Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.686
Filtrar
1.
BMC Res Notes ; 17(1): 188, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970085

RESUMEN

Heavy metals are encountered in nature, and are used in several human endeavors, including in dental fillings. It is well known that the safety of metals depends on their chemical form, as well as the dose and route through which biological systems are exposed to them. Here, we used the Nauphoeta cinerea model to examine the mechanism by which salts of the heavy metals used in dental fillings - silver and mercury - exert their neurotoxicity. Nymphs exposed to heavy metals presented with reduced motor and exploratory abilities as they spent more time immobile, especially in the periphery of a novel object, and covered less distance compared with control nymphs. Exposure to AgNO3 and HgCl2 also exacerbated levels of oxidative stress markers (MDA & ROS) and the neurotransmitter regulators - AChE and MAO, while reducing antioxidant activity markers, both in biochemical (thiol & GST) and RT-qPCR (TRX, GST, SOD, Catalase) examinations, in neural tissues of the cockroach. The observed disruptions in neurolocomotor control, synaptic transmission and redox balance explain how heavy metal salts may predispose organisms to neurological disorders.


Asunto(s)
Oxidación-Reducción , Estrés Oxidativo , Animales , Oxidación-Reducción/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Mercurio/toxicidad , Plata/farmacología , Plata/toxicidad , Neurotransmisores/metabolismo , Acetilcolinesterasa/metabolismo , Ninfa/efectos de los fármacos , Ninfa/metabolismo , Monoaminooxidasa/metabolismo , Conducta Animal/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Nitrato de Plata/farmacología , Cloruro de Mercurio/toxicidad
2.
Environ Sci Pollut Res Int ; 31(25): 36971-36985, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760601

RESUMEN

Mercury (Hg) is regarded as a serious hazard to aquatic life and is particularly prevalent in aquatic ecosystems. However, there is little evidence available regarding the toxicity of mercury chloride (HgCl2) in vital organs of fish. This study was conducted to assess the effects of HgCl2 (0.039 mg/L and 0.078 mg/L) on oxidative stress-mediated genotoxicity, poikilocytosis, apoptosis, and renal fibrosis after 15, 30, and 45 days of the exposure period. According to the findings, HgCl2 intoxication in fish resulted in a significantly (P < 0.05) elevated lipid peroxidation (LPO), protein carbonyls (PC), lactate dehydrogenase (LDH) activity levels in kidney tissues and significantly (P < 0.05) increased reactive oxygen species (ROS), poikilocytosis, DNA tail length, and the frequency of apoptotic cells (AC%) in blood cells. Kidney's ultra-structure and histopathology revealed its fibrosis, which was evident by mRNA expression of targeted genes KIM1, NOX4, TGFß, and NFϏß. Different indicators of oxidative stress, apoptosis, and genotoxicity were altered in a dose and time-dependent manner, according to a two-way ANOVA analysis. There was a considerable positive link between oxidative stress and kidney fibrosis in the fish Channa punctatus, and it is evident from regression correlation and PCA data analysis. The kidney's ultra-structure evaluation and histopathology both revealed a noticeable fibrosis state. Additionally, a significant (P < 0.05) downregulation in PPARδ reveals that fish body was unable to combat diseases such as kidney fibrosis induced by HgCl2. This study shed fresh light on the mechanisms underlying nephrotoxicity caused by HgCl2 exposure.


Asunto(s)
Peces , Cloruro de Mercurio , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Estrés Oxidativo/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Riñón/efectos de los fármacos , Riñón/patología , Agua Dulce , Peroxidación de Lípido/efectos de los fármacos , Apoptosis/efectos de los fármacos , Channa punctatus
3.
Sci Rep ; 14(1): 9161, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38644412

RESUMEN

Water bodies are highly pollution-prone areas in which mercury (Hg) is considered as a major menace to aquatic organisms. However, the information about the toxicity of mercuric chloride (HgCl2) in a vital organ such as the liver of fish is still inadequate. This study aimed to assess the impact of mercuric chloride (HgCl2) exposure on the liver of Channa punctata fish over 15, 30, and 45 days, at two different concentrations (0.039 mg/L and 0.078 mg/L). Mercury is known to be a significant threat to aquatic life, and yet, information regarding its effects on fish liver remains limited. The results of this study demonstrate that exposure to HgCl2 significantly increases oxidative stress markers, such as lipid peroxidation (LPO) and protein carbonyls (PC), as well as the levels of serum glutamic-oxaloacetic transaminase (SGOT) and serum glutamic pyruvic transaminase (SGPT) in the fish. Additionally, the transcriptional and protein analysis of specific genes and molecules associated with necroptosis and inflammation, such as ABCG2, TNF α, Caspase 3, RIPK 3, IL-1ß, Caspase-1, IL-18, and RIPK1, confirm the occurrence of necroptosis and inflammation in the liver. Histopathological and ultrastructural examinations of the liver tissue further reveal a significant presence of liver steatosis. Interestingly, the upregulation of PPARα suggests that the fish's body is actively responding to counteract the effects of liver steatosis. This study provides a comprehensive analysis of oxidative stress, biochemical changes, gene expression, protein profiles, and histological findings in the liver tissue of fish exposed to mercury pollution in freshwater environments.


Asunto(s)
Channa punctatus , Hígado Graso , Inflamación , Cloruro de Mercurio , Estrés Oxidativo , Contaminantes Químicos del Agua , Animales , Channa punctatus/metabolismo , Hígado Graso/inducido químicamente , Hígado Graso/metabolismo , Hígado Graso/patología , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Cloruro de Mercurio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad
4.
Protein J ; 43(2): 362-374, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431536

RESUMEN

Protein aggregation is related to numerous pathological conditions like Alzheimer's and Parkinson's disease. In our study, we have shown that an already existing FDA-approved drug; methotrexate (MTX) can be reprofiled on preformed α-chymotrypsinogen A (α-Cgn A) aggregates. The zymogen showed formation of aggregates upon interaction with mercuric ions, with increasing concentration of Hg2Cl2 (0-150 µM). The hike in ThT and ANS fluorescence concomitant with blue shift, bathochromic shift and the hyperchromic effect in the CR absorbance, RLS and turbidity measurements, substantiate the zymogen ß-rich aggregate formation. The secondary structural alterations of α- Cgn A as analyzed by CD measurements, FTIR and Raman spectra showed the transformation of native ß-barrel conformation to ß-inter-molecular rich aggregates. The native α- Cgn A have about 30% α-helical content which was found to be about 3% in presence of mercuric ions suggesting the formation of aggregates. The amorphous aggregates were visualized by SEM. On incubation of Hg2Cl2 treated α- Cgn A with increasing concentration of the MTX resulted in reversing aggregates to the native-like structure. These results were supported by remarkable decrease in ThT and ANS fluorescence intensities and CR absorbance and also consistent with CD, FTIR, and Raman spectroscopy data. MTX was found to increase the α-helical content of the zymogen from 3 to 15% proposing that drug is efficient in disrupting the ß-inter-molecular rich aggregates and reverting it to native like structure. The SEM images are in accordance with CD data showing the disintegration of aggregates. The most effective concentration of the drug was found to be 120 µM. Molecular docking analysis showed that MTX molecule was surrounded by the hydrophobic residues including Phe39, His40, Arg145, Tyr146, Thr151, Gly193, Ser195, and Gly216 and conventional hydrogen bonds, including Gln73 (bond length: 2.67Å), Gly142 (2.59Å), Thr144 (2.81Å), Asn150 (2.73Å), Asp153 (2.71Å), and Cys191 (2.53Å). This investigation will help to find the use of already existing drugs to cure protein misfolding-related abnormalities.


Asunto(s)
Quimotripsinógeno , Reposicionamiento de Medicamentos , Metotrexato , Metotrexato/química , Metotrexato/farmacología , Reposicionamiento de Medicamentos/métodos , Quimotripsinógeno/química , Agregado de Proteínas/efectos de los fármacos , Cloruro de Mercurio/química , Humanos , Simulación del Acoplamiento Molecular , Estructura Secundaria de Proteína
5.
Environ Toxicol ; 39(5): 2937-2947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38308452

RESUMEN

Mercury chloride is a type of heavy metal that causes the formation of free radicals, causing hepatotoxicity, nephrotoxicity and apoptosis. In this study, the effects of naringenin on oxidative stress and apoptosis in the liver and kidney of rats exposed to mercury chloride were investigated. In the study, 41 2-month-old male Wistar-Albino rats were divided into five groups. Accordingly, group 1 was set as control group, group 2 as naringenin-100, group 3 as mercury chloride, group 4 as mercury chloride + naringenin-50, and group 5 as mercury chloride + naringenin-100. For the interventions, 1 mL/kg saline was administered to the control, 0.4 mg/kg/day mercury (II) chloride to the mercury chloride groups by i.p., and 50 and 100 mg/kg/day naringenin prepared in corn oil to the naringenin groups by gavage. All the interventions lasted for 20 days. Mercury chloride administration was initiated 1 h following the administration of naringenin. When mercury chloride and the control group were compared, a significant increase in plasma urea, liver and kidney malondialdehyde (MDA) levels, in kidney superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione-S-transferase (GST) activities (p < .001), and a significant decrease in liver and kidney glutathione (GSH) levels (p < .001), in liver catalase (CAT) activity (p < .01) were observed. In addition, histopathological changes and a significant increase in caspase-3 levels were detected (p < .05). When mercury chloride and treatment groups were compared, the administration of naringenin caused a decrease aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) (p < .01), urea, creatinine levels (p < .001) in plasma, MDA levels in liver and kidney, SOD, GSH-Px, GST activities in kidney (p < .001), and increased GSH levels in liver and kidney. The addition of naringenin-100 increased GSH levels above the control (p < .001). The administration of naringenin was also decreased histopathological changes and caspase-3 levels (p < .05). Accordingly, it was determined that naringenin is protective and therapeutic against mercury chloride-induced oxidative damage and apoptosis in the liver and kidney, and 100 mg/kg naringenin is more effective in preventing histopathological changes and apoptosis.


Asunto(s)
Cloruros , Flavanonas , Mercurio , Ratas , Masculino , Animales , Cloruros/metabolismo , Caspasa 3/metabolismo , Ratas Wistar , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Estrés Oxidativo , Antioxidantes/metabolismo , Riñón , Hígado , Glutatión/metabolismo , Superóxido Dismutasa/metabolismo , Apoptosis , Mercurio/metabolismo , Mercurio/farmacología , Urea
6.
BMC Plant Biol ; 24(1): 108, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38347449

RESUMEN

Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.


Asunto(s)
Brassica napus , Metales Pesados , Contaminantes del Suelo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Tocoferoles/metabolismo , Tocoferoles/farmacología , Metales Pesados/metabolismo , Prolina/metabolismo , Contaminantes del Suelo/metabolismo
7.
J Biochem Mol Toxicol ; 38(1): e23589, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985964

RESUMEN

In this study, a zebrafish embryo toxicity model was employed, utilizing 24 h postfertilization (hpf) zebrafish embryos. These embryos were treated with varying concentrations of mercuric chloride for 96 h under static conditions. We assessed multiple parameters that reflected developmental abnormalities, behavioral alterations, morphological anomalies, antioxidant enzyme activities, including those of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione S-transferase (GST), immune messenger RNA transcription levels of key factors such as tumor necrosis factor α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6), and cyclooxygenase 2 (COX-2), as well as protein expression of TNF-α. The results revealed that embryos exposed to higher concentrations of mercury exhibited reduced hatchability and increased rates of morphological abnormalities and mortality at 48, 72, and 96 hpf. In addition, a concentration-dependent increase in developmental abnormalities, including cardiac edema, reduced body length, yolk sac edema, scoliosis, and bent tails, was observed. Larval behaviors, such as touch-induced escape responses, startle reactions, and turning actions, were found to be diminished in a concentration-dependent manner. Additionally, the activities of various antioxidative enzymes, such as SOD, CAT, and GST, exhibited an increase at higher mercury concentrations, with the exception of GPX activity, which decreased significantly in a dose-dependent manner (p < 0.05). Pro-inflammatory cytokine transcription levels, specifically TNF-α, IL-1ß, IL-6, and COX-2, were significantly upregulated in a dose-dependent manner in the mercuric (II) chloride (HgCl2 ) treatment group compared with the control group. TNF-α protein expression was notably elevated in the larvae group treated with 300 and 400 nM HgCl2 .


Asunto(s)
Antioxidantes , Pez Cebra , Animales , Antioxidantes/farmacología , Pez Cebra/metabolismo , Cloruro de Mercurio/toxicidad , Cloruros/farmacología , Estrés Oxidativo , Citocinas/metabolismo , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Ciclooxigenasa 2/genética , Ciclooxigenasa 2/metabolismo , Embrión no Mamífero , Superóxido Dismutasa/metabolismo
8.
Int Immunopharmacol ; 126: 111289, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016347

RESUMEN

The ß3-adrenergic receptor (ß3-AR) agonism mirabegron is used to treat overactive urinary bladder syndrome; however, its role against acute kidney injury (AKI) is not unveiled, hence, we aim to repurpose mirabegron in the treatment of mercuric chloride (HgCl2)-induced AKI. Rats were allocated into normal, normal + mirabegron, HgCl2 untreated, HgCl2 + mirabegron, and HgCl2 + the ß3-AR blocker SR59230A + mirabegron. The latter increased the mRNA of ß3-AR and miR-127 besides downregulating NF-κB p65 protein expression and the contents of its downstream targets iNOS, IL-4, -13, and -17 but increased that of IL-10 to attest its anti-inflammatory capacity. Besides, mirabegron downregulated the protein expression of STAT-6, PI3K, and ERK1/2, the downstream targets of the above cytokines. Additionally, it enhanced the transcription factor PPAR-α but turned off the harmful hub HNF-4α/HNF-1α and the lipid peroxide marker MDA. Mirabegron also downregulated the CD-163 protein expression, which besides the inhibited correlated cytokines of M1 (NF-κB p65, iNOS, IL-17) and M2 (IL-4, IL-13, CD163, STAT6, ERK1/2), inactivated the macrophage phenotypes. The crosstalk between these parameters was echoed in the maintenance of claudin-2, kidney function-related early (cystatin-C, KIM-1, NGAL), and late (creatinine, BUN) injury markers, besides recovering the microscopic structures. Nonetheless, the pre-administration of SR59230A has nullified the beneficial effects of mirabegron on the aforementioned parameters. Here we verified that mirabegron can berepurposedto treat HgCl2-induced AKI by activating the ß3-AR. Mirabegron signified its effect by inhibiting inflammation, oxidative stress, and the activated M1/M2 macrophages, events that preserved the proximal tubular tight junction claudin-2 via the intersection of several trajectories.


Asunto(s)
Lesión Renal Aguda , Claudina-2 , Ratas , Animales , Cloruro de Mercurio/toxicidad , FN-kappa B/metabolismo , Interleucina-4 , Riñón/metabolismo , Macrófagos/metabolismo , Receptores Adrenérgicos
9.
Int J Artif Organs ; 47(1): 67-72, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38142295

RESUMEN

INTRODUCTION: The study aims to present a case of acute mercuric chloride poisoning treated successfully with continuous renal replacement therapy using the CytoSorb filter. CASE DESCRIPTION: A 21-year-old female patient after a suicide attempt by intentional ingestion of mercuric chloride, was admitted to the hospital with features of multiple organ damage for specific treatment. The performed laboratory tests confirmed high levels of mercury in the blood (1051 µg/L) and urine (22,960 µg/L). Due to acute renal failure, continuous renal replacement therapy (CRRT) CVVHD Ci-Ca was initiated; the procedure was then converted to CVVHDF Ci-Ca with ultrafiltration to optimise therapy, and CytoSorb was added to the artificial kidney system on day 3. Specific antidote therapy (DMPS) was administered concurrently. The ongoing treatment resulted in a reduction in subjective complaints, a decrease in blood mercury levels to 580 µg/L, and an improvement in parenchymal organ function. CONCLUSION: In the event of poisoning with inorganic mercury compounds (mercuric chloride), continuous renal replacement therapy using the CytoSorb filter as an extracorporeal blood purification method may be considered.


Asunto(s)
Lesión Renal Aguda , Intoxicación por Mercurio , Mercurio , Femenino , Humanos , Adulto Joven , Adulto , Cloruro de Mercurio/uso terapéutico , Cloruros/uso terapéutico , Intoxicación por Mercurio/diagnóstico , Intoxicación por Mercurio/tratamiento farmacológico , Mercurio/uso terapéutico , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/terapia
10.
Brain Res ; 1826: 148741, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38157955

RESUMEN

This study investigated the effects of 6-gingerol-rich fraction of Zingiber officinale (6-GIRIFZO) on mercury chloride (HgCl2)-induced neurotoxicity in Wistar rats. Thirty -five male Wistar rats weighing between (150-200 g) were divided randomly into five groups (n = 7): group 1: control, received 0.5 mL of normal saline, group 2: received HgCl2 (5 mg/kg), group 3: received N-acetylcysteine (NAC) (50 mg/kg) as well as HgCl2 (5 mg/kg), group 4: received 6-GIRIFZO (100 mg/kg) and HgCl2 (5 mg/kg), group 5: had 6-GIRIFZO (200 mg/kg) and HgCl2 (5 mg/kg), consecutively for 14 days. On the day14, the rats were subjected to behavioural tests using a Morris water maze and novel object recognition tests. The rats were then euthanized to obtain brain samples for the determination of biochemical parameters (acetylcholinesterase (AchE), nitric oxide (NO), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), glutathione (GSH), tumor necrosis factor- alpha (TNF-α), nuclear factor kappa-B (NF-κB), interleukin-1ß (IL-1ß) and interleukin-6 (IL-6)) using standard methods. The result revealed a significant increase in escape latency and a significant decrease in recognition ratio in the rats that were exposed to HgCl2 only. However, 6-GIRIFZO produced a significant reduction in the escape latency and (p < 0.05) increase in the recognition ratio. Similarly, HgCl2 exposure caused a significant (p < 0.05) decrease in the brain SOD, GPx, CAT, GSH with increased brain levels of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Similarly to the standard drug, NAC, 6-GIRIFZO (100 and 200 mg/kg) significantly (p < 0.05) increased brain SOD, GPx, CAT, and GSH levels with decreased concentrations of MDA, NO, AchE, TNF-α, NF-κB, IL-1ß and IL-6. Also, pre-treatment with 6-GIRIFZO prevented the HgCl2-induced morphological aberrations in the rats. This study concludes that 6-GIRIFZO prevents HgCl2-induced cognitive deficit via reduction of brain inflammation as well as oxidative stress in rats.


Asunto(s)
Catecoles , Disfunción Cognitiva , Alcoholes Grasos , Mercurio , Zingiber officinale , Ratas , Masculino , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ratas Wistar , Cloruros , Enfermedades Neuroinflamatorias , Cloruro de Mercurio/toxicidad , Factor de Necrosis Tumoral alfa/metabolismo , FN-kappa B/metabolismo , Interleucina-6 , Acetilcolinesterasa , Estrés Oxidativo , Glutatión/metabolismo , Acetilcisteína/farmacología , Superóxido Dismutasa/metabolismo , Mercurio/farmacología
11.
Environ Pollut ; 337: 122583, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37741541

RESUMEN

Inorganic mercury (Hg2+) is a highly toxic heavy metal in the environment. To date, the impacts of Hg2+ on the development of monocytes, or monopoiesis, have not been fully addressed. The aim of the present study was to investigate the impact of Hg2+ on monopoiesis. In this study, we treated B10.S mice and DBA/2 mice with 10 µM or 50 µM HgCl2 via drinking water for 4 wk, and we then evaluated the development of monocytes. Treatment with 50 µM HgCl2, but not 10 µM HgCl2, increased the number of monocytes in the blood, spleen and bone marrow (BM) of B10.S mice. Accordingly, treatment with 50 µM HgCl2, but not 10 µM HgCl2, increased the number of common myeloid progenitors (CMP) and granulocyte-macrophage progenitors (GMP) in the BM. Functional analyses indicated that treatment with 50 µM HgCl2 promoted the differentiation of CMP and GMP to monocytes in the BM of B10.S mice. Mechanistically, treatment with 50 µM HgCl2 induced the production of IFNγ, which activated the Jak1/3-STAT1/3-IRF1 signaling in CMP and GMP and enhanced their differentiation potential for monocytes in the BM, thus likely leading to increased number of mature monocytes in B10.S mice. Moreover, the increased monopoiesis by Hg2+ was associated with the increased inflammatory status in B10.S mice. In contrast, treatment with 50 µM HgCl2 did not impact the monopoiesis in DBA/2 mice. Our study reveals the impact of Hg on the development of monocytes.


Asunto(s)
Cloruro de Mercurio , Mercurio , Ratones , Animales , Cloruro de Mercurio/toxicidad , Cloruros , Ratones Endogámicos DBA , Mercurio/toxicidad , Células Progenitoras Mieloides
12.
Int J Occup Med Environ Health ; 36(5): 685-692, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37750691

RESUMEN

This study aims to present a case of acute mercuric chloride poisoning at a potentially lethal dose treated with the antidote - 2,3-dimercapto- 1-propanesulfonic acid (DMPS) and continuous renal replacement therapy (CRRT) combined with CytoSorb. A 21-year-old woman was admitted to a hospital with abdominal pain, vomiting, and suspected gastrointestinal bleeding after taking 5000 mg of mercuric chloride for suicidal purposes. Due to the patient deteriorating general condition and multiple organ damage, on the third day she was transported to the Clinic of Anaesthesiology and Intensive Care (CAaIC), Lódz, Poland. Laboratory tests confirmed features of acute kidney injury and high mercury levels in the blood (1051 µg/l) and urine (22 960 µg/l) - DMPS therapy and CRRT combined with CytoSorb were instituted. Due to nervous system complaints (headache, dizziness), a lumbosacral puncture was performed - the mercury concentration in the cerebrospinal fluid (CSF) was 5.45 µg/l. During a colonoscopy, significant diagnostic abnormalities revealed features of colonic mucosal necrosis. The treatment resulted in a decrease in subjective complaints, decreased mercury levels in biological material, and improved parenchymal organ function. On the 15th day of therapy, the patient was transferred to the primary care center for further treatment. The case confirms the possibility of improvement of patient condition following ingestion of a potentially lethal dose (5 g) as a result of the initiation of appropriate therapy even on the third day. The presence of mercury in CSF confirms that inorganic mercury compounds (mercuric chloride) can pass through the blood-brain barrier after oral ingestion. Int J Occup Med Environ Health. 2023;36(5):685-92.


Asunto(s)
Lesión Renal Aguda , Intoxicación por Mercurio , Mercurio , Femenino , Humanos , Adulto Joven , Cloruro de Mercurio/envenenamiento , Intoxicación por Mercurio/terapia , Intoxicación por Mercurio/tratamiento farmacológico
13.
J Appl Toxicol ; 43(12): 1899-1915, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37551865

RESUMEN

We have adapted a semiautomated method for tracking Caenorhabditis elegans spontaneous locomotor activity into a quantifiable assay by developing a sophisticated method for analyzing the time course of measured activity. The 16-h worm Adult Activity Test (wAAT) can be used to measure C. elegans activity levels for efficient screening for pharmacological and toxicity-induced effects. As with any apical endpoint assay, the wAAT is mode of action agnostic, allowing for detection of effects from a broad spectrum of response pathways. With caffeine as a model mild stimulant, the wAAT showed transient hyperactivity followed by reversion to baseline. Mercury chloride (HgCl2 ) produced an early dose-response hyperactivity phase followed by pronounced hypoactivity, a behavior pattern we have termed a toxicant "escape response." Methylmercury chloride (meHgCl) produced a similar pattern to HgCl2 , but at much lower concentrations, a weaker hyperactivity response, and more pronounced hypoactivity. Sodium arsenite (NaAsO2 ) and dimethylarsinic acid (DMA) induced hypoactivity at high concentrations. Acute toxicity, as measured by hypoactivity in C. elegans adults, was ranked: meHgCl > HgCl2 > NaAsO2 = DMA. Caffeine was not toxic with the wAAT at tested concentrations. Methods for conducting the wAAT are described, along with instructions for preparing C. elegans Habitation Medium, a liquid nutrient medium that allows for developmental timing equivalent to that found with C. elegans grown on agar with OP50 Escherichia coli feeder cultures. A de novo mathematical parametric model for adult C. elegans activity and the application of this model in ranking exposure toxicity are presented.


Asunto(s)
Caenorhabditis elegans , Modelos Teóricos , Animales , Cloruro de Mercurio/toxicidad , Escherichia coli
14.
Sci Rep ; 13(1): 11899, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488162

RESUMEN

Endocannabinoid anandamide (AEA) has a physiological role in regulating renal blood flow, whereas its analogs ameliorated renal ischemia/reperfusion injury. Nonetheless, the role of AEA against mercuric chloride (HgCl2)-induced renal toxicity has not been unraveled. Rats were allocated into control, HgCl2, and HgCl2/AEA treated groups. The administration of AEA quelled the HgCl2-mediated increase in inositol trisphosphate (IP3) and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). The endocannabinoid also signified its anti-inflammatory potential by turning off the inflammatory cascade evidenced by the suppression of high mobility group box protein-1 (HMGB1), receptor of glycated end products (RAGE), nuclear factor-κB p65 (NF-κB), and unexpectedly PPAR-γ. Additionally, the aptitude of AEA to inhibit malondialdehyde and boost glutathione points to its antioxidant capacity. Moreover, AEA by enhancing the depleted renal WNT-5A and reducing cystatin-C and KIM-1 (two kidney function parameters) partly verified its anti-apoptotic capacity, confirmed by inhibiting caspase-3 and increasing B-cell lymphoma-2 (BCL-2). The beneficial effect of AEA was mirrored by the improved architecture and kidney function evidenced by the reduction in cystatin-C, KIM-1, creatinine, BUN, and caspase1-induced activated IL-18. In conclusion, our results verify the reno-protective potential of AEA against HgCl2-induced kidney injury by its anti-inflammatory, antioxidant, and anti-apoptotic capacities by modulating WNT-5A/BCL-2, IP3/NFATC1, HMGB-1/RAGE/NF-κB, caspase-1/IL-18, and caspase-3/BCL-2 cues.


Asunto(s)
Lesión Renal Aguda , Cistatinas , Proteína HMGB1 , Animales , Ratas , FN-kappa B , Endocannabinoides , Caspasa 3 , Interleucina-18 , Cloruro de Mercurio , Antioxidantes , Factores de Transcripción , Proteínas Proto-Oncogénicas c-bcl-2
15.
J Biochem Mol Toxicol ; 37(10): e23425, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37401655

RESUMEN

Mercury is a toxic, environmentally heavy metal that can cause severe damage to all organs, including the nervous system. The functions of puerarin include antioxidant, anti-inflammatory, nerve cell repair, regulation of autophagy, and so forth. But because of the limited oral absorption of puerarin, it affects the protective effect on brain tissue. The nano-encapsulation of Pue can improve its limitation. Therefore, this study investigated the protective effect of Pue drug-loaded PLGA nanoparticles (Pue-PLGA-nps) on brain injury induced by mercuric chloride (HgCl2 ) in mice. The mice were divided into normal saline (NS) group, HgCl2 (4 mg/kg) group, Pue-PLGA-nps (50 mg/kg) group, HgCl2 + Pue (4 mg/kg + 30 mg/kg) group, and HgCl2 + Pue-PLGA-nps (4 mg/kg + 50 mg/kg) group. After 28 days of treatment, the mice were observed for behavioral changes, antioxidant capacity, autophagy and inflammatory response, and mercury levels in the brain, blood, and urine were measured. The results showed that HgCl2 toxicity caused learning and memory dysfunction in mice, increased mercury content in brain and blood, and increased serum levels of interleukin (IL-6), IL-1ß, and tumor necrosis factor-α in the mice. HgCl2 exposure decreased the activity of T-AOC, superoxide dismutase, and glutathione peroxidase, and increased the expression of malondialdehyde in the brain of mice. Moreover, the expression levels of TRIM32, toll-like receptor 4 (TLR4), and LC3 proteins were upregulated. Both Pue and Pue-PLGA-nps interventions mitigated the changes caused by HgCl2 exposure, and Pue-PLGA-nps further enhanced this effect. Our results suggest that Pue-PLGA-nps can ameliorate HgCl2 -induced brain injury and reduce Hg accumulation, which is associated with inhibition of oxidative stress, inflammatory response, and TLR4/TRIM32/LC3 signaling pathway.


Asunto(s)
Lesiones Encefálicas , Mercurio , Nanopartículas , Ratones , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cloruro de Mercurio/toxicidad , Receptor Toll-Like 4/metabolismo , Encéfalo/metabolismo , Estrés Oxidativo , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Mercurio/metabolismo , Mercurio/farmacología , Lesiones Encefálicas/inducido químicamente , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/prevención & control
16.
Ecotoxicol Environ Saf ; 258: 114973, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37163906

RESUMEN

Mercury chloride can cause severe liver injury, which involves multiple mechanisms. Ferroptosis plays an important role in regulating the development and progression of liver pathology. Oleanolic acid (OA), a triterpenoid compound widely exists in fruits, has liver protective properties. In this study, we investigated the role of ferroptosis in mercury chloride-induced liver injury and the intervention effect of OA, and clarified the potential mechanism. We found that mercury chloride-induced oxidative stress in liver tissues and cells, leading to lipid peroxidation and iron overload, thereby reducing the expression levels of GPX4 and SLC7A11, and increasing the expression level of TRF1, OA pretreatment improved the changes of GPX4, SLC7A11 and TRF1 induced by mercury chloride, which were related to its inhibition of oxidative stress. Furthermore, We pretreated cells with OA, VC, and Fer-1, respectively and found that VC pretreatment reduced oxidative stress and significantly reversed the gene and protein expressions of GPX4, SLC7A11, and TRF1 in mercury chloride-exposed cells (P < 0.05, vs. HgCl2 group), however, the protein expression level of GPX4 in OA pre-treatment group was lower than that in VC pre-treatment group (P < 0.05). Fer-1 pretreatment decreased the level of iron ions in cells, increased the gene and protein expression levels of GPX4 and SLC7A11, and decreased the gene and protein expression levels of TRF1 (P < 0.05, vs. HgCl2 group), however, the protein expression levels of GPX4 and SLC7A11 in OA pre-treatment group were lower than those in Fer-1 pre-treatment group (P < 0.05). Moreover, vivo experiments also demonstrated that pre-treatment with OA, VC, and Fer-1 reversed the changes in gene expression levels of Nrf2 and SOD1, and protein expression of GPX4 induced by mercury chloride (P < 0.05, vs. HgCl2 group), meanwhile, the difference was not statistically significant among OA, VC, and Fer-1 pretreatment. The improvement effect of OA pretreatment on the change in TFR1 protein expression caused by mercury chloride was similar to that of Fer-1 and VC, however, the intervention effect of OA on SLC7A11 protein expression was not as good as Fer-1 and VC pre-treatment. To sum up, all these results suggest that ferroptosis is involved in mercury chloride-induced liver injury, OA pretreatment alleviated mercury chloride-induced ferroptosis by inhibiting ROS production and iron ion overload, and then alleviate the liver injury.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Ferroptosis , Sobrecarga de Hierro , Mercurio , Ácido Oleanólico , Humanos , Cloruros , Cloruro de Mercurio/toxicidad , Ácido Oleanólico/farmacología , Ácido Oleanólico/uso terapéutico , Especies Reactivas de Oxígeno , Sobrecarga de Hierro/tratamiento farmacológico , Hierro , Halógenos , Mercurio/toxicidad
17.
Braz J Biol ; 84: e266975, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37194800

RESUMEN

One of the main stages of cryopreservation of meristematic tissues in vegetative plants is a clonal micropropagation, which includes isolating the explants of the raw material in vitro and optimizing the culture medium for micropropagation. As the result of our studies, the optimal periods for in vitro micropropagation are: first - isolation of explants from initiated shoots of dormant buds (blackcurrants and raspberries) in January-March; the second - from actively growing shoots (blackcurrants and raspberries) in May-June, from the formed mustache (strawberry) in July-August. The optimal drugs for sterilization of raspberry explants are: a) 0.1% HgCl2 (6 min), then 3% H2O2 (15 min); b) chlorine-containing bleach «Domestos¼ in the dilution of H2O 1:9 (10 min). For blackcurrant: a) 0.1% HgCl2 (5 min) in combination with 0.1% fungicide "Topaz" (30 min); b) 0.1% HgCl2 (5 min) in combination with the treatment with KMnO4 (30 min); c) "Domestos" in the dilution of H2O 1:5 (20 min). For strawberry: a) 0.1% HgCl2 (6 min) followed by treatment with 3% H2O2 10 (min); b) 1% deochlor (7 min), 3% H2O2 (10 min); c) "Domestos" in the dilution of H2O 1:5 (8 min) with subsequent treatment 0,1% HgCl2 -7 min, then 0,20 mg/l КМnO4 - 30 min. Optimal compositions of culture media for micropropagation of blackcurrant - Murashige and Skoog (MS) medium with 0.5 mg L-1 BAP, 0.5 mg L-1 GA3, 0.1 mg L-1 IBA and 20 g L-1 glucose. For raspberry -MS medium with 0.5 mg L-1 BAP, 0.1 mg L-1 IBA, 10 mg L-1 iron chelate and 30 g L-1 sucrose. For strawberry - MS medium with 0.3 mg L-1 BAP, 0.01 mg L-1 IBA, 0.2 mg L-1 GA3, 10 mg L-1 iron chelate and 30 g L-1 sucrose. Based on these studies, the cryobank was created, which include the germplasm of in vitro meristematic tissues in 66 cultivars, hybrids and wild-growing forms of blackcurrant, raspberry and strawberry. Therefore, the aim of the research was to obtain aseptic plants, clonal micropropagation and the creation of a cryogenic collection of germplasm based on the developed technology.


Asunto(s)
Fragaria , Raíces de Plantas , Brotes de la Planta , Frutas , Peróxido de Hidrógeno/farmacología , Cloruro de Mercurio , Sacarosa
18.
Food Chem Toxicol ; 177: 113820, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37172713

RESUMEN

Mercury is one heavy metal toxin that could cause severe health impairments. Mercury exposure has become a global environmental issue. Mercury chloride (HgCl2) is one of mercury's main chemical forms, but it lacks detailed hepatotoxicity data. The present study aimed to investigate the mechanism of hepatotoxicity induced by HgCl2 through proteomics and network toxicology at the animal and cellular levels. HgCl2 showed apparent hepatotoxicity after being administrated with C57BL/6 mice (16 mg/kg.bw, oral once a day, 28 days) and HepG2 cells (100 µmol/L, 12 h). Otherwise, oxidative stress, mitochondrial dysfunction and inflammatory infiltration play an important role in HgCl2-induced hepatotoxicity. The differentially expressed proteins (DEPs) after HgCl2 treatment and enriched pathways were obtained through proteomics and network toxicology. Western blot and qRT-PCR results showed acyl-CoA thioesterase 1 (ACOT1), acyl-CoA synthetase short chain family member 3 (ACSS3), epidermal growth factor receptor (EGFR), apolipoprotein B (APOB), signal transducer and activator of transcription 3 (STAT3), alanine--glyoxylate aminotransferase (AGXT), cytochrome P450 3A5 (CYP3A5), CYP2E1 and CYP1A2 may be the major biomarkers for HgCl2-induced hepatotoxicity, which involved chemical carcinogenesis, fatty acid metabolism, CYPs-mediated metabolism, GSH metabolism and others. Therefore, this study can provide scientific evidence for the biomarkers and mechanism of HgCl2-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Mercurio , Ratones , Animales , Humanos , Cloruro de Mercurio/toxicidad , Cloruros , Células Hep G2 , Proteómica , Ratones Endogámicos C57BL , Estrés Oxidativo , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Biomarcadores/metabolismo
19.
Int J Mol Sci ; 24(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37108594

RESUMEN

Acute kidney injury, which is associated with high levels of morbidity and mortality, affects a significant number of individuals, and can be triggered by multiple factors, such as medications, exposure to toxic chemicals or other substances, disease, and trauma. Because the kidney is a critical organ, understanding and identifying early cellular or gene-level changes can provide a foundation for designing medical interventions. In our earlier work, we identified gene modules anchored to histopathology phenotypes associated with toxicant-induced liver and kidney injuries. Here, using in vivo and in vitro experiments, we assessed and validated these kidney injury-associated modules by analyzing gene expression data from the kidneys of male Hartley guinea pigs exposed to mercuric chloride. Using plasma creatinine levels and cell-viability assays as measures of the extent of renal dysfunction under in vivo and in vitro conditions, we performed an initial range-finding study to identify the appropriate doses and exposure times associated with mild and severe kidney injuries. We then monitored changes in kidney gene expression at the selected doses and time points post-toxicant exposure to characterize the mechanisms of kidney injury. Our injury module-based analysis revealed a dose-dependent activation of several phenotypic cellular processes associated with dilatation, necrosis, and fibrogenesis that were common across the experimental platforms and indicative of processes that initiate kidney damage. Furthermore, a comparison of activated injury modules between guinea pigs and rats indicated a strong correlation between the modules, highlighting their potential for cross-species translational studies.


Asunto(s)
Lesión Renal Aguda , Cloruro de Mercurio , Ratas , Masculino , Cobayas , Animales , Cloruro de Mercurio/toxicidad , Riñón/metabolismo , Pruebas de Función Renal , Lesión Renal Aguda/metabolismo , Hígado/metabolismo
20.
Ecotoxicol Environ Saf ; 256: 114862, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37004432

RESUMEN

The widespread presence of mercury, a heavy metal found in the environment and used in numerous industries and domestic, raises concerns about its potential impact on human health. Nevertheless, the adverse effects of this environmental toxicant at low concentrations are often underestimated. There are emerging studies showing that accumulation of mercury in the eye may contribute to visual impairment and a comorbidity between autism spectrum disorders (ASD) trait and visual impairment. However, the underlying mechanism of visual impairment in humans and rodents is challenging. In response to this issue, zebrafish larvae with a cone-dominated retinal visual system were exposed to 100 nM mercury chloride (HgCl2), according to our previous study, followed by light-dark stimulation, a social assay, and color preference to examine the functionality of the visual system in relation to ASD-like behavior. Exposure of embryos to HgCl2 from gastrulation to hatching increased locomotor activity in the dark, reduced shoaling and exploratory behavior, and impaired color preference. Defects in microridges as the first barrier may serve as primary tools for HgCl2 toxicity affecting vision. Depletion of polyunsaturated fatty acids (PUFAs), linoleic acid, arachidonic acid (ARA), alpha-linoleic acid, docosahexaenoic acid (DHA), stearic acid, L-phenylalanine, isoleucine, L-lysine, and N-acetylputrescine, along with the increase of gamma-aminobutyric acid (GABA), sphingosine-1-phosphate, and citrulline assayed by liquid chromatography-mass spectrometry (LC-MS) suggest that these metabolites serve as biomarkers of retinal impairments that affect vision and behavior. Although suppression of adsl, shank3a, tsc1b, and nrxn1a gene expression was observed, among these tsc1b showed more positive correlation with ASD. Collectively, these results contribute new insights into the possible mechanism of mercury toxicity give rise to visual, cognitive, and social deficits in zebrafish.


Asunto(s)
Mercurio , Pez Cebra , Humanos , Animales , Pez Cebra/metabolismo , Mercurio/toxicidad , Cloruro de Mercurio/toxicidad , Trastornos de la Visión , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...