasts, which are impermeable to cytosolic ATP, GCCs import cytosolic ATP through NUCLEOTIDE TRANSPORTER (NTT) proteins. GCs from ntt mutants exhibit impaired abilities for starch biosynthesis and stomatal opening. Our work shows that GCs obtain ATP and carbohydrates via different routes from MCs, likely to compensate for the lower chlorophyll contents and limited photosynthesis of GCCs.
Asunto(s)
Adenosina Trifosfato/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Estomas de Plantas/metabolismo , Almidón/metabolismo , Arabidopsis/citología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Cloroplastos/efectos de los fármacos , Cloroplastos/efectos de la radiación , Citosol/metabolismo , Peróxido de Hidrógeno/farmacología , Luz , Células del Mesófilo/citología , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Microscopía Confocal , NADP/metabolismo , Proteínas de Transporte de Nucleótidos/genética , Proteínas de Transporte de Nucleótidos/metabolismo , Oxidantes/farmacología , Epidermis de la Planta/citología , Epidermis de la Planta/metabolismo , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Estomas de Plantas/citología , Estomas de Plantas/fisiología , Plantas Modificadas GenéticamenteRESUMEN
While flux balance analysis (FBA) provides a framework for predicting steady-state leaf metabolic network fluxes, it does not readily capture the response to environmental variables without being coupled to other modelling formulations. To address this, we coupled an FBA model of 903 reactions of soybean (Glycine max) leaf metabolism with e-photosynthesis, a dynamic model that captures the kinetics of 126 reactions of photosynthesis and associated chloroplast carbon metabolism. Successful coupling was achieved in an iterative formulation in which fluxes from e-photosynthesis were used to constrain the FBA model and then, in turn, fluxes computed from the FBA model used to update parameters in e-photosynthesis. This process was repeated until common fluxes in the two models converged. Coupling did not hamper the ability of the kinetic module to accurately predict the carbon assimilation rate, photosystem II electron flux, and starch accumulation of field-grown soybean at two CO2 concentrations. The coupled model also allowed accurate predictions of additional parameters such as nocturnal respiration, as well as analysis of the effect of light intensity and elevated CO2 on leaf metabolism. Predictions included an unexpected decrease in the rate of export of sucrose from the leaf at high light, due to altered starch-sucrose partitioning, and altered daytime flux modes in the tricarboxylic acid cycle at elevated CO2 . Mitochondrial fluxes were notably different between growing and mature leaves, with greater anaplerotic, tricarboxylic acid cycle and mitochondrial ATP synthase fluxes predicted in the former, primarily to provide carbon skeletons and energy for protein synthesis.
Asunto(s)
Dióxido de Carbono/metabolismo , Metabolismo Energético , Glycine max/metabolismo , Redes y Vías Metabólicas , Modelos Biológicos , Fotosíntesis , Almidón/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Ambiente , Cinética , Luz , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Glycine max/efectos de la radiación , Sacarosa/metabolismoRESUMEN
Barren stalks and kernel abortion are the major obstacles that hinder maize production. After many years of inbreeding, our group produced a pair of barren stalk/non-barren stalk near-isogenic lines SN98A/SN98B. Under weak light stress, the barren stalk rate is up to 98 % in SN98A but zero in SN98B. Therefore, we consider that SN98A is a weak light-sensitive inbred line whereas SN98B is insensitive. In the present study, the near-isogenic lines SN98A/SN98B were used as test materials to conduct cytological and photosynthetic physiological analyses of the physiological mechanism associated with the differences in maize barren stalk induced by weak light stress. The results showed that weak light stress increased the accumulation of reactive oxygen species (ROS), decreased the function of chloroplasts, destroyed the normal rosette structure, inhibited photosynthetic electron transport, and enhanced lipid peroxidation. The actual photochemical quantum efficiency for PSI (Y(I)) and PSII (Y(II)), relative electron transfer rate for PSI (ETR(I)) and PSII (ETR(II)), and the P700 activities decreased significantly in the leaves of SN98A and SN98B under weak light stress, where the decreases were greater in SN98A than SN98B. After 10 days of shading treatment, the O2·- production rate, H2O2 contents, the yield of regulated energy dissipation (Y(NPQ)), the donor side restriction for PSI (Y(ND)) and the quantum efficiency of cyclic electron flow photochemistry were always higher in SN98A than SN98B, and the antioxidant enzyme activities were always lower in SN98A than those in SN98B. These results show that SN98B has a stronger ability to remove ROS at its source, and maintain the integrity of the structure and function of the photosynthetic system. This self-protection mechanism is an important physiological reason for its adaptation to weak light.
Asunto(s)
Adaptación Ocular/genética , Adaptación Ocular/efectos de la radiación , Fotosíntesis/efectos de la radiación , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de la radiación , Energía Solar , Zea mays/genética , Zea mays/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/efectos de la radiación , Transporte de Electrón/genética , Transporte de Electrón/efectos de la radiación , Variación Genética , Genotipo , Fotosíntesis/genética , Zea mays/crecimiento & desarrolloRESUMEN
In chloroplasts, thiol-dependent redox regulation is linked to light since the disulfide reductase activity of thioredoxins (Trxs) relies on photo-reduced ferredoxin (Fdx). Furthermore, chloroplasts harbor an NADPH-dependent Trx reductase (NTR) with a joint Trx domain, termed NTRC. The activity of these two redox systems is integrated by the redox balance of 2-Cys peroxiredoxin (Prx), which is controlled by NTRC. However, NTRC was proposed to participate in redox regulation of additional targets, prompting inquiry into whether the function of NTRC depends on its capacity to maintain the redox balance of 2-Cys Prxs or by direct redox interaction with chloroplast enzymes. To answer this, we studied the functional relationship of NTRC and 2-Cys Prxs by a comparative analysis of the triple Arabidopsis (Arabidopsis thaliana) mutant, ntrc-2cpab, which lacks NTRC and 2-Cys Prxs, and the double mutant 2cpab, which lacks 2-Cys Prxs. These mutants exhibit almost indistinguishable phenotypes: in growth rate, photosynthesis performance, and redox regulation of chloroplast enzymes in response to light and darkness. These results suggest that the most relevant function of NTRC is in controlling the redox balance of 2-Cys Prxs. A comparative transcriptomics analysis confirmed the phenotypic similarity of the two mutants and suggested that the NTRC-2-Cys Prxs system participates in cytosolic protein quality control. We propose that NTRC and 2-Cys Prxs constitute a redox relay, exclusive to photosynthetic organisms that fine-tunes the redox state of chloroplast enzymes in response to light and affects transduction pathways towards the cytosol.
Asunto(s)
Cloroplastos/metabolismo , Citoplasma/metabolismo , Luz , Arabidopsis , Proteínas de Arabidopsis , Cloroplastos/efectos de la radiación , Oscuridad , Oxidación-Reducción/efectos de la radiaciónRESUMEN
The photosynthetic capacity of mature leaves increases after several days' exposure to constant or intermittent episodes of high light (HL) and is manifested primarily as changes in chloroplast physiology. How this chloroplast-level acclimation to HL is initiated and controlled is unknown. From expanded Arabidopsis leaves, we determined HL-dependent changes in transcript abundance of 3844 genes in a 0-6 h time-series transcriptomics experiment. It was hypothesized that among such genes were those that contribute to the initiation of HL acclimation. By focusing on differentially expressed transcription (co-)factor genes and applying dynamic statistical modelling to the temporal transcriptomics data, a regulatory network of 47 predominantly photoreceptor-regulated transcription (co-)factor genes was inferred. The most connected gene in this network was B-BOX DOMAIN CONTAINING PROTEIN32 (BBX32). Plants overexpressing BBX32 were strongly impaired in acclimation to HL and displayed perturbed expression of photosynthesis-associated genes under LL and after exposure to HL. These observations led to demonstrating that as well as regulation of chloroplast-level acclimation by BBX32, CRYPTOCHROME1, LONG HYPOCOTYL5, CONSTITUTIVELY PHOTOMORPHOGENIC1 and SUPPRESSOR OF PHYA-105 are important. In addition, the BBX32-centric gene regulatory network provides a view of the transcriptional control of acclimation in mature leaves distinct from other photoreceptor-regulated processes, such as seedling photomorphogenesis.
Asunto(s)
Aclimatación/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Transcriptoma , Aclimatación/efectos de la radiación , Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Teorema de Bayes , Proteínas Portadoras/genética , Cloroplastos/efectos de la radiación , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiaciónRESUMEN
Daytime warm temperature elicits thermomorphogenesis in Arabidopsis by stabilizing the central thermoregulator PHYTOCHROME INTERACTING transcription FACTOR 4 (PIF4), whose degradation is otherwise promoted by the photoreceptor and thermosensor phytochrome B. PIF4 stabilization in the light requires a transcriptional activator, HEMERA (HMR), and is abrogated when HMR's transactivation activity is impaired in hmr-22. Here, we report the identification of a hmr-22 suppressor mutant, rcb-101, which surprisingly carries an A275V mutation in REGULATOR OF CHLOROPLAST BIOGENESIS (RCB). rcb-101/hmr-22 restores thermoresponsive PIF4 accumulation and reverts the defects of hmr-22 in chloroplast biogenesis and photomorphogenesis. Strikingly, similar to hmr, the null rcb-10 mutant impedes PIF4 accumulation and thereby loses the warm-temperature response. rcb-101 rescues hmr-22 in an allele-specific manner. Consistently, RCB interacts directly with HMR. Together, these results unveil RCB as a novel temperature signaling component that functions collaboratively with HMR to initiate thermomorphogenesis by selectively stabilizing PIF4 in the daytime.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Morfogénesis , Temperatura , Tiorredoxinas/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Genes Supresores , Luz , Modelos Biológicos , Morfogénesis/efectos de la radiación , Fotoperiodo , Estabilidad Proteica/efectos de la radiación , Plantones/metabolismo , Plantones/efectos de la radiación , Tiorredoxinas/química , Tiorredoxinas/genética , Factores de Transcripción/metabolismoRESUMEN
Plants are subjected to fluctuations in light intensity, and this might cause unbalanced photosynthetic electron fluxes and overproduction of reactive oxygen species (ROS). Electrons needed for ROS detoxification are drawn, at least partially, from the cellular glutathione (GSH) pool via the ascorbate-glutathione cycle. Here, we explore the dynamics of the chloroplastic glutathione redox potential (chl-EGSH) using high-temporal-resolution monitoring of Arabidopsis (Arabidopsis thaliana) lines expressing the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) in chloroplasts. This was carried out over several days under dynamic environmental conditions and in correlation with PSII operating efficiency. Peaks in chl-EGSH oxidation during dark-to-light and light-to-dark transitions were observed. Increasing light intensities triggered a binary oxidation response, with a threshold around the light saturating point, suggesting two regulated oxidative states of the chl-EGSH. These patterns were not affected in npq1 plants, which are impaired in non-photochemical quenching. Oscillations between the two oxidation states were observed under fluctuating light in WT and npq1 plants, but not in pgr5 plants, suggesting a role for PSI photoinhibition in regulating the chl-EGSH dynamics. Remarkably, pgr5 plants showed an increase in chl-EGSH oxidation during the nights following light stresses, linking daytime photoinhibition and nighttime GSH metabolism. This work provides a systematic view of the dynamics of the in vivo chloroplastic glutathione redox state during varying light conditions.
Asunto(s)
Arabidopsis/fisiología , Cloroplastos/metabolismo , Ritmo Circadiano/fisiología , Glutatión/metabolismo , Fotosíntesis/fisiología , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Cloroplastos/efectos de la radiación , Ritmo Circadiano/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Luz , Oxidación-Reducción/efectos de la radiación , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismoRESUMEN
The mechanical properties of engineering structures continuously weaken during service life because of material fatigue or degradation. By contrast, living organisms are able to strengthen their mechanical properties by regenerating parts of their structures. For example, plants strengthen their cell structures by transforming photosynthesis-produced glucose into stiff polysaccharides. In this work, we realize hybrid materials that use photosynthesis of embedded chloroplasts to remodel their microstructures. These materials can be used to three-dimensionally (3D)-print functional structures, which are endowed with matrix-strengthening and crack healing when exposed to white light. The mechanism relies on a 3D-printable polymer that allows for an additional cross-linking reaction with photosynthesis-produced glucose in the material bulk or on the interface. The remodeling behavior can be suspended by freezing chloroplasts, regulated by mechanical preloads, and reversed by environmental cues. This work opens the door for the design of hybrid synthetic-living materials, for applications such as smart composites, lightweight structures, and soft robotics.
Asunto(s)
Celulosa/biosíntesis , Ingeniería Química/métodos , Cloroplastos/efectos de la radiación , Glucosa/biosíntesis , Impresión Tridimensional/instrumentación , Celulosa/química , Cloroplastos/química , Cloroplastos/fisiología , Reactivos de Enlaces Cruzados/química , Módulo de Elasticidad , Glucosa/química , Humanos , Isocianatos/química , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/química , Hojas de la Planta/efectos de la radiación , Robótica/métodos , Spinacia oleracea/química , Spinacia oleracea/efectos de la radiaciónRESUMEN
Constant mesophyll conductance (gm), and two-resistance gm model (involved in resistances of cell wall and chloroplast), where gm reaches maximum under higher CO2 concentrations, cannot describe the phenomenon that gm decreases with increasing intercellular CO2 concentration (Ci) under relatively higher CO2 concentrations. Yin et al. (2020) proposed a gm model, according to which the ratio of chloroplastic CO2 concentration (Cc) to Ci is constant in the two-resistance gm model, which can describe the decreasing gm with increasing Ci. In the present study, we investigated the relationship between Cc and Ci in leaves of Japanese white birch by using simultaneous measurements of gas exchange and chlorophyll fluorescence under various CO2 concentrations, light intensities, and during progressive drought. Across the range of ambient CO2 from 50 to 1000 µmol mol-1, and light intensities of 50 to 2000 µmol m-2 s-1, measured under well irrigation, the ratio of Cc to Ci kept constant. During the progressive drought, overestimated Ci due to stomatal patchiness and/or cuticular transpiration was empirically corrected (threshold: stomatal conductance < 0.08 mol H2O m-2 s-1) from the A/Ci response measured under adequate irrigation. The ratio of Cc to Ci during progressive drought (predawn leaf potential reached ≈ - 2 MPa) also remained constant irrespective of soil drying rate in various pot sizes. The present study suggests the involvement of some physiologically regulative mechanisms to keep Cc:Ci ratio constant, which might act on gm in addition to the physical interaction of diffusive resistances in the cell components.
Asunto(s)
Betula/fisiología , Dióxido de Carbono/metabolismo , Fotosíntesis , Betula/efectos de la radiación , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Desecación , Sequías , Luz , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Plantones/fisiología , Plantones/efectos de la radiación , SueloRESUMEN
Chloroplast gene expression is controlled by both plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase and is crucial for chloroplast development and photosynthesis. Environmental factors such as light and temperature can influence transcription in chloroplasts. In this study, we showed that mutation in DUA1, which encodes a pentatricopeptide repeat (PPR) protein in rice (Oryza sativa), led to deficiency in chloroplast development and chlorophyll biosynthesis, impaired photosystems, and reduced expression of PEP-dependent transcripts at low temperature especially under low-light conditions. Furthermore, we demonstrated that sigma factor OsSIG1 interacted with DUA1 in vitro and in vivo. Moreover, the levels of chlorophyll and PEP-dependent gene expression were significantly decreased in the Ossig1 mutants at low-temperature and low-light conditions. Our study reveals that the PPR protein DUA1 plays an important role in regulating PEP-mediated chloroplast gene expression through interacting with OsSIG1, thus modulates chloroplast development in response to environmental signals.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Fotosíntesis , Proteínas de Plantas/metabolismo , Factor sigma/metabolismo , Clorofila/genética , Clorofila/efectos de la radiación , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/genética , Cloroplastos/efectos de la radiación , Frío , Luz , Mutación , Oryza/fisiología , Oryza/efectos de la radiación , Proteínas de Plantas/genética , Factor sigma/genéticaRESUMEN
We demonstrated the existence of PSI-LHCI-LHCII-Lhcb4 supercomplexes and PSI-LHCI-PSII-LHCII megacomplexes in the stroma lamellae and grana margins of maize mesophyll chloroplasts; these complexes consist of different LHCII trimers and monomer antenna proteins per PSI photocentre. These complexes are formed in both low (LL) and high (HL) light growth conditions, but with different contents. We attempted to identify the components and structure of these complexes in maize chloroplasts isolated from the leaves of low and high light-grown plants after darkness and transition to far red (FR) light of high intensity. Exposition of plants from high and low light growth condition on FR light induces different rearrangements in the composition of super- and megacomplexes. During FR light exposure, in plants from LL, the PSI-LHCI-LHCII-Lhcb4 supercomplex dissociates into free LHCII-Lhcb4 and PSI-LHCI complexes, and these complexes associate with the PSII monomer. This process occurs differently in plants from HL. Exposition to FR light causes dissociation of both PSI-LHCI-LHCII-Lhcb4 supercomplexes and PSI-PSII megacomplexes. These results suggest a different function of super- and megacomplex organization than the classic state transitions model, which assumes that the movement of LHCII trimers in the thylakoid membraneis considered as a mechanism for balancing light absorption between the two photosystems in light stress. The behavior of the complexes described in this article does not seem to be well explained by this model, i.e., it does not seem likely that the primary purpose of these megacomplexes dynamics is to balance excitation pressure. Rather, as stated in this article, it seems to indicate a role of these complexes for PSI in excitation quenching and for PSII in turnover.
Asunto(s)
Complejos de Proteína Captadores de Luz/efectos de la radiación , Complejo de Proteína del Fotosistema I/efectos de la radiación , Complejo de Proteína del Fotosistema II/efectos de la radiación , Zea mays/efectos de la radiación , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Oscuridad , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Células del Mesófilo/metabolismo , Células del Mesófilo/efectos de la radiación , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Tilacoides/metabolismo , Tilacoides/efectos de la radiación , Zea mays/fisiologíaRESUMEN
Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 µmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 µmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 µmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 µmol m-2s-1) and high light (1000 µmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.
Asunto(s)
Clorofila/metabolismo , Cloroplastos/metabolismo , Etiolado , Luz , Fotosíntesis , Vanilla/crecimiento & desarrollo , Cloroplastos/efectos de la radiación , Fluorescencia , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Vanilla/metabolismo , Vanilla/efectos de la radiaciónRESUMEN
Several photorespiratory bypasses have been introduced into plants and shown to improve photosynthesis by increasing chloroplastic CO2 concentrations or optimizing energy balance. We recently reported that an engineered GOC bypass could increase photosynthesis and productivity in rice. However, the grain yield of GOC plants was unstable, fluctuating in different cultivation seasons because of varying seed setting rates. In this study, we designed a synthetic photorespiratory shortcut (the GCGT bypass) consisting of genes encoding Oryza sativa glycolate oxidase and Escherichia coli catalase, glyoxylate carboligase, and tartronic semialdehyde reductase. The GCGT bypass was guided by an optimized chloroplast transit peptide that targeted rice chloroplasts and redirected 75% of carbon from glycolate metabolism to the Calvin cycle, identical to the native photorespiration pathway. GCGT transgenic plants exhibited significantly increased biomass production and grain yield, which were mainly attributed to enhanced photosynthesis due to increased chloroplastic CO2 concentrations. Despite the increases in biomass production and grain yield, GCGT transgenic plants showed a reduced seed setting rate, a phenotype previously reported for the GOC plants. Integrative transcriptomic, physiological, and biochemical assays revealed that photosynthetic carbohydrates were not transported to grains in an efficient manner, thereby reducing the seed setting rate. Taken together, our results demonstrate that the GCGT photorespiratory shortcut confers higher yield by promoting photosynthesis in rice, mainly through increasing chloroplastic CO2 concentrations.