RESUMEN
Healing diabetic ulcers with chronic inflammation is a major challenge for researchers and professionals, necessitating new strategies. To rapidly treat diabetic wounds in rat models, we have fabricated a composite scaffold composed of alginate (Alg) and silk fibroin (SF) as a wound dressing that is laden with molecules of lithium chloride (LC). The physicochemical, bioactivity, and biocompatibility properties of Alg-SF-LC scaffolds were investigated in contrast to those of Alg, SF, and Alg-SF ones. Afterward, full-thickness wounds were ulcerated in diabetic rats in order to evaluate the capacity of LC-laden scaffolds to regenerate skin. The characterization findings demonstrated that the composite scaffolds possessed favorable antibacterial properties, cell compatibility, high swelling, controlled degradability, and good uniformity in the interconnected pore microstructure. Additionally, in terms of wound contraction, re-epithelialization, and angiogenesis improvement, LC-laden scaffolds revealed better performance in diabetic wound healing than the other groups. This research indicates that utilizing lithium chloride molecules loaded in biological materials supports the best diabetic ulcer regeneration in vivo, and produces a skin replacement with a cellular structure comparable to native skin.
Asunto(s)
Alginatos , Antibacterianos , Diabetes Mellitus Experimental , Fibroínas , Cloruro de Litio , Andamios del Tejido , Cicatrización de Heridas , Fibroínas/química , Fibroínas/farmacología , Animales , Cicatrización de Heridas/efectos de los fármacos , Alginatos/química , Alginatos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Ratas , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Porosidad , Andamios del Tejido/química , Cloruro de Litio/farmacología , Cloruro de Litio/química , Neovascularización Fisiológica/efectos de los fármacos , Masculino , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacologíaRESUMEN
Thermoresponsive hydrogels can be used as smart flexible sensors. However, the design and facile preparation of multifunctional thermoresponsive hydrogel sensors still face great challenges. Herein, a tunable thermoresponsive, thermochromic and stretchable poly(2-hydroxypropyl acrylate-co-acrylamide) (P(HPA-co-AM))/hydroxypropyl cellulose (HPC)/lithium chloride (LiCl) hydrogel with the networks constructed from non-covalent interaction was fabricated by photopolymerization. PHPA exhibits excellent thermoresponsiveness. HPC endows the hydrogel with outstanding mechanical performance and enhanced temperature-sensitivity. LiCl not only provides good conductivity, but also regulates the lower critical solution temperature (LCST) of the hydrogel. The hydrogel shows tensile strength up to 300 kPa and maximum strain up to 790 %. The LCST value of the hydrogel can be adjusted from 38 to 75 °C. Therefore, the thermoresponsive conductive hydrogel can realize the information encryption, and be used as sensor through strain and temperature changes in the external environment to realize the motion and health detection, and visual signal transmission. This work is expected to provide ideas for the next generation of smart multifunctional electronic skin and information encryption device.
Asunto(s)
Celulosa , Hidrogeles , Temperatura , Dispositivos Electrónicos Vestibles , Celulosa/química , Celulosa/análogos & derivados , Humanos , Hidrogeles/química , Resistencia a la Tracción , Cloruro de Litio/química , Conductividad EléctricaRESUMEN
In this case, various characterization technologies have been employed to probe dissociation mechanism of cellulose in N,N-dimethylacetamide/lithium chloride (DMAc/LiCl) system. These results indicate that coordination of DMAc ligands to the Li+-Cl- ion pair results in the formation of a series of Lix(DMAc)yClz (x = 1, 2; y = 1, 2, 3, 4; z = 1, 2) complexes. Analysis of interaction between DMAc ligand and Li center indicate that Li bond plays a major role for the formation of these Lix(DMAc)yClz complexes. And the saturation and directionality of Li bond in these Lix(DMAc)yClz complexes are found to be a tetrahedral structure. The hydrogen bonds between two cellulose chains could be broken at the nonreduced end of cellulose molecule via combined effects of basicity of Cl- ion and steric hindrance of [Li (DMAc)4]+ unit. The unique feature of Li bond in Lix(DMAc)yClz complexes is a key factor in determination of the dissociation mechanism.
Asunto(s)
Acetamidas , Celulosa , Cloruro de Litio , Celulosa/química , Acetamidas/química , Cloruro de Litio/química , Litio/química , Enlace de HidrógenoRESUMEN
The conformation of proteins is closely related to their biological functions, and it is affected by many factors, including the type of cations in solution. However, it is difficult to detect the conformational changes of a protein in situ. As a single-molecule sensing technology, nanopores can convert molecular structural information into analyzable current signals within a reasonable time range. Herein, we detect and analyze the effects of two different types of monovalent cations (Na+ and Li+) on a model protein bovine serum albumin (BSA) conformation using SiNx nanopores with different diameters. The quantitative analysis results show that the excluded volume of BSA in LiCl salt solutions is larger than the value in NaCl solution, indicating that Li+ is more prone to unfolding the proteins and making them unstable. This study demonstrated that nanopores enable the in situ detection of the structure of proteins at the single-molecule level and provide a new approach for the quantitative analysis of proteins.
Asunto(s)
Nanoporos , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Bovinos , Estabilidad Proteica , Animales , Conformación Proteica , Cloruro de Litio/química , Cloruro de Sodio/química , Compuestos de Silicona/química , Cationes/químicaRESUMEN
Manganate ion, MnO42-, has important roles in catalysis and potential roles in water treatment. EPR spectra of MnO42- in a glassy alkaline solution of concentrated LiCl at X-band and Q-band at 80 K exhibit g1 = 1.9776 ± 0.001, g2 = 1.9677 ± 0.001, g3 = 1.9560 ± 0.001 and A1 = 182 ± 9, A2 = 275 ± 15, and A3 = 400 ± 15 MHz. In Cs2SO4 the spectra were simulated with 1.908 ± 0.001, g2 = 1.909 ± 0.001, g3 = 1.937 ± 0.001 and A1 = 90 ± 20, A2 = 100 ± 20, and A3 = 400 ± 15 MHz. Simulations required large distributions in A values which suggests that hyperfine splittings are sensitive to differences in geometry. Continuous wave spectra are observable at 80 K in glassy alkaline LiCl, but only up to about 20 K in Cs2SO4. In glassy alkaline LiCl electron spin relaxation was measured at X-band using spin echo and inversion recovery from 4.2 to 60 K. Tm is 4.6 µs at 4.2 K and decreases at higher temperatures as it becomes driven by T1. T1 decreases from ca. 34 ms at 4.2 K to ca. 240 ns at 60 K. Tm and T1 in Cs2SO4 are too short to measure by electron spin echo. The distorted tetrahedral geometry of MnO42- results in faster relaxation than for other 3d1 spin systems that have square pyramidal (C4v) or distorted octahedral geometries.
Asunto(s)
Cesio/química , Cloruro de Litio/química , Compuestos de Manganeso/química , Óxidos/química , Espectroscopía de Resonancia por Spin del Electrón , Estructura Molecular , TemperaturaRESUMEN
A facile and environmentally-friendly strategy for increasing antioxidant activity is a crucial issue for value-added lignin and lignin-carbohydrate complex (LCC) as alternative antioxidants. However, the antioxidant activities of lignin and LCC by the traditional solid-liquid extraction (SLE) methods were restricted by the relatively lower solubility induced from high molecular weight (Mw), and the less functional groups including, phenolic hydroxyl and carboxyl. To improve the antioxidantion of lignin and LCC, lithium chloride/dimethyl sulfoxide (LiCl/DMSO) solvent fractionation (LDSF) was conducted to increase the functional groups and reduce Mw, in which LiCl/DMSO acted triple roles as solvent, acid, and metal chloride catalyst for the depolymerization reaction synchronously. The ß-O-4' linkages were cleaved to release the phenolic hydroxyl, resulting in decreasing Mw; the hydroxyl of the side-chain of lignin was oxidized into carboxyl. Thus, the lignin (LD-RL) and LCC (LD-LCC) samples from LDSF had a higher syringyl (S)/guaiacyl (G) ratio, phenolic hydroxyl, and carboxyl contents, but less Mw than control groups from SLE. Consequently, they presented more excellent scavenging rates toward DPPH and ABTS radicals, up to 90%. This work provided panoramic perspectives and basics of the green and convenient approach to isolate and modify lignin and LCC for great antioxidantion with LDSF.
Asunto(s)
Antioxidantes/farmacología , Carbohidratos/química , Lignina/farmacología , Solventes/química , Triticum/química , Antioxidantes/química , Catálisis , Fraccionamiento Químico , Dimetilsulfóxido/química , Estabilidad de Medicamentos , Tecnología Química Verde , Lignina/química , Cloruro de Litio/química , TermodinámicaRESUMEN
Lignin-carbohydrate complexes (LCC) have shown great potential as biocompatible antioxidants. But it is difficult to isolate LCC efficiently from lignocellulose by traditional Solid-Liquid Extraction method (SLE), which is blamed to the innate bioimpedance caused by the complex supramolecular structure of the lignocellulose, and a great mass transferring resistance between the extracting solution and solid lignocellulose. To release these restrictions above and improve the efficiency of LCC isolation, a modified isolating method named Liquid-Liquid Extraction (LLE) was proposed, in which ball-milled wheat stalk was dissolved in lithium chloride/dimethyl sulfoxide (LiCl/DMSO) solution, then regenerated by dioxane aqueous to extract LL-LCCs. The effect of the LLE on the LCC isolating was evaluated and results showed that both the total yield and antioxidant activity of LL-LCCs were higher than that of control group. It proved the dissolution of wheat stalk in LiCl/DMSO solution could reduce the mass transfer resistance during the extraction. Due to the catalyzation of LiCl as Lewis acid, LL-LCCs had lower molecular weight but more phenolic hydroxyl groups and higher S/G ratios. These factors of LL-LCCs resulted in greater free-radical scavenging ability than control sample. The modified isolation protocol could facilitate the isolation and utilization of LCCs as a free-radical scavenger.
Asunto(s)
Antioxidantes/farmacología , Carbohidratos/aislamiento & purificación , Dimetilsulfóxido/química , Lignina/aislamiento & purificación , Cloruro de Litio/química , Solventes/química , Compuestos de Bifenilo/química , Carbohidratos/química , Espectroscopía de Resonancia Magnética con Carbono-13 , Depuradores de Radicales Libres/farmacología , Peso Molecular , Picratos/química , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Triticum/químicaRESUMEN
The heterogeneous structure of lignocellulosic biomass makes it difficult to dissolve its main components (cellulose, hemicelluloses, and lignin) by solvent action with the aim of further applying the mixture of the biological macromolecules generated in the solvent medium. In the present study, the dissolution efficiency (DE) of lignocellulosic sisal fibers in the lithium chloride/dimethylacetamide solvent system (LiCl/DMAc) was evaluated for further application in the formation of hydrogels. Catalytic amounts of trifluoroacetic acid (TFA) were used in some experiments, which increased the DE from 40% to 90%. The regeneration of the solutions, either previously filtered or not, led to hydrogels based on sisal lignocellulosic biomass. In brief, the properties of the hydrogels were influenced by the content of the lignocellulosic components in the hydrogels, present both in the dissolved fraction and in the incorporated undissolved fraction (when nonfiltered solutions were used). Hydrogels presented water absorption up to 7479% and resorption content in the lyophilized hydrogel up to 2133%. Extracts obtained from preselected hydrogels exhibited cell viability up to 127% compared to the control group when in contact with fibroblast cultures, exhibiting their noncytotoxic properties. This attribute increased the range of possible applications of these hydrogels, ranging from agriculture to biocompatible materials.
Asunto(s)
Materiales Biocompatibles/química , Hidrogeles/química , Lignina/química , Polisacáridos/química , Agave/química , Materiales Biocompatibles/farmacología , Biomasa , Catálisis , Cloruro de Litio/química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Solventes/química , Agua/químicaRESUMEN
Tracer diffusion coefficients obtained from the Taylor dispersion technique at 25.0 °C were measured to study the influence of sodium, ammonium and magnesium salts at 0.01 and 0.1 mol dm-3 on the transport behavior of sodium hyaluronate (NaHy, 0.1%). The selection of these salts was based on their position in Hofmeister series, which describe the specific influence of different ions (cations and anions) on some physicochemical properties of a system that can be interpreted as a salting-in or salting-out effect. In our case, in general, an increase in the ionic strength (i.e., concentrations at 0.01 mol dm-3) led to a significant decrease in the limiting diffusion coefficient of the NaHy 0.1%, indicating, in those circumstances, the presence of salting-in effects. However, the opposite effect (salting-out) was verified with the increase in concentration of some salts, mainly for NH4SCN at 0.1 mol dm-3. In this particular salt, the cation is weakly hydrated and, consequently, its presence does not favor interactions between NaHy and water molecules, promoting, in those circumstances, less resistance to the movement of NaHy and thus to the increase of its diffusion (19%). These data, complemented by viscosity measurements, permit us to have a better understanding about the effect of these salts on the transport behaviour of NaHy.
Asunto(s)
Aniones/química , Cationes/química , Ácido Hialurónico/química , Agua/química , Sulfato de Amonio/química , Transporte Biológico , Difusión , Cloruro de Litio/química , Sulfato de Magnesio/química , Concentración Osmolar , Sales (Química)/química , Cloruro de Sodio/química , Soluciones , Sulfatos/química , Temperatura , Tiocianatos/química , ViscosidadRESUMEN
Gellan gum gels have been proposed as tissue- and water-mimicking materials (phantoms) applied in medical imaging and radiotherapy dosimetry. Phantoms often require ionic additives to induce desirable electrical conductivity, resistance to biological spoilage, and radical scavenging properties. However, gellan gum is strongly crosslinked by the typically used sodium salts, forming difficult-to-work with gels with reduced optical clarity. Herein we investigated lithium and tetramethylammonium chloride to induce the required electrical conductivity while maintaining optical clarity; lithium formate and methylparaben were used as a radical scavenger and antimicrobial additive, respectively. Using a multifactorial design of experiments, we studied and modeled the electrical and mechanical properties and liquid expulsion (syneresis) properties of the gels. Finally, by the addition of a radiation-sensitive tetrazolium salt, dosimeters with favorable properties were produced. The results described herein may be used to prepare tissue phantoms and dosimeters with tuned electrical, mechanical, and dosimetric properties.
Asunto(s)
Conductividad Eléctrica , Geles/química , Fantasmas de Imagen , Polisacáridos Bacterianos/química , Dosímetros de Radiación , Formiatos/química , Cloruro de Litio/química , Fenómenos Mecánicos , Parabenos/química , Compuestos de Amonio Cuaternario/química , Radiometría/instrumentación , Radiometría/métodos , Temperatura , Agua/químicaRESUMEN
The isomers 8-prenylnaringenin and 6-prenylnaringenin, both secondary metabolites occurring in hops, show interesting biological effects, like estrogen-like, cytotoxic, or neuro regenerative activities. Accordingly, abundant sources for this special flavonoids are needed. Extraction is not recommended due to the very low amounts present in plants and different synthesis approaches are characterized by modest yields, multiple steps, the use of expensive chemicals, or an elaborate synthesis. An easy synthesis strategy is the demethylation of xanthohumol, which is available due to hop extraction industry, using lithium chloride and dimethylformamide, but byproducts and low yield did not make this feasible until now. In this study, the demethylation of xanthohumol to 8-prenylnaringenin and 6-prenylnaringenin is described the first time and this reaction was optimized using Design of Experiment and microwave irradiation. With the optimized conditions-temperature 198 °C, 55 eq. lithium chloride, and a reaction time of 9 min, a final yield of 76% of both prenylated flavonoids is reached.
Asunto(s)
Desmetilación , Flavanonas/síntesis química , Flavonoides/química , Flavonoides/síntesis química , Microondas , Propiofenonas/química , Proyectos de Investigación , Flavanonas/química , Cloruro de Litio/química , Temperatura , Factores de TiempoRESUMEN
The chemical conversion films from deep eutectic solvents (DESs) have recently been shown to reduce the corrosion rate of magnesium alloys, which are recognized as a kind of promising materials applied in the human body. However, the biocompatibility of the conversion films has not been investigated. This study proposes an uncommon DES system composed of lithium chloride and urea to fabricate the chemical conversion films on Mg and its alloy. The fabrication process of the conversion film is facile, which is performed by the heat treatment of the substrate in the DES at about 200 °C for 30 min. It is found that the thermal decomposition of the DES can release hydrogen, which diffuses into the Mg substrate to form MgH2-based conversion films. The DES conversion film possesses a porous structure on pure Mg, whereas it becomes dense on the alloy with some cracks. X-ray photoelectron spectroscopy shows that MgCO3 and oxides also exist in the DES conversion films, which depends on the substrate. Electrochemical corrosion test and in vitro biocompatibility tests, including hemolysis, cytotoxicity, antibacterial, and cytoskeleton staining experiments, are performed in a simulated body environment, which shows that the corrosion resistance and biocompatibility of the substrates have been improved significantly. We expect that the DES heat treatment method will be applied to the fabrication of corrosion-resistant and biocompatible surfaces for biodegradable Mg alloys.
Asunto(s)
Aleaciones/química , Cloruro de Litio/química , Magnesio/química , Urea/química , Aleaciones/farmacología , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Núcleo Celular/química , Células Cultivadas , Concentración de Iones de Hidrógeno , Cloruro de Litio/farmacología , Magnesio/farmacología , Ratones , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Porosidad , Solventes/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Urea/farmacología , Difracción de Rayos XRESUMEN
BACKGROUND/AIM: The ketogenic diet has recently gained interest as potential adjuvant therapy for cancer. Many researchers have endeavored to support this claim in vitro. One common model utilizes treatment with exogenous acetoacetate in lithium salt form (LiAcAc). We aimed to determine whether the effects of treatment with LiAcAc on cell viability, as reported in the literature, accurately reflect the influence of acetoacetate. MATERIALS AND METHODS: Breast cancer and normal cell lines were treated with acetoacetate, in lithium and sodium salt forms, and cell viability was assessed. RESULTS: The effect of LiAcAc on cells was mediated by Li ions. Our results showed that the cytotoxic effects of LiAcAc treatment were significantly similar to those caused by LiCl, and also treatment with NaAcAc did not cause any significant cytotoxic effect. CONCLUSION: Treatment of cells with LiAcAc is not a convincing in vitro model for studying ketogenic diet. These findings are highly important for interpreting previously published results, and for designing new experiments to study the ketogenic diet in vitro.
Asunto(s)
Acetoacetatos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Compuestos de Litio/farmacología , Litio/farmacología , Acetoacetatos/química , Adenosina Trifosfato/metabolismo , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cationes Monovalentes/química , Cationes Monovalentes/farmacología , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Litio/química , Cloruro de Litio/química , Cloruro de Litio/farmacología , Compuestos de Litio/química , Células MCF-7RESUMEN
An overview of all the studies on high-pressure intrusion-extrusion of LiCl aqueous solutions in hydrophobic pure silica zeolites (zeosils) for absorption and storage of mechanical energy is presented. Operational principles of heterogeneous lyophobic systems and their possible applications in the domains of mechanical energy storage, absorption, and generation are described. The intrusion of LiCl aqueous solutions instead of water allows to considerably increase energetic performance of zeosil-based systems by a strong rise of intrusion pressure. The intrusion pressure increases with the salt concentration and depends considerably on zeosil framework. In the case of channel-type zeosils, it rises with the decrease of pore opening diameter, whereas for cage-type ones, no clear trend is observed. A relative increase of intrusion pressure in comparison with water is particularly strong for the zeosils with narrow pore openings. The use of highly concentrated LiCl aqueous solutions instead of water can lead to a change of system behavior. This effect seems to be related to a lower formation of silanol defects under intrusion of solvated ions and a weaker interaction of the ions with silanol groups of zeosil framework. The influence of zeosil nanostructure on LiCl aqueous solutions intrusion-extrusion is also discussed.
Asunto(s)
Cloruro de Litio/química , Presión , Dióxido de Silicio/química , Zeolitas/química , Algoritmos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Teóricos , Tamaño de la Partícula , Soluciones , Agua/químicaRESUMEN
Halopyridines are key building blocks for synthesizing pharmaceuticals, agrochemicals, and ligands for metal complexes, but strategies to selectively halogenate pyridine C-H precursors are lacking. We designed a set of heterocyclic phosphines that are installed at the 4-position of pyridines as phosphonium salts and then displaced with halide nucleophiles. A broad range of unactivated pyridines can be halogenated, and the method is viable for late-stage halogenation of complex pharmaceuticals. Computational studies indicate that C-halogen bond formation occurs via an SNAr pathway, and phosphine elimination is the rate-determining step. Steric interactions during C-P bond cleavage account for differences in reactivity between 2- and 3-substituted pyridines.
Asunto(s)
Halogenación , Indicadores y Reactivos/química , Compuestos Onio/química , Fosfinas/química , Piridinas/química , Bromuros/química , Teoría Funcional de la Densidad , Indicadores y Reactivos/síntesis química , Yoduros/química , Cloruro de Litio/química , Compuestos de Litio/química , Modelos Químicos , Compuestos Onio/síntesis química , Fosfinas/síntesis químicaRESUMEN
The influence of the compensating cation (Na+, Li+, Mg2+) nature on the water adsorption properties of LTA and FAU-type zeolites was investigated. Cation exchanges were performed at 80 °C for 2 h using 1 M aqueous solutions of lithium chloride (LiCl) or magnesium chloride (MgCl2). XRF and ICP-OES analyses indicate that the cation exchange yields reach values between 59 to 89% depending on the number of exchange cycles and the nature of the zeolite and cation, while both zeolites structures are preserved during the process, as shown by XRD and solid state NMR analyses. Nitrogen adsorption-desorption experiments indicate a higher available microporous volume when sodium cations are replaced by smaller monovalent lithium cations or by divalent magnesium cations because twice less cations are needed compared to monovalent cations. Up to 15% of gain in the available microporous volume is obtained for FAU-type zeolites exchanged with magnesium cation. This improvement facilitates the adsorption of water with an increase in the water uptake up to 30% for the LTA and FAU type zeolites exchanged with magnesium. These exchanged zeolites are promising for uses in water decontamination because a smaller amount is needed to trap the same amount of water compared to their sodium counterparts.
Asunto(s)
Cloruro de Litio/química , Agua/química , Zeolitas/química , Adsorción , Cationes Bivalentes/química , Cationes Monovalentes/química , Cloruro de Magnesio , Espectroscopía de Resonancia MagnéticaRESUMEN
Small molecules loaded into biological materials present a promising strategy for stimulating endogenous repair mechanisms for in situ skin regeneration. Lithium can modulate various biologic processes, promoting proliferation, angiogenesis, and decreasing inflammation. However, its role in skin repair is rarely reported. In this study, we loaded lithium chloride (LiCl) into the chitosan (CHI) hydrogel and develop a sterile and biocompatible sponge scaffold through freeze-drying. In-vitro assessment demonstrated that the CHI-LiCl composite scaffolds (CLiS) possessed favorable cytocompatibility, swelling and biodegradation. We created full-thickness skin wounds in male C57BL/c mice to evaluate the healing capacity of CLiS. Compared with the wounds of control and CHI scaffold (CS) groups, the wounds in the CLiS-treated group showed reduced inflammation, improved angiogenesis, accelerated re-epithelialization, sustained high expression of ß-catenin with a small amount of regenerated hair follicles. Therefore, CLiS may be a promising therapeutic dressing for skin wound repair and regeneration.
Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Cloruro de Litio/química , Piel/efectos de los fármacos , Andamios del Tejido/química , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Fibroblastos/citología , Regulación de la Expresión Génica , Folículo Piloso/química , Folículo Piloso/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Porosidad , Regeneración , Propiedades de Superficie , Ingeniería de Tejidos , Cicatrización de Heridas/efectos de los fármacos , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
A method of RNA isolation using a solution of urea-LiCl as a denaturing agent was tested on stony coral. As the method does not require homogenization of tissues prior to their incubation in the denaturant, specimen collected in the field can be immediately transferred to the urea-LiCl solution. The method was also tested on tissues of other cnidarian species. RNA was isolated from fresh tissues of jellyfish and sea anemones using two protocols - that is, incubations in the urea-LiCl solution were either performed on homogenized tissues or on intact tissues or specimen. RNA quality was evaluated on a bioanalyser.
Asunto(s)
Cnidarios/genética , ARN/aislamiento & purificación , Animales , Cloruro de Litio/química , Urea/químicaRESUMEN
We have examined the insertion of carbenes carrying leaving groups into the [nido-B11H13]2- dianion to form the [closo-1-CB11H12]- anion. The best procedure uses CF3SiMe3 and LiCl as the source of CF2. It is simple, convenient and scalable and proceeds with 70-90% yield. Density functional calculations have been used to develop a mechanistic proposal that accounts for the different behavior of CF2, requiring only one equivalent of base for successful conversion of Na[nido-B11H14]- to [closo-1-CB11H12]-, and CCl2 and CBr2, which require more.
Asunto(s)
Compuestos de Boro/química , Hidrocarburos Fluorados/síntesis química , Hidrocarburos Fluorados/química , Cloruro de Litio/química , Estructura MolecularRESUMEN
Distributions of carboxy groups among the molecules in 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs) prepared from wood, cotton, and algal celluloses were investigated. Most C6-carboxy groups in TOCNs were esterified with anthracene-methyl (-CH2C14H9) groups, showing an ultraviolet light (UV) absorption peak at 365 nm. The anthracene-methylated TOCNs were dissolved in 8% (w/w) lithium chloride/N,N-dimethylacetamide (LiCl/DMAc). After dilution to 1% LiCl/DMAc, the solutions were subjected to size-exclusion chromatography with multiangle laser-light scattering, refractive index, and UV detection. For algal TOCN, C6-carboxy group-rich molecules were present predominantly in the low-molar-mass region, which was consistent with the core-clad cellulose chain packing structures in individual algal cellulose microfibrils and partial depolymerization of the oxidized cellulose molecules. In contrast, wood and cotton TOCNs had almost homogeneous distributions of C6-carboxy groups in all molar mass regions, which could not be explained in terms of the simple core-clad cellulose chain packing structures.