Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.335
Filtrar
1.
J Dev Orig Health Dis ; 15: e9, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38721989

RESUMEN

Sodium overload during childhood impairs baroreflex sensitivity and increases arterial blood pressure and heart rate in adulthood; these effects persist even after high-salt diet (HSD) withdrawal. However, the literature lacks details on the effects of HSD during postnatal phases on cardiac ischemia/reperfusion responses in adulthood. The current study aimed to elucidate the impact of HSD during infancy adolescence on isolated heart function and cardiac ischemia/reperfusion responses in adulthood. Male 21-day-old Wistar rats were treated for 60 days with hypertonic saline solution (NaCl; 0.3M; experimental group) or tap water (control group). Subsequently, both groups were maintained on a normal sodium diet for 30 days. Subsequently, the rats were euthanized, and their hearts were isolated and perfused according to the Langendorff technique. After 30 min of the basal period, the hearts were subjected to 20 min of anoxia, followed by 20 min of reperfusion. The basal contractile function was unaffected by HSD. However, HSD elevated the left ventricular end-diastolic pressure during reperfusion (23.1 ± 5.2 mmHg vs. 11.6 ± 1.4 mmHg; p < 0.05) and increased ectopic incidence period during reperfusion (208.8 ± 32.9s vs. 75.0 ± 7.8s; p < 0.05). In conclusion, sodium overload compromises cardiac function after reperfusion events, diminishes ventricular relaxation, and increases the severity of arrhythmias, suggesting a possible arrhythmogenic effect of HSD in the postnatal phases.


Asunto(s)
Arritmias Cardíacas , Daño por Reperfusión Miocárdica , Ratas Wistar , Animales , Ratas , Arritmias Cardíacas/etiología , Arritmias Cardíacas/fisiopatología , Masculino , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/fisiopatología , Diástole/fisiología , Cloruro de Sodio Dietético/efectos adversos , Frecuencia Cardíaca/fisiología
2.
Brain Behav ; 14(5): e3516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38702903

RESUMEN

BACKGROUND: High salt intake has been proposed as a risk factor for dementia. However, causal relationship between salt intake and dementia remains uncertain. PURPOSE: The aim of this study was to employ a mendelian randomization (MR) design to investigate the causal impact of salt intake on the risk of dementia. METHODS: Genome-wide association study (GWAS) data of exposures and outcomes (any dementia, cognitive performance, different types of dementia, Alzheimer's disease [AD], and Parkinson's disease) were obtained from the IEU database. MR estimates were generated though inverse-variance weighted model. MR-Egger, weighted median, and MR-Pleiotropy Residual Sum and Outlier (MR-PRESSO) method also used in our study. Sensitivity analyses included Cochran's Q test, MR-Egger intercept, MR-PRESSO global test and outlier test, leave-one-out analysis, and funnel plot assessment. RESULTS: Our MR analysis provided evidence of a causal association between high salt added to food and dementia (odds ratio [OR] = 1.73, 95% confidence interval [CI]: 1.21-2.49, and p = .003), dementia in AD (OR = 2.10, 95% CI: 1.15-3.83, and p = .015), and undefined dementia (OR = 2.61, 95% CI: 1.26-5.39, and p = .009). Higher salt added was also associated with increased risk of AD (OR = 1.80, 95% CI: 1.12-2.87, and p = .014) and lower cognitive performance (ß = -.133, 95% CI: -.229 to -.038, and p = .006). CONCLUSION: This study provides evidence suggesting that high salt intake is causally associated with an increased risk of developing dementia, including AD and undefined dementia, highlighting the potential importance of reducing salt consumption as a preventive measure.


Asunto(s)
Demencia , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Cloruro de Sodio Dietético , Humanos , Demencia/epidemiología , Demencia/genética , Demencia/etiología , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/administración & dosificación , Población Blanca/genética , Factores de Riesgo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/epidemiología
3.
Environ Geochem Health ; 46(6): 204, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695896

RESUMEN

The median urinary iodine concentration (UIC) of school-aged children has been commonly used as a surrogate to assess iodine status of a population including pregnant women. However, pregnant women have higher iodine requirements than children due to increased production of thyroid hormones. The aim of the study was to evaluate the iodine status of pregnant women and children as well as their household salt iodine concentration (SIC) in Quzhou, Zhejiang Province, China. Eligible pregnant women and children from all six counties of Quzhou in 2021 were recruited into the study. They were asked to complete a socio-demographic questionnaire and provide both a spot urine and a household table salt sample for the determination of UIC and SIC. A total of 629 pregnant women (mean age and gestation weeks of 29.6 years and 21.6 weeks, respectively) and 1273 school-aged children (mean age of 9 years and 49.8% of them were females) were included in the study. The overall median UIC of pregnant women and children in our sample was 127 (82, 193) µg/L and 222 (147, 327) µg/L, respectively, indicating sufficient iodine status in children but a risk of mild-to-moderate iodine deficiency in pregnant women. Distribution of iodine nutrition in children varied significantly according to their sex and age (P < 0.05). The rate of adequately household iodised salt samples (18-33 mg/kg) provided by pregnant women and children was 92.4% and 90.6%, respectively. In conclusion, our results indicated a risk of insufficient iodine status in pregnant population of China, but iodine sufficiency in school-aged children. Our data also suggested that median UIC of children may not be used as a surrogate to assess iodine status in pregnant women.


Asunto(s)
Yodo , Cloruro de Sodio Dietético , Humanos , Yodo/deficiencia , Yodo/orina , Yodo/análisis , Femenino , Embarazo , China/epidemiología , Niño , Masculino , Adulto , Cloruro de Sodio Dietético/análisis , Estado Nutricional
4.
Physiol Rep ; 12(10): e16046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38749925

RESUMEN

We have previously reported that the subfornical organ (SFO) does not contribute to the chronic hypertensive response to DOCA-salt in rats, and yet the organum vasculosum of the lamina terminalis (OVLT) plays a significant role in the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Since efferent fibers of the OVLT project to and through the median preoptic nucleus (MnPO), the present study was designed to test the hypothesis that the MnPO is necessary for DOCA-salt hypertension in the rat. Male Sprague-Dawley rats underwent SHAM (MnPOsham; n = 5) or electrolytic lesion of the MnPO (MnPOx; n = 7) followed by subsequent unilateral nephrectomy and telemetry instrumentation. After recovery and during the experimental protocol, rats consumed a 0.1% NaCl diet and 0.9% NaCl drinking solution. Mean arterial pressure (MAP) was recorded telemetrically 5 days before and 21 days after DOCA implantation (100 mg/rat; SQ). The chronic pressor response to DOCA was attenuated in MnPOx rats by Day 11 of treatment and continued such that MAP increased 25 ± 3 mmHg in MnPOsham rats by Day 21 of DOCA compared to 14 ± 3 mmHg in MnPOx rats. These results support the hypothesis that the MnPO is an important brain site of action and necessary for the full development of DOCA-salt hypertension in the rat.


Asunto(s)
Acetato de Desoxicorticosterona , Hipertensión , Área Preóptica , Ratas Sprague-Dawley , Animales , Masculino , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/etiología , Ratas , Cloruro de Sodio Dietético/efectos adversos , Presión Sanguínea/efectos de los fármacos
5.
Circ Res ; 134(10): 1234-1239, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723029

RESUMEN

The year 2024 marks the centennial of the initiation of the American Heart Association. Over the past 100 years, the American Heart Association has led groundbreaking discoveries in cardiovascular disease including salt sensitivity of blood pressure, which has been studied since the mid-1900s. Salt sensitivity of blood pressure is an important risk factor for cardiovascular events, but the phenotype remains unclear because of insufficient understanding of the underlying mechanisms and lack of feasible diagnostic tools. In honor of this centennial, we commemorate the initial discovery of salt sensitivity of blood pressure and chronicle the subsequent scientific discoveries and efforts to mitigate salt-induced cardiovascular disease with American Heart Association leading the way. We also highlight determinants of the pathophysiology of salt sensitivity of blood pressure in humans and recent developments in diagnostic methods and future prospects.


Asunto(s)
Presión Sanguínea , Hipertensión , Cloruro de Sodio Dietético , Animales , Humanos , American Heart Association/historia , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/etiología , Hipertensión/etiología , Hipertensión/historia , Hipertensión/fisiopatología , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/historia , Estados Unidos/epidemiología , Historia del Siglo XX , Historia del Siglo XXI
7.
Ann Intern Med ; 177(5): 643-655, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38588546

RESUMEN

BACKGROUND: Salt substitution is a simple yet increasingly promising strategy to improve cardiovascular outcomes. PURPOSE: To evaluate the long-term effects of salt substitution on cardiovascular outcomes. DATA SOURCES: PubMed, EMBASE, Cochrane CENTRAL, and CINAHL searched from inception to 23 August 2023. Trial registries, citation analysis, and hand-search were also done. STUDY SELECTION: Randomized controlled trials (RCTs) comparing provision of or advice to use a salt substitute with no intervention or use of regular salt among adults for 6 months or longer in total study duration. DATA EXTRACTION: Two authors independently screened articles, extracted data, and assessed risk of bias. Primary outcomes include mortality, major cardiovascular events (MACE), and adverse events at 6 months or greater. Secondary and post hoc outcomes include blood pressure, cause-specific mortality, and urinary excretion at 6 months or greater. Random-effects meta-analyses were done and certainty of effect estimates were assessed using GRADE (Grading of Recommendations Assessment, Development and Evaluation). DATA SYNTHESIS: Of the 16 included RCTs, 8 reported on primary outcomes. Most (n = 7 of 8) were done in China or Taiwan, 3 were done in residential facilities, and 7 included populations of older age (average 62 years) and/or with higher-than-average cardiovascular risk. In this population, salt substitute may reduce risk for all-cause mortality (6 RCTs; 27 710 participants; rate ratio [RR], 0.88 [95% CI, 0.82 to 0.93]; low certainty) and cardiovascular mortality (4 RCTs; 25 050 participants; RR, 0.83 [CI, 0.73 to 0.95]; low certainty). Salt substitute may result in a slight reduction in MACE (3 RCTs; 23 215 participants; RR, 0.85 [CI, 0.71 to 1.00]; very low certainty), with very low-certainty evidence of serious adverse events (6 RCTs; 27 995 participants; risk ratio, 1.04 [CI, 0.87 to 1.25]). LIMITATIONS: The evidence base is dominated by a single, large RCT. Most RCTs were from China or Taiwan and involved participants with higher-than-average cardiovascular risk; therefore, generalizability to other populations is very limited. CONCLUSION: Salt substitution may reduce all-cause or cardiovascular mortality, but the evidence for reducing cardiovascular events and for not increasing serious adverse events is uncertain, particularly for a Western population. The certainty of evidence is higher among populations at higher cardiovascular risk and/or following a Chinese diet. PRIMARY FUNDING SOURCE: National Health and Medical Research Council. (PROSPERO: CRD42022327566).


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/prevención & control , Enfermedades Cardiovasculares/mortalidad , Dieta Hiposódica , Cloruro de Sodio Dietético/administración & dosificación , Cloruro de Sodio Dietético/efectos adversos , Presión Sanguínea/efectos de los fármacos , Ensayos Clínicos Controlados Aleatorios como Asunto , Hipertensión
8.
Int J Mol Sci ; 25(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38673987

RESUMEN

Sodium chloride (NaCl) activates Th17 and dendritic cells in hypertension by stimulating serum/glucocorticoid kinase 1 (SGK1), a sodium sensor. Memory T cells also play a role in hypertension by infiltrating target organs and releasing proinflammatory cytokines. We tested the hypothesis that the role of T cell SGK1 extends to memory T cells. We employed mice with a T cell deletion of SGK1, SGK1fl/fl × tgCD4cre mice, and used SGK1fl/fl mice as controls. We treated the mice with L-NAME (0.5 mg/mL) for 2 weeks and allowed a 2-week washout interval, followed by a 3-week high-salt (HS) diet (4% NaCl). L-NAME/HS significantly increased blood pressure and memory T cell accumulation in the kidneys and bone marrow of SGK1fl/fl mice compared to knockout mice on L-NAME/HS or groups on a normal diet (ND). SGK1fl/fl mice exhibited increased albuminuria, renal fibrosis, and interferon-γ levels after L-NAME/HS treatment. Myography demonstrated endothelial dysfunction in the mesenteric arterioles of SGK1fl/fl mice. Bone marrow memory T cells were adoptively transferred from either mouse strain after L-NAME/HS administration to recipient CD45.1 mice fed the HS diet for 3 weeks. Only the mice that received cells from SGK1fl/fl donors exhibited increased blood pressure and renal memory T cell infiltration. Our data suggest a new therapeutic target for decreasing hypertension-specific memory T cells and protecting against hypertension.


Asunto(s)
Hipertensión , Proteínas Inmediatas-Precoces , NG-Nitroarginina Metil Éster , Proteínas Serina-Treonina Quinasas , Cloruro de Sodio Dietético , Animales , Masculino , Ratones , Presión Sanguínea/efectos de los fármacos , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Hipertensión/patología , Proteínas Inmediatas-Precoces/metabolismo , Proteínas Inmediatas-Precoces/genética , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , NG-Nitroarginina Metil Éster/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Cloruro de Sodio Dietético/efectos adversos , Linfocitos T/metabolismo , Linfocitos T/inmunología
10.
11.
Sci Rep ; 14(1): 7752, 2024 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-38565858

RESUMEN

Understanding the impact of greenhouse gas (GHG) emissions and carbon stock is crucial for effective climate change assessment and agroecosystem management. However, little is known about the effects of organic amendments on GHG emissions and dynamic changes in carbon stocks in salt-affected soils. We conducted a pot experiment with four treatments including control (only fertilizers addition), biochar, vermicompost, and compost on non-saline and salt-affected soils, with the application on a carbon equivalent basis under wheat crop production. Our results revealed that the addition of vermicompost significantly increased soil organic carbon content by 18% in non-saline soil and 52% in salt-affected soil compared to the control leading to improvements in crop productivity i.e., plant dry biomass production by 57% in non-saline soil with vermicompost, while 56% with the same treatment in salt-affected soil. The grain yield was also noted 44 and 50% more with vermicompost treatment in non-saline and salt-affected soil, respectively. Chlorophyll contents were observed maximum with vermicompost in non-saline (24%), and salt-affected soils (22%) with same treatments. Photosynthetic rate (47% and 53%), stomatal conductance (60% and 12%), and relative water contents (38% and 27%) were also noted maximum with the same treatment in non-saline and salt-affected soils, respectively. However, the highest carbon dioxide emissions were observed in vermicompost- and compost-treated soils, leading to an increase in emissions of 46% in non-saline soil and 74% in salt-affected soil compared to the control. The compost treatment resulted in the highest nitrous oxide emissions, with an increase of 57% in non-saline soil and 62% in salt-affected soil compared to the control. In saline and non-saline soils treated with vermicompost, the global warming potential was recorded as 267% and 81% more than the control, respectively. All treatments, except biochar in non-saline soil, showed increased net GHG emissions due to organic amendment application. However, biochar reduced net emissions by 12% in non-saline soil. The application of organic amendments increased soil organic carbon content and crop yield in both non-saline and salt-affected soils. In conclusion, biochar is most effective among all tested organic amendments at increasing soil organic carbon content in both non-saline and salt-affected soils, which could have potential benefits for soil health and crop production.


Asunto(s)
Compostaje , Gases de Efecto Invernadero , Suelo , Agricultura/métodos , Triticum , Carbono , Carbón Orgánico , Cloruro de Sodio , Cloruro de Sodio Dietético , Óxido Nitroso/análisis , Dióxido de Carbono/análisis
12.
Eur J Endocrinol ; 190(4): K47-K52, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38557596

RESUMEN

Accumulating evidence links osteoporosis and dietary salt consumption. Primary aldosteronism (PA) is a model disease with increased dietary salt intake and constitutes an independent risk factor for osteoporosis. We, thus, assessed whether a short-term moderate reduction in salt intake in PA results in detectable osteoanabolic effects. Forty-one patients with PA on stable mineralocorticoid receptor antagonist therapy were subjected to a 12-week salt restriction. Serum and urinary electrolytes, markers of bone turnover, and a 15 steroids plasma profile were registered. After 12 weeks, urinary calcium and phosphate decreased, while plasma testosterone, serum phosphate, and bone alkaline phosphatase (BAP) all increased significantly. Longitudinal changes in BAP were independently correlated with changes in serum phosphate, parathyroid hormone, and urinary calcium in multivariate analysis. Salt restriction in PA limits urinary calcium and phosphate losses and may confer favorable osteoanabolic effects. Our findings suggest that salt restriction should be considered in patients with PA to improve bone health.


Asunto(s)
Hiperaldosteronismo , Osteoporosis , Humanos , Cloruro de Sodio Dietético , Calcio , Fosfatos , Hormona Paratiroidea
13.
Sci Rep ; 14(1): 7970, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575652

RESUMEN

Dietary salt has been associated with cognitive impairment in mice, possibly related to damaged synapses and tau hyperphosphorylation. However, the mechanism underlying how dietary salt causes cognitive dysfunction remains unclear. In our study, either a high-salt (8%) or normal diet (0.5%) was used to feed C57BL/6 mice for three months, and N2a cells were cultured in normal medium, NaCl medium (80 mM), or NaCl (80 mM) + Liraglutide (200 nM) medium for 48 h. Cognitive function in mice was assessed using the Morris water maze and shuttle box test, while anxiety was evaluated by the open field test (OPT). Western blotting (WB), immunofluorescence, and immunohistochemistry were utilized to assess the level of Glucagon-like Peptide-1 receptor (GLP-1R) and mTOR/p70S6K pathway. Electron microscope and western blotting were used to evaluate synapse function and tau phosphorylation. Our findings revealed that a high salt diet (HSD) reduced the level of synaptophysin (SYP) and postsynaptic density 95 (PSD95), resulting in significant synaptic damage. Additionally, hyperphosphorylation of tau at different sites was detected. The C57BL/6 mice showed significant impairment in learning and memory function compared to the control group, but HSD did not cause anxiety in the mice. In addition, the level of GLP-1R and autophagy flux decreased in the HSD group, while the level of mTOR/p70S6K was upregulated. Furthermore, liraglutide reversed the autophagy inhibition of N2a treated with NaCl. In summary, our study demonstrates that dietary salt inhibits the GLP-1R/mTOR/p70S6K pathway to inhibit autophagy and induces synaptic dysfunction and tau hyperphosphorylation, eventually impairing cognitive dysfunction.


Asunto(s)
Disfunción Cognitiva , Liraglutida , Ratones , Animales , Liraglutida/farmacología , Cloruro de Sodio Dietético/efectos adversos , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Cloruro de Sodio/farmacología , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Ratones Endogámicos C57BL , Transducción de Señal , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Cognición
14.
Int J Mol Sci ; 25(7)2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38612913

RESUMEN

Salt is frequently introduced in ecosystems, where it acts as a pollutant. This study examined how changes in salinity affect the survival and development of zebrafish from the two-cell to the blastocyst stage and from the blastocyst to the larval stage. Control zebrafish embryos were cultured in E3 medium containing 5 mM Sodium Chloride (NaCl), 0.17 mM Potassium Chloride (KCL), 0.33 mM Calcium Chloride (CaCl2), and 0.33 mM Magnesium Sulfade (MgSO4). Experiments were conducted using increasing concentrations of each individual salt at 5×, 10×, 50×, and 100× the concentration found in E3 medium. KCL, CaCl2, and MgSO4 did not result in lethal abnormalities and did not affect early embryo growth at any of the concentrations tested. Concentrations of 50× and 100× NaCl caused embryonic death in both stages of development. Concentrations of 5× and 10× NaCl resulted in uninflated swim bladders in 12% and 65% of larvae, compared to 4.2% of controls, and caused 1654 and 2628 genes to be differentially expressed in blastocysts, respectively. The ATM signaling pathway was affected, and the Sonic Hedgehog pathway genes Shh and Ptc1 implicated in swim bladder development were downregulated. Our findings suggest that increased NaCl concentrations may alter gene expression and cause developmental abnormalities in animals found in affected ecosystems.


Asunto(s)
Proteínas Hedgehog , Perciformes , Animales , Proteínas Hedgehog/genética , Cloruro de Sodio/farmacología , Agua , Pez Cebra/genética , Cloruro de Calcio , Ecosistema , Cloruro de Sodio Dietético , Larva/genética , Expresión Génica
15.
Nutrients ; 16(7)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38612961

RESUMEN

Sodium, although essential for life, is a key factor in changes in vascular function and cardiovascular disease when consumed in excess. Sarcocornia spp., a halophyte plant with many nutritional benefits, presents itself as a promising substitute for the consumption of purified salt. Matrix metalloproteinases (MMPs) 2 and 9 are widely studied due to their action in physiological processes and as biomarkers at the diagnostic level due to their increased expression in inflammatory processes. This study aimed to evaluate whether replacing salt with Sarcocornia perennis (S. perennis) powder in healthy young people leads to an improvement in biochemical profiles and the attenuation of MMP-2 and MMP-9 activity. In the present study, 30 participants were randomized into a control group that consumed salt and an intervention group that replaced salt with powdered S. perennis. The evaluation of the biochemical parameters was carried out by the spectrophotometry method, and the evaluation of MMP activity was carried out by zymography. A significant decrease was observed in the intervention group in total cholesterol, high-density lipoprotein cholesterol (HDL-c), and creatinine (p-value ≤ 0.05), along with lower but not significantly different mean values of triglycerides. Regarding MMP activity after the intervention, a lower mean value was observed for MMP-9 activity, with there being higher mean values for MMP-2 activity, both with p-values ≥ 0.05. The results confirmed that the consumption of S. perennis is a beneficial choice for health regarding the lipid profile. The evaluation of MMP activity indicated the potential of S. perennis in the regulation of MMP-9 activity in healthy individuals, along with the need for the further study of these proteases in individuals with pathologies.


Asunto(s)
Gelatinasas , Metaloproteinasa 9 de la Matriz , Humanos , Adolescente , Metaloproteinasa 2 de la Matriz , Cloruro de Sodio , Cloruro de Sodio Dietético , HDL-Colesterol , Endopeptidasas
16.
Nutrients ; 16(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38612976

RESUMEN

The gut microbiota is a dynamic ecosystem that plays a pivotal role in maintaining host health. The perturbation of these microbes has been linked to several health conditions. Hence, they have emerged as promising targets for understanding and promoting good health. Despite the growing body of research on the role of sodium in health, its effects on the human gut microbiome remain under-explored. Here, using nutrition and metagenomics methods, we investigate the influence of dietary sodium intake and alterations of the human gut microbiota. We found that a high-sodium diet (HSD) altered the gut microbiota composition with a significant reduction in Bacteroides and inverse increase in Prevotella compared to a low-sodium diet (LSD). However, there is no clear distinction in the Firmicutes/Bacteroidetes (F/B) ratio between the two diet types. Metabolic pathway reconstruction revealed the presence of sodium reabsorption genes in the HSD, but not LSD. Since it is currently difficult in microbiome studies to confidently associate the F/B ratio with what is considered healthy (e.g., low sodium) or unhealthy (e.g., high sodium), we suggest that the use of a genus-based ratio such as the Bacteroides/Prevotella (B/P) ratio may be more beneficial for the application of microbiome studies in health.


Asunto(s)
Microbiota , Cloruro de Sodio Dietético , Humanos , Bacteroides , Bacteroidetes , Firmicutes , Prevotella , Sodio
17.
PLoS One ; 19(4): e0299025, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38640102

RESUMEN

BACKGROUND: The evaluation of surveillance systems has been recommended by the World Health Organization (WHO) to identify the performance and areas for improvement. Universal salt iodization (USI) as one of the surveillance systems in Tanzania needs periodic evaluation for its optimal function. This study aimed at evaluating the universal salt iodization (USI) surveillance system in Tanzania from January to December 2021 to find out if the system meets its intended objectives by evaluating its attributes as this was the first evaluation of the USI surveillance system since its establishment in 2010. The USI surveillance system is key for monitoring the performance towards the attainment of universal salt iodization (90%). METHODOLOGY: This evaluation was guided by the Center for Disease Control Guidelines for Evaluating Public Health Surveillance Systems, (MMWR) to evaluate USI 2021 data. The study was conducted in Kigoma region in March 2022. Both Purposive and Convenient sampling was used to select the region, district, and ward for the study. The study involved reviewing documents used in the USI system and interviewing the key informants in the USI program. Data analysis was done by Microsoft Excel and presented in tables and graphs. RESULTS: A total of 1715 salt samples were collected in the year 2021 with 279 (16%) of non-iodized salt identified. The majority of the system attributes 66.7% had a good performance with a score of three, 22.2% had a moderate performance with a score of two and one attribute with poor performance with a score of one. Data quality, completeness and sensitivity were 100%, acceptability 91.6%, simplicity 83% were able to collect data on a single sample in < 2 minutes, the system stability in terms of performance was >75% and the usefulness of the system had poor performance. CONCLUSION: Although the system attributes were found to be working overall well, for proper surveillance of the USI system, the core attributes need to be strengthened. Key variables that measure the system performance must be included from the primary data source and well-integrated with the Local Government (district and regions) to Ministry of Health information systems.


Asunto(s)
Yodo , Tanzanía/epidemiología , Yodo/análisis , Cloruro de Sodio Dietético/análisis
18.
J Health Popul Nutr ; 43(1): 53, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650019

RESUMEN

The need to foster successful aging has intensified with the aging of the global population. This study aimed to assess the knowledge, attitudes, and practices (KAP) concerning dietary salt consumption and to investigate the correlations between sociodemographic variables and salt-related KAP. A structured interview was administered to a cohort of 200 older adults in Abha City, Saudi Arabia, recruited through a convenience sampling approach. The evaluation of salt-related KAP revealed widespread low knowledge (91.5%) as participants scored less than 3, negative attitudes (85.5%) scored less than 12, and predominantly unsatisfactory practices (69.5%) with scores less than 26. Noteworthy differences emerged between participants with poor overall KAP (81.5%) and those with good KAP (18.5%). Significantly weak negative correlations were found between age (r=-0.212), marital status (-0.236), and body mass index (-0.243) with overall KAP. Further examination revealed a significantly weak positive correlation between attitude and practice (r = 0.141). KAP scores show a highly significant positive correlation with overall KAP scores (r = 0.169, 0.352, 0.969). The uncovered correlations contribute to a valuable understanding of the complex dynamics surrounding salt-related KAP. This understanding guides the design of targeted interventions, such as health education programs, promoting successful aging and public health outcomes.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Cloruro de Sodio Dietético , Humanos , Arabia Saudita , Masculino , Femenino , Cloruro de Sodio Dietético/administración & dosificación , Anciano , Persona de Mediana Edad , Estudios Transversales , Índice de Masa Corporal , Encuestas y Cuestionarios , Anciano de 80 o más Años
19.
Food Res Int ; 185: 114248, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38658067

RESUMEN

Sodium is one of the essential additives in meat processing, but excessive sodium intake may increase risk of hypertension and cardiovascular disease. However, reducing salt content while preserving its preservative effect, organoleptic properties, and technological characteristics poses challenges. In this review, the mechanism of salt reduction of umami substances was introduced from the perspective of gustation-taste interaction, and the effects of the addition of traditional umami substances (amino acids, nucleotides, organic acids(OAs)) and natural umami ingredients (mushrooms, seaweeds, tomatoes, soybeans, tea, grains) on the sensory properties of the meat with reduced-salt contents were summarized. In addition, the impacts of taste enhancers on eating quality (color, sensory, textural characteristics, and water-holding capacity (WHC)), and processing quality (lipid oxidation, pH) of meat products (MP) and their related mechanisms were also discussed. Among them, natural umami ingredients exhibit distinct advantages over traditional umami substances in terms of enhancing quality and nutritional value. On the basis of salt reduction, natural umami ingredients improve the flavor, texture, WHC and antioxidant capacity. This comprehensive review may provide the food industry with a theoretical foundation for mitigating salt consumption through the utilization of umami substances and natural ingredients.


Asunto(s)
Productos de la Carne , Cloruro de Sodio Dietético , Gusto , Productos de la Carne/análisis , Humanos , Aromatizantes , Animales , Manipulación de Alimentos/métodos , Valor Nutritivo
20.
Elife ; 122024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38573740

RESUMEN

Salt (NaCl), is an essential nutrient for survival, while excessive salt can be detrimental. In the fruit fly, Drosophila melanogaster, internal taste organs in the pharynx are critical gatekeepers impacting the decision to accept or reject a food. Currently, our understanding of the mechanism through which pharyngeal gustatory receptor neurons (GRNs) sense high salt are rudimentary. Here, we found that a member of the ionotropic receptor family, Ir60b, is expressed exclusively in a pair of GRNs activated by high salt. Using a two-way choice assay (DrosoX) to measure ingestion volume, we demonstrate that IR60b and two co-receptors IR25a and IR76b are required to prevent high salt consumption. Mutants lacking external taste organs but retaining the internal taste organs in the pharynx exhibit much higher salt avoidance than flies with all taste organs but missing the three IRs. Our findings highlight the vital role for IRs in a pharyngeal GRN to control ingestion of high salt.


Asunto(s)
Proteínas de Drosophila , Cloruro de Sodio , Animales , Drosophila melanogaster , Faringe , Cloruro de Sodio Dietético , Drosophila , Proteínas de Drosophila/genética , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA