Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.392
Filtrar
1.
BMC Microbiol ; 24(1): 260, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38997651

RESUMEN

Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.


Asunto(s)
Enterococcus faecalis , Microbioma Gastrointestinal , Levodopa , Compuestos Orgánicos Volátiles , Levodopa/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Enterococcus faecalis/metabolismo , Humanos , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Clostridium/metabolismo , Clostridium/clasificación , Espectrometría de Masas , Biotransformación
2.
Microb Biotechnol ; 17(6): e14502, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38888486

RESUMEN

Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.


Asunto(s)
Butiratos , Fermentación , Ingeniería Metabólica , Butiratos/metabolismo , Ingeniería Metabólica/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Clostridium/metabolismo , Clostridium/genética , Lipasa/metabolismo , Lipasa/genética , Aciltransferasas/genética , Aciltransferasas/metabolismo , Microbiología Industrial/métodos , Biocombustibles
3.
ACS Synth Biol ; 13(6): 1893-1905, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38825826

RESUMEN

Gas-fermenting Clostridium species hold tremendous promise for one-carbon biomanufacturing. To unlock their full potential, it is crucial to unravel and optimize the intricate regulatory networks that govern these organisms; however, this aspect is currently underexplored. In this study, we employed pooled CRISPR interference (CRISPRi) screening to uncover a wide range of functional transcription factors (TFs) in Clostridium ljungdahlii, a representative species of gas-fermenting Clostridium, with a special focus on TFs associated with the utilization of carbon resources. Among the 425 TF candidates, we identified 75 and 68 TF genes affecting the heterotrophic and autotrophic growth of C. ljungdahlii, respectively. We focused our attention on two of the screened TFs, NrdR and DeoR, and revealed their pivotal roles in the regulation of deoxyribonucleoside triphosphates (dNTPs) supply, carbon fixation, and product synthesis in C. ljungdahlii, thereby influencing the strain performance in gas fermentation. Based on this, we proceeded to optimize the expression of deoR in C. ljungdahlii by adjusting its promoter strength, leading to an improved growth rate and ethanol synthesis of C. ljungdahlii when utilizing syngas. This study highlights the effectiveness of pooled CRISPRi screening in gas-fermenting Clostridium species, expanding the horizons for functional genomic research in these industrially important bacteria.


Asunto(s)
Sistemas CRISPR-Cas , Clostridium , Fermentación , Factores de Transcripción , Clostridium/genética , Clostridium/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Sistemas CRISPR-Cas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regiones Promotoras Genéticas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Ingeniería Metabólica/métodos , Gases/metabolismo
4.
Curr Microbiol ; 81(8): 244, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935285

RESUMEN

A novel thermotolerant caproic acid-producing bacterial strain, Clostridium M1NH, was successfully isolated from sewage sludge. Ethanol and acetic acid at a molar ratio of 4:1 proved to be the optimal substrates, yielding a maximum caproic acid production of 3.5 g/L. Clostridium M1NH exhibited remarkable tolerance to high concentrations of ethanol (up to 5% v/v), acetic acid (up to 5% w/v), and caproic acid (up to 2% w/v). The strain also demonstrated a wide pH tolerance range (pH 5.5-7.5) and an elevated temperature optimum between 35 and 40 °C. Phylogenetic analysis based on 16S rRNA gene sequences revealed that Clostridium M1NH shares a 98% similarity with Clostridium luticellarii DSM 29923 T. The robustness of strain M1NH and its efficient caproic acid production from low-cost substrates highlight its potential for sustainable bio-based chemical production. The maximum caproic acid yield achieved by Clostridium M1NH was 1.6-fold higher than that reported for C. kluyveri under similar fermentation conditions. This study opens new avenues for valorizing waste streams and advancing a circular economy model in the chemical industry.


Asunto(s)
Ácido Acético , Clostridium , Etanol , Fermentación , Filogenia , ARN Ribosómico 16S , Ácido Acético/metabolismo , Etanol/metabolismo , Clostridium/genética , Clostridium/metabolismo , Clostridium/clasificación , ARN Ribosómico 16S/genética , Termotolerancia , Aguas del Alcantarillado/microbiología , Concentración de Iones de Hidrógeno , Caprilatos/metabolismo , Temperatura , Caproatos
5.
Molecules ; 29(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893534

RESUMEN

Electrocatalytic CO2 reduction to CO and formate can be coupled to gas fermentation with anaerobic microorganisms. In combination with a competing hydrogen evolution reaction in the cathode in aqueous medium, the in situ, electrocatalytic produced syngas components can be converted by an acetogenic bacterium, such as Clostridium ragsdalei, into acetate, ethanol, and 2,3-butanediol. In order to study the simultaneous conversion of CO, CO2, and formate together with H2 with C. ragsdalei, fed-batch processes were conducted with continuous gassing using a fully controlled stirred tank bioreactor. Formate was added continuously, and various initial CO partial pressures (pCO0) were applied. C. ragsdalei utilized CO as the favored substrate for growth and product formation, but below a partial pressure of 30 mbar CO in the bioreactor, a simultaneous CO2/H2 conversion was observed. Formate supplementation enabled 20-50% higher growth rates independent of the partial pressure of CO and improved the acetate and 2,3-butanediol production. Finally, the reaction conditions were identified, allowing the parallel CO, CO2, formate, and H2 consumption with C. ragsdalei at a limiting CO partial pressure below 30 mbar, pH 5.5, n = 1200 min-1, and T = 32 °C. Thus, improved carbon and electron conversion is possible to establish efficient and sustainable processes with acetogenic bacteria, as shown in the example of C. ragsdalei.


Asunto(s)
Reactores Biológicos , Butileno Glicoles , Dióxido de Carbono , Monóxido de Carbono , Clostridium , Fermentación , Formiatos , Hidrógeno , Formiatos/metabolismo , Formiatos/química , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Monóxido de Carbono/metabolismo , Hidrógeno/metabolismo , Dióxido de Carbono/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/química , Gases/metabolismo , Gases/química , Etanol/metabolismo
6.
Biotechnol Adv ; 73: 108379, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38754796

RESUMEN

Biological production of hydrogen has a tremendous potential as an environmentally sustainable technology to generate a clean fuel. Among the different available methods to produce biohydrogen, dark fermentation features the highest productivity and can be used as a means to dispose of organic waste biomass. Within this approach, Clostridia have the highest theoretical H2 production yield. Nonetheless, most strains show actual yields far lower than the theoretical maximum: improving their efficiency becomes necessary for achieving cost-effective fermentation processes. This review aims at providing a survey of the metabolic network involved in H2 generation in Clostridia and strategies used to improve it through metabolic engineering. Together with current achievements, a number of future perspectives to implement these results will be illustrated.


Asunto(s)
Clostridium , Fermentación , Hidrógeno , Ingeniería Metabólica , Hidrógeno/metabolismo , Ingeniería Metabólica/métodos , Clostridium/metabolismo , Clostridium/genética , Redes y Vías Metabólicas , Biocombustibles
7.
Bioresour Technol ; 403: 130853, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38759895

RESUMEN

This study introduces a two-stage hydrogen production enhancement mechanism using natural particle additives, with a focus on the effects of thermally modified maifanite (TMM) and pH self-regulation on dark fermentation (DF). Initial single-factor experiments identified preliminary parameters for the addition of TMM, which were further optimized using a Box-Behnken design. The established optimal conditions which include mass of 5.5 g, particle size of 120 mesh, and temperature of 324 °C, resulted in a 28.7 % increase in cumulative hydrogen yield (CHY). During the primary hydrogen production stage, TMM significantly boosted the growth and activity of Clostridium_sensu_stricto_1, enhancing hydrogen output. Additionally, a pH self-regulating phenomenon was observed, capable of initiating secondary hydrogen production and further augmenting CHY. These findings presented a novel and efficient approach for optimizing biohydrogen production, offering significant implications for future research and application in sustainable energy technologies.


Asunto(s)
Fermentación , Hidrógeno , Zea mays , Hidrógeno/metabolismo , Zea mays/química , Concentración de Iones de Hidrógeno , Clostridium/metabolismo , Temperatura
8.
Bioresour Technol ; 403: 130881, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788806

RESUMEN

Carbon dioxide (CO2) plays a crucial role in carbon chain elongation with ethanol serving as an electron donor. In this study, the impacts of various carbonates on CO2 concentration, hexanoic acid production, and microbial communities during ethanol-butyric acid fermentation were explored. The results showed that the addition of MgCO3 provided sustained inorganic carbon and facilitated interspecific electron transfer, thereby increasing hexanoic acid yield by 58%. MgCO3 and NH4HCO3 inhibited the excessive ethanol oxidation and decreased the yield of acetic acid by 51% and 42%, respectively. The yields of hexanoic acid and acetic acid in the CaCO3 group increased by 19% and 15%, respectively. The NaHCO3 group exhibited high headspace CO2 concentration, promoting acetogenic bacteria enrichment while reducing the abundance of Clostridium_sensu_stricto_12. The batch addition of NaHCO3 accelerated the synthesis of hexanoic acid and increased its production by 26%. The relative abundance of Clostridium_sensus_stricto_12 was positively correlated with hexanoic acid production.


Asunto(s)
Caproatos , Carbono , Fermentación , Carbono/farmacología , Anaerobiosis , Caproatos/metabolismo , Etanol/metabolismo , Dióxido de Carbono/farmacología , Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Ácido Butírico/metabolismo
9.
Nat Commun ; 15(1): 4276, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38769296

RESUMEN

Alterations in gut microbiota composition are suggested to contribute to cardiometabolic diseases, in part by producing bioactive molecules. Some of the metabolites are produced by very low abundant bacterial taxa, which largely have been neglected due to limits of detection. However, the concentration of microbially produced metabolites from these taxa can still reach high levels and have substantial impact on host physiology. To explore this concept, we focused on the generation of secondary bile acids by 7α-dehydroxylating bacteria and demonstrated that addition of a very low abundant bacteria to a community can change the metabolic output dramatically. We show that Clostridium scindens converts cholic acid into the secondary bile acid deoxycholic acid (DCA) very efficiently even though the abundance of C. scindens is low, but still detectable by digital droplet PCR. We also show that colonization of germ-free female mice with a community containing C. scindens induces DCA production and affects host metabolism. Finally, we show that DCA correlates with impaired glucose metabolism and a worsened lipid profile in individuals with type 2 diabetes, which implies that this metabolic pathway may contribute to the development of cardiometabolic disease.


Asunto(s)
Ácido Desoxicólico , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Glucosa , Ácido Desoxicólico/metabolismo , Animales , Microbioma Gastrointestinal/fisiología , Femenino , Glucosa/metabolismo , Ratones , Humanos , Diabetes Mellitus Tipo 2/microbiología , Diabetes Mellitus Tipo 2/metabolismo , Ratones Endogámicos C57BL , Clostridium/metabolismo , Clostridium/genética , Ácido Cólico/metabolismo , Masculino
10.
Bioelectrochemistry ; 158: 108724, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38714063

RESUMEN

Microbial conversion of CO2 to multi-carbon compounds such as acetate and butyrate is a promising valorisation technique. For those reactions, the electrochemical supply of hydrogen to the biocatalyst is a viable approach. Earlier we have shown that trace metals from microbial growth media spontaneously form in situ electro-catalysts for hydrogen evolution. Here, we show biocompatibility with the successful integration of such metal mix-based HER catalyst for immediate start-up of microbial acetogenesis (CO2 to acetate). Also, n-butyrate formation started fast (after twenty days). Hydrogen was always produced in excess, although productivity decreased over the 36 to 50 days, possibly due to metal leaching from the cathode. The HER catalyst boosted microbial productivity in a two-step microbial community bioprocess: acetogenesis by a BRH-c20a strain and acetate elongation to n-butyrate by Clostridium sensu stricto 12 (related) species. These findings provide new routes to integrate electro-catalysts and micro-organisms showing respectively bio and electrochemical compatibility.


Asunto(s)
Hidrógeno , Hidrógeno/química , Hidrógeno/metabolismo , Catálisis , Metales/química , Acetatos/química , Acetatos/metabolismo , Clostridium/metabolismo , Electrodos , Materiales Biocompatibles/química , Fuentes de Energía Bioeléctrica/microbiología
11.
J Appl Microbiol ; 135(5)2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749675

RESUMEN

AIMS: In previous studies, it was demonstrated that co-culturing Clostridium pasteurianum and Geobacter sulfurreducens triggers a metabolic shift in the former during glycerol fermentation. This shift, attributed to interspecies electron transfer and the exchange of other molecules, enhances the production of 1,3-propanediol at the expense of the butanol pathway. The aim of this investigation is to examine the impact of fumarate, a soluble compound usually used as an electron acceptor for G. sulfurreducens, in the metabolic shift previously described in C. pasteurianum. METHODS AND RESULTS: Experiments were conducted by adding along with glycerol, acetate, and different quantities of fumarate in co-cultures of G. sulfurreducens and C. pasteurianum. A metabolic shift was exhibited in all the co-culture conditions. This shift was more pronounced at higher fumarate concentrations. Additionally, we observed G. sulfurreducens growing even in the absence of fumarate and utilizing small amounts of this compound as an electron donor rather than an electron acceptor in the co-cultures with high fumarate addition. CONCLUSIONS: This study provided evidence that interspecies electron transfer continues to occur in the presence of a soluble electron acceptor, and the metabolic shift can be enhanced by promoting the growth of G. sulfurreducens.


Asunto(s)
Clostridium , Fermentación , Fumaratos , Geobacter , Geobacter/metabolismo , Geobacter/crecimiento & desarrollo , Fumaratos/metabolismo , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Transporte de Electrón , Glicerol/metabolismo , Técnicas de Cocultivo , Glicoles de Propileno/metabolismo
12.
Anaerobe ; 87: 102855, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614289

RESUMEN

OBJECTIVES: The objective of this study was to investigate the effects of medium composition on CO fermentation by Clostridium carboxidivorans. The focus was to reduce the medium cost preserving acceptable levels of solvent production. METHODS: Yeast extract (YE) concentration was set in the range of 0-3 g/L. Different reducing agents were investigated, including cysteine-HCl 0.6 g/L, pure cysteine 0.6 g/L, sodium sulphide (Na2S) 0.6 g/L, cysteine-sodium sulphide 0.6 g/L and cysteine-sodium sulphide 0.72 g/L. The concentration of the metal solution was decreased down to 25 % of the standard value. Fermentation tests were also carried out with and without tungsten or selenium. RESULTS: The results demonstrated that under optimized conditions, namely yeast extract (YE) concentration set at 1 g/L, pure cysteine as the reducing agent and trace metal concentration reduced to 75 % of the standard value, reasonable solvent production was achieved in less than 150 h. Under these operating conditions, the production levels were found to be 1.39 g/L of ethanol and 0.27 g/L of butanol. Furthermore, the study revealed that selenium was not necessary for C. carboxidivorans fermentation, whereas the presence of tungsten played a crucial role in both cell growth and solvent production. CONCLUSIONS: The optimization of the medium composition in CO fermentation by Clostridium carboxidivorans is crucial for cost-effective solvent production. Tuning the yeast extract (YE) concentration, using pure cysteine as the reducing agent and reducing trace metal concentration contribute to reasonable solvent production within a relatively short fermentation period. Tungsten is essential for cell growth and solvent production, while selenium is not required.


Asunto(s)
Reactores Biológicos , Clostridium , Medios de Cultivo , Fermentación , Clostridium/metabolismo , Clostridium/crecimiento & desarrollo , Medios de Cultivo/química , Reactores Biológicos/microbiología , Monóxido de Carbono/metabolismo , Etanol/metabolismo , Selenio/metabolismo , Butanoles/metabolismo , Tungsteno/metabolismo
13.
Bioresour Technol ; 399: 130647, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561152

RESUMEN

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Asunto(s)
Caproatos , Clostridium , Fermentación , Anaerobiosis , Caproatos/metabolismo , Clostridium/metabolismo , Reactores Biológicos
14.
Microb Cell Fact ; 23(1): 119, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659027

RESUMEN

BACKGROUND: Clostridium spp. has demonstrated therapeutic potential in cancer treatment through intravenous or intratumoral administration. This approach has expanded to include non-pathogenic clostridia for the treatment of various diseases, underscoring the innovative concept of oral-spore vaccination using clostridia. Recent advancements in the field of synthetic biology have significantly enhanced the development of Clostridium-based bio-therapeutics. These advancements are particularly notable in the areas of efficient protein overexpression and secretion, which are crucial for the feasibility of oral vaccination strategies. Here, we present two examples of genetically engineered Clostridium candidates: one as an oral cancer vaccine and the other as an antiviral oral vaccine against SARS-CoV-2. RESULTS: Using five validated promoters and a signal peptide derived from Clostridium sporogenes, a series of full-length NY-ESO-1/CTAG1, a promising cancer vaccine candidate, expression vectors were constructed and transformed into C. sporogenes and Clostridium butyricum. Western blotting analysis confirmed efficient expression and secretion of NY-ESO-1 in clostridia, with specific promoters leading to enhanced detection signals. Additionally, the fusion of a reported bacterial adjuvant to NY-ESO-1 for improved immune recognition led to the cloning difficulties in E. coli. The use of an AUU start codon successfully mitigated potential toxicity issues in E. coli, enabling the secretion of recombinant proteins in C. sporogenes and C. butyricum. We further demonstrate the successful replacement of PyrE loci with high-expression cassettes carrying NY-ESO-1 and adjuvant-fused NY-ESO-1, achieving plasmid-free clostridia capable of secreting the antigens. Lastly, the study successfully extends its multiplex genetic manipulations to engineer clostridia for the secretion of SARS-CoV-2-related Spike_S1 antigens. CONCLUSIONS: This study successfully demonstrated that C. butyricum and C. sporogenes can produce the two recombinant antigen proteins (NY-ESO-1 and SARS-CoV-2-related Spike_S1 antigens) through genetic manipulations, utilizing the AUU start codon. This approach overcomes challenges in cloning difficult proteins in E. coli. These findings underscore the feasibility of harnessing commensal clostridia for antigen protein secretion, emphasizing the applicability of non-canonical translation initiation across diverse species with broad implications for medical or industrial biotechnology.


Asunto(s)
Clostridium butyricum , Clostridium , Proteínas Recombinantes , Clostridium butyricum/genética , Clostridium butyricum/metabolismo , Clostridium/genética , Clostridium/metabolismo , Humanos , Proteínas Recombinantes/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/genética , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Administración Oral , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Esporas Bacterianas/genética , Esporas Bacterianas/inmunología , Vacunación , COVID-19/prevención & control , Ingeniería Genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas
15.
Chemosphere ; 358: 142157, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679181

RESUMEN

Microbial electrosynthesis (MES) is an electrically driven technology that can be used for converting CO/CO2 into chemicals. The unique electronic and substrate properties of CO make it an important research target for MES. However, CO can poison the cathode and increase the overpotential of hydrogen evolution reaction (HER), thus reducing the electron transfer rate via H2. This work evaluated the effect of an anti-CO HER catalyst on the performance of MES for CO/CO2 conversion. ZnMo-metal-organic framework (MOF) materials with different calcination temperatures were synthesized. ZnMo-MOF-800 with Mo2C nanoparticles as active centers exhibited excellent resistance to CO toxicity. It also obtained the highest hydrogen evolution and enhanced electron transfer rate in CO atmosphere. MES with ZnMo-MOF-800 cathode and Clostridium ljungdahlii as biocatalyst obtained 0.31 g L-1 d-1 acetate yield, 0.1 g L-1 d-1 butyrate yield, and 0.09 g L-1 d-1 2,3-butanediol yield in CO/CO2, while Pt/C only get 0.076 g L-1 d-1 acetate yield, 0.05 g L-1 d-1 butyrate yield and 0.02 g L-1 d-1 2,3-butanediol yield. ZnMo-MOF-800 was conducive to biofilm formation, enabling it to better resist CO toxicity. This work provides new opportunities for constructing a highly efficient cathode with an anti-CO hydrogen evolution catalyst to enhance CO/CO2 conversion in MES.


Asunto(s)
Dióxido de Carbono , Monóxido de Carbono , Hidrógeno , Estructuras Metalorgánicas , Hidrógeno/metabolismo , Hidrógeno/química , Dióxido de Carbono/química , Catálisis , Estructuras Metalorgánicas/química , Electrodos , Clostridium/metabolismo , Técnicas Electroquímicas , Molibdeno/química , Zinc/química
16.
mBio ; 15(4): e0224823, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38477571

RESUMEN

Sporulation is an important feature of the clostridial life cycle, facilitating survival of these bacteria in harsh environments, contributing to disease transmission for pathogenic species, and sharing common early steps that are also involved in regulating industrially important solvent production by some non-pathogenic species. Initial genomics studies suggested that Clostridia lack the classical phosphorelay that phosphorylates Spo0A and initiates sporulation in Bacillus, leading to the hypothesis that sporulation in Clostridia universally begins when Spo0A is phosphorylated by orphan histidine kinases (OHKs). However, components of the classical Bacillus phosphorelay were recently identified in some Clostridia. Similar Bacillus phosphorelay components have not yet been found in the pathogenic Clostridia or the solventogenic Clostridia of industrial importance. For some of those Clostridia lacking a classical phosphorelay, the involvement of OHKs in sporulation initiation has received support from genetic studies demonstrating the involvement of several apparent OHKs in their sporulation. In addition, several clostridial OHKs directly phosphorylate Spo0A in vitro. Interestingly, there is considerable protein domain diversity among the sporulation-associated OHKs in Clostridia. Further adding to the emergent complexity of sporulation initiation in Clostridia, several candidate OHK phosphotransfer proteins that were OHK candidates were shown to function as phosphatases that reduce sporulation in some Clostridia. The mounting evidence indicates that no single pathway explains sporulation initiation in all Clostridia and supports the need for further study to fully understand the unexpected and biologically fascinating mechanistic diversity of this important process among these medically and industrially important bacteria.


Asunto(s)
Bacillus , Histidina , Histidina Quinasa/genética , Histidina Quinasa/metabolismo , Histidina/metabolismo , Fosforilación , Factores de Transcripción/metabolismo , Bacillus/metabolismo , Clostridium/genética , Clostridium/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Esporas Bacterianas/metabolismo , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica
17.
Appl Environ Microbiol ; 90(4): e0222323, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38497645

RESUMEN

An uncharacterized gene encoding a glycoside hydrolase family 43-like enzyme from Clostridium boliviensis strain E-1 was identified from genomic sequence data, and the encoded enzyme, CbE1Xyn43-l, was produced in Escherichia coli. CbE1Xyn43-l (52.9 kDa) is a two-domain endo-ß-xylanase consisting of a C-terminal CBM6 and a GH43-like catalytic domain. The positions of the catalytic dyad conserved in GH43, the catalytic base (Asp74), and proton donor (Glu240) were identified in alignments including GH43-enzymes of known 3D-structure from different subfamilies. CbE1Xyn43-l is active at pH 7.0-9.0, with optimum temperature at 65°C, and a more than 7 days' half-life in irreversible deactivation studies at this temperature. The enzyme hydrolyzed birchwood xylan, quinoa stalks glucuronoarabinoxylan, and wheat arabinoxylan with xylotriose and xylotetraose as major hydrolysis products. CbE1Xyn43-l also released xylobiose from pNPX2 with low turnover (kcat of 0.044 s-1) but was inactive on pNPX, showing that a degree of polymerization of three (DP3) was the smallest hydrolyzable substrate. Divalent ions affected the specific activity on xylan substrates, which dependent on the ion could be increased or decreased. In conclusion, CbE1Xyn43-l from C. boliviensis strain E-1 is the first characterized member of a large group of homologous hypothetical proteins annotated as GH43-like and is a thermostable endo-xylanase, producing xylooligosaccharides of high DP (xylotriose and xylotetraose) producer. IMPORTANCE: The genome of Clostridium boliviensis strain E-1 encodes a number of hypothetical enzymes, annotated as glycoside hydrolase-like but not classified in the Carbohydrate Active Enzyme Database (CAZy). A novel thermostable GH43-like enzyme is here characterized as an endo-ß-xylanase of interest in the production of prebiotic xylooligosaccharides (XOs) from different xylan sources. CbE1Xyn43-l is a two-domain enzyme composed of a catalytic GH43-l domain and a CBM6 domain, producing xylotriose as main XO product. The enzyme has homologs in many related Clostridium strains which may indicate a similar function and be a previously unknown type of endo-xylanase in this evolutionary lineage of microorganisms.


Asunto(s)
Glucuronatos , Glicósido Hidrolasas , Oligosacáridos , Xilanos , Xilanos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato , Clostridium/genética , Clostridium/metabolismo , Endo-1,4-beta Xilanasas/metabolismo , Hidrólisis , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
18.
Gut Microbes ; 16(1): 2323233, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38465624

RESUMEN

Bile acid transformation is a common gut microbiome activity that produces secondary bile acids, some of which are important for human health. One such process, 7α-dehydroxylation, converts the primary bile acids, cholic acid and chenodeoxycholic acid, to deoxycholic acid and lithocholic acid, respectively. This transformation requires a number of enzymes, generally encoded in a bile acid-inducible (bai) operon and consists of multiple steps. Some 7α-dehydroxylating bacteria also harbor additional genes that encode enzymes with potential roles in this pathway, but little is known about their functions. Here, we purified 11 enzymes originating either from the bai operon or encoded at other locations in the genome of Clostridium scindens strain ATCC 35704. Enzyme activity was probed in vitro under anoxic conditions to characterize the biochemical pathway of chenodeoxycholic acid 7α-dehydroxylation. We found that more than one combination of enzymes can support the process and that a set of five enzymes, including BaiJ that is encoded outside the bai operon, is sufficient to achieve the transformation. We found that BaiJ, an oxidoreductase, exhibits an activity that is not harbored by the homologous enzyme from another C. scindens strain. Furthermore, ligation of bile acids to coenzyme A (CoA) was shown to impact the product of the transformation. These results point to differences in the 7α-dehydroxylation pathway among microorganisms and the crucial role of CoA ligation in the process.


Asunto(s)
Ácido Quenodesoxicólico , Microbioma Gastrointestinal , Humanos , Ácido Quenodesoxicólico/metabolismo , Ácidos y Sales Biliares/metabolismo , Clostridiales/metabolismo , Clostridium/metabolismo
19.
Bioresour Technol ; 400: 130640, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554761

RESUMEN

As a byproduct of dairy production, the disposal of acid whey poses severe environmental challenges. Herein, an innovative solution involving metabolically engineering Clostridium saccharoperbutylacetonicum to convert all carbon sources in acid whey into sustainable biofuels and biochemicals was presented. By introducing several heterologous metabolic pathways relating to metabolisms of lactose, galactose, and lactate, the ultimately optimized strain, LM-09, exhibited exceptional performance by producing 15.1 g/L butanol with a yield of 0.33 g/g and a selectivity of 89.9%. Through further overexpression of alcohol acyl transferase, 2.7 g/L butyl acetate along with 6.4 g/L butanol was generated, resulting in a combined yield of 0.37 g/g. This study achieves the highest reported butanol titer and yield using acid whey as substrate in clostridia and marks pioneering production of esters using acid whey. The findings demonstrate an innovative bioprocess that enhances renewable feedstock biotransformation, thereby promoting economic viability and environmental sustainability of biomanufacturing.


Asunto(s)
Biocombustibles , Clostridium , Ingeniería Metabólica , Suero Lácteo , Suero Lácteo/metabolismo , Clostridium/metabolismo , Ingeniería Metabólica/métodos , Butanoles/metabolismo , Fermentación
20.
N Biotechnol ; 81: 1-9, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-38401749

RESUMEN

Leveraging renewable carbon-based resources for energy and chemical production is a promising approach to decrease reliance on fossil fuels. This entails a thermo/biotechnological procedure wherein bacteria, notably Clostridia, ferment syngas, converting CO or CO2 + H2 into Hexanol, Butanol and Ethanol (H-B-E fermentation). This work reports of Clostridium carboxidivorans performance in a stirred tank reactor continuously operated with respect to the gas and the cell/liquid phases. The primary objective was to assess acid and solvent production at pH 5.6 by feeding pure CO or synthetic syngas under gas flow differential conditions. Fermentation tests were conducted at four different dilution rates (DL) of the fresh medium in the range 0.034-0.25 h-1. The fermentation pathways of C. carboxidivorans were found to be nearly identical for both CO and syngas, with consistent growth and metabolite production at pH 5.6 within a range of dilution rates. Wash-out conditions were observed at a DL of 0.25 h-1 regardless of the carbon source. Ethanol was the predominant solvent produced, but a shift towards butanol production was observed with CO as the substrate and towards hexanol production with synthetic syngas. In particular, the maximum cell concentration (0.5 gDM/L) was obtained with pure CO at DL 0.05 h-1; the highest solvent productivity (60 mg/L*h of total solvent) was obtained at DL 0.17 h-1 by using synthetic syngas as C-source. The findings highlight the importance of substrate composition and operating conditions in syngas fermentation processes. These insights contribute to the optimization of syngas fermentation processes for biofuel and chemical production.


Asunto(s)
1-Butanol , Butanoles , Fermentación , Butanoles/metabolismo , 1-Butanol/metabolismo , Clostridium/metabolismo , Reactores Biológicos/microbiología , Etanol/metabolismo , Solventes/metabolismo , Carbono/metabolismo , Hexanoles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...