Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(5): 1518-1531, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548678

RESUMEN

Clostridium tyrobutyricum is an anaerobe known for its ability to produce short-chain fatty acids, alcohols, and esters. We aimed to develop inducible promoters for fine-tuning gene expression in C. tyrobutyricum. Synthetic inducible promoters were created by employing an Escherichia coli lac operator to regulate the thiolase promoter (PCathl) from Clostridium acetobutylicum, with the best one (LacI-Pto4s) showing a 5.86-fold dynamic range with isopropyl ß- d-thiogalactoside (IPTG) induction. A LT-Pt7 system with a dynamic range of 11.6-fold was then created by combining LacI-Pto4s with a T7 expression system composing of RNA polymerase (T7RNAP) and Pt7lac promoter. Furthermore, two inducible expression systems BgaR-PbgaLA and BgaR-PbgaLB with a dynamic range of ~40-fold were developed by optimizing a lactose-inducible expression system from Clostridium perfringens with modified 5' untranslated region (5' UTR) and ribosome-binding site (RBS). BgaR-PbgaLB was then used to regulate the expressions of a bifunctional aldehyde/alcohol dehydrogenase encoded by adhE2 and butyryl-CoA/acetate Co-A transferase encoded by cat1 in C. tyrobutyricum wild type and Δcat1::adhE2, respectively, demonstrating its efficient inducible gene regulation. The regulated cat1 expression also confirmed that the Cat1-catalyzed reaction was responsible for acetate assimilation in C. tyrobutyricum. The inducible promoters offer new tools for tuning gene expression in C. tyrobutyricum for industrial applications.


Asunto(s)
Clostridium acetobutylicum , Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Clostridium acetobutylicum/genética , Regiones Promotoras Genéticas/genética , Expresión Génica , Acetatos/metabolismo
2.
Bioresour Technol ; 396: 130427, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336212

RESUMEN

Phenolic compounds (PCs) generated during pretreatment of lignocellulosic biomass severely hinder the biorefinery by Clostridia. As a hyperbutyrate-producing strain, Clostridium tyrobutyricum has excellent tolerance to PCs, but its tolerance mechanism is poorly understood. In this study, a comprehensive transcriptome analysis was applied to elucidate the response of C. tyrobutyricum to four typical PCs. The findings revealed that the expression levels of genes associated with PC reduction, HSPs, and membrane transport were significantly altered under PC stress. Due to PCs being reduced to low-toxicity alcohols/acids by C. tyrobutyricum, enhancing the reduction of PCs by overexpressing reductase genes could enhance the strain's tolerance to PCs. Under 1.0 g/L p-coumaric acid stress, compared with the wild-type strain, ATCC 25755/sdr1 exhibited a 31.2 % increase in butyrate production and a 38.5 % increase in productivity. These insights contribute to the construction of PC-tolerant Clostridia, which holds promise for improving biofuel and chemical production from lignocellulosic biomass.


Asunto(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ácido Butírico/metabolismo , Fermentación , Biomasa , Clostridium/metabolismo , Fenoles/metabolismo
3.
Metab Eng ; 77: 64-75, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36948242

RESUMEN

Butyl butyrate has broad applications in foods, cosmetics, solvents, and biofuels. Microbial synthesis of bio-based butyl butyrate has been regarded as a promising approach recently. Herein, we engineered Clostridium tyrobutyricum ATCC 25755 to achieve de novo biosynthesis of butyl butyrate from fermentable sugars. Through introducing the butanol synthetic pathway (enzyme AdhE2), screening alcohol acyltransferases (AATs), adjusting transcription of VAAT and adhE2 (i.e., optimizing promoter), and efficient supplying butyryl-CoA, an excellent engineered strain, named MUV3, was obtained with ability to produce 4.58 g/L butyl butyrate at 25 °C with glucose in serum bottles. More NADH is needed for butyl butyrate synthesis, thus mannitol (the more reduced substrate) was employed to produce butyl butyrate. Ultimately, 62.59 g/L butyl butyrate with a selectivity of 95.97%, and a yield of 0.21 mol/mol was obtained under mannitol with fed-batch fermentation in a 5 L bioreactor, which is the highest butyl butyrate titer reported so far. Altogether, this study presents an anaerobic fermentative platform for de novo biosynthesis of butyl butyrate in one step, which lays the foundation for butyl butyrate biosynthesis from renewable biomass feedstocks.


Asunto(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Butiratos/metabolismo , 1-Butanol/metabolismo , Fermentación , Manitol/metabolismo
4.
Int Microbiol ; 26(3): 501-511, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36609955

RESUMEN

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.


Asunto(s)
Clostridium tyrobutyricum , Fermentación , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Análisis de Flujos Metabólicos , Dióxido de Carbono/metabolismo , Filogenia , Butiratos/metabolismo , Acetatos/metabolismo , Lactatos/metabolismo , Hidrógeno/metabolismo , Biología Computacional , Carbono/metabolismo
5.
Appl Microbiol Biotechnol ; 107(1): 327-339, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36418543

RESUMEN

Lignocellulosic biomass is considered the most abundant and renewable feedstock for biobased butyric acid production. However, the furan derivatives (FAs, mainly furfural and 5-hydroxymethylfurfural) generated from the pretreatment of lignocellulose severely inhibit the growth of Clostridium tyrobutyricum, which is the best strain for producing butyric acid. The tolerance mechanism of C. tyrobutyricum to FAs has not been investigated thus far. Here, the response of C. tyrobutyricum ATCC 25755 to FA challenge was first evaluated by using comprehensive transcriptional analysis. The results indicated that the genes related to membrane transport, heat shock proteins, and transcriptional regulation were upregulated under FA stress. However, the expression of almost all genes encoding reductases was not changed, and only the ad gene CTK_RS02625 and the bud gene CTK_RS07810 showed a significant increase of ~ 1.05-fold. Then, the enzyme activity assays indicated that BUD could catalyze the reduction of FAs with relatively low activity and that AD could not participate in the conversion of FAs, indicating that the inability to rapidly convert FAs to their low-toxicity alcohols may be the main reason for the low FA tolerance of C. tyrobutyricum. This research provides insights into the development of FA-tolerant strains, thereby enhancing the bioconversion of lignocellulosic biomass to butyric acid. KEY POINTS: • The response of C. tyrobutyricum to FAs was evaluated for the first time. • Genes encoding membrane transporters and heat shock proteins were triggered by FAs. • A lack of effective FA reductases leads to low FA tolerance in C. tyrobutyricum.


Asunto(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ácido Butírico/metabolismo , Fermentación , Perfilación de la Expresión Génica , Proteínas de Choque Térmico/genética , Furanos/metabolismo
6.
Appl Biochem Biotechnol ; 195(2): 1072-1084, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36322284

RESUMEN

Clostridium tyrobutyricum has great potential for bio-based chemicals and biofuel production from mannitol; however, the mannitol metabolic pathway and its metabolic regulatory mechanism have not been elucidated. To this end, the RNA-seq analysis on the mid-log growth phase of C. tyrobutyricum grown on mannitol or xylose was performed. Comparative transcriptome analysis and co-transcription experiment indicated that mtlARFD, which encodes the mannitol-specific IIA component, transcription activator, mannitol-specific IIBC components, and mannitol-1-phosphate 5-dehydrogenase, respectively, formed a polycistronic operon and could be responsible for mannitol uptake and metabolism. In addition, comparative genomic analysis of the mtlARFD organization and the MtlR protein structural domain among various Firmicutes strains identified the putative cre (catabolite-responsive element) sites and conserved phosphorylation sites, but whether the expression of mannitol operon was affected by CcpA- and MtlR-mediated metabolic regulation during mixed substrate fermentation needs to be further verified experimentally. Based on the gene knockout and complementation results, the predicted mannitol operon mtlARFD was confirmed to be responsible for mannitol utilization in C. tyrobutyricum. The results of this study could be used to enhance the mannitol metabolic pathway and explore the potential metabolic regulation mechanism of mannitol during mixed substrate fermentation.


Asunto(s)
Clostridium tyrobutyricum , Clostridium tyrobutyricum/genética , Perfilación de la Expresión Génica , Transcriptoma , Operón/genética , Fermentación , Manitol/metabolismo
7.
Bioresour Technol ; 357: 127320, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35589044

RESUMEN

Clostridium tyrobutyricum, a gram-positive anaerobic bacterium, is recognized as the promising butyric acid producer. But, the existence of carbon catabolite repression (CCR) is the major drawback for C. tyrobutyricum to efficiently use the lignocellulosic biomass. In this study, the xylose pathway genes were first identified and verified. Then, the potential regulatory mechanisms of CCR in C. tyrobutyricum were proposed and the predicted engineering targets were experimental validated. Inactivation of hprK blocked the CcpA-mediated CCR and resulted in simultaneous conversion of glucose and xylose, although xylose consumption was severe lagging behind. Deletion of xylR further shortened the lag phase of xylose utilization. When hprK and xylR were inactivated together, the CCR in C. tyrobutyricum was completely eliminated. Consequently, ATCC 25755/ΔhprKΔxylR showed significant increase in butyrate productivity (1.8 times faster than the control) and excellent butyric acid fermentation performance using both mixed sugars (11.0-11.9 g/L) and undetoxified lignocellulosic hydrolysates (12.4-13.4 g/L).


Asunto(s)
Represión Catabólica , Clostridium tyrobutyricum , Composición de Base , Ácido Butírico/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Fermentación , Glucosa/metabolismo , Lignina , Filogenia , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Xilosa/metabolismo
8.
Biosensors (Basel) ; 11(9)2021 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-34562883

RESUMEN

Clostridium tyrobutyricum represents the main spoiling agent responsible for late blowing defects (LBD) in hard and semi-hard cheeses. Its spores are resistant to manufacturing procedures and can germinate during the long ripening process, causing the burst of the cheese paste with a consequent undesirable taste. The lower quality of blown cheeses leads to considerable financial losses for the producers. The early identification of spore contaminations in raw milk samples thus assumes a pivotal role in industrial quality control. Herein, we developed a point of care (POC) testing method for the sensitive detection of C. tyrobutyricum in milk samples, combining fast DNA extraction (with no purification steps) with a robust colorimetric loop-mediated isothermal amplification (LAMP) technique. Our approach allows for the sensitive and specific detection of C. tyrobutyricum spores (limit of detection, LoD: ~2 spores/mL), with the advantage of a clear naked-eye visualization of the results and a potential semi-quantitative discrimination of the contamination level. In addition, we demonstrated the feasibility of this strategy using a portable battery-operated device that allowed both DNA extraction and amplification steps, proving its potential for on-site quality control applications without the requirement of sophisticated instrumentation and trained personnel.


Asunto(s)
Clostridium tyrobutyricum , Leche/microbiología , Sistemas de Atención de Punto , Esporas Bacterianas/aislamiento & purificación , Animales , Clostridium tyrobutyricum/genética , Colorimetría , ADN , Análisis de los Alimentos
9.
Biosci Rep ; 41(8)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34338280

RESUMEN

Coenzyme A transferases (CoATs) are important enzymes involved in carbon chain elongation, contributing to medium-chain fatty acid (MCFA) biosynthesis. For example, butyryl-CoA:acetate CoA transferase (BCoAT) is responsible for the final step of butyrate synthesis from butyryl-CoA. However, little is known about caproyl-CoA:acetate CoA-transferase (CCoAT), which is responsible for the final step of caproate synthesis from caproyl-CoA. In the present study, two CoAT genes from Ruminococcaceae bacterium CPB6 and Clostridium tyrobutyricum BEY8 were identified by gene cloning and expression analysis. Enzyme assays and kinetic studies were carried out using butyryl-CoA or caproyl-CoA as the substrate. CPB6-CoAT can catalyze the conversion of both butyryl-CoA into butyrate and caproyl-CoA into caproate, but its catalytic efficiency with caproyl-CoA as the substrate was 3.8-times higher than that with butyryl-CoA. In contrast, BEY8-CoAT had only BCoAT activity, not CCoAT activity. This demonstrated the existence of a specific CCoAT involved in chain elongation via the reverse ß-oxidation pathway. Comparative bioinformatics analysis showed the presence of a highly conserved motif (GGQXDFXXGAXX) in CoATs, which is predicted to be the active center. Single point mutations in the conserved motif of CPB6-CoAT (Asp346 and Ala351) led to marked decreases in the activity for butyryl-CoA and caproyl-CoA, indicating that the conserved motif is the active center of CPB6-CoAT and that Asp346 and Ala351 have a significant impact on the enzymatic activity. This work provides insight into the function of CCoAT in caproic acid biosynthesis and improves understanding of the chain elongation pathway for MCFA production.


Asunto(s)
Proteínas Bacterianas/metabolismo , Butiratos/metabolismo , Caproatos/metabolismo , Clonación Molecular , Clostridium tyrobutyricum/enzimología , Coenzima A Transferasas/metabolismo , Acilcoenzima A/metabolismo , Proteínas Bacterianas/genética , Clostridium tyrobutyricum/genética , Coenzima A Transferasas/química , Coenzima A Transferasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Cinética , Modelos Moleculares , Mutación , Oxidación-Reducción , Filogenia , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
10.
Sci Total Environ ; 749: 142022, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33370888

RESUMEN

Clostridium tyrobutyricum is a promising microbial cell factory to produce biofuels. In this study, an uptake hydrogenase (hyd2293) from Ethanoligenens harbinense was overexpressed in C. tyrobutyricum and significantly affected the redox reactions and metabolic profiles. Compared to the parental strain (Ct-WT), the mutant strain Ct-Hyd2293 produced ~34% less butyrate, ~148% more acetate, and ~11% less hydrogen, accompanied by the emerging genesis of butanol. Comparative transcriptome analysis revealed that 666 genes were significantly differentially expressed after the overexpression of hyd2293, including 82 up-regulated genes and 584 down-regulated genes. The up-regulated genes were mainly involved in carbohydrate and energy metabolisms while the down-regulated genes were distributed in nearly all pathways. Genes involved in glucose transportation, glycolysis, different fermentation pathways and hydrogen metabolism were studied and the gene expression changes showed the mechanism of the metabolic flux redistribution in Ct-Hyd2293. The overexpression of uptake hydrogenase redirected electrons from hydrogen and butyrate to butanol. The key enzymes participating in the energy conservation and sporulation were also identified and their transcription levels were generally reduced. This study demonstrated the transcriptomic responses of C. tyrobutyricum to the expression of a heterologous uptake hydrogenase, which provided a better understanding of the metabolic characteristics of C. tyrobutyricum and demonstrated the potential role of redox manipulation in metabolic engineering for biofuel productions.


Asunto(s)
Clostridium tyrobutyricum , Clostridiales , Clostridium tyrobutyricum/genética , Fermentación , Perfilación de la Expresión Génica , Oxidorreductasas , Transcriptoma
11.
Benef Microbes ; 11(6): 573-589, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33032473

RESUMEN

Clostridium tyrobutyricum shows probiotic properties and can affect the composition of gut microbiota and regulate the intestinal immune system. Compared with other probiotics, this spore-producing bacterium shows unparalleled advantages in commercial production. In addition to being resistant to extreme living environments for extended periods, its endophytic spores are implicated in inhibiting cancer cell growth. We speculated that C. tyrobutyricum spores can also promote gut health, which mean it can maintain intestinal homeostasis. To date, the beneficial effects of C. tyrobutyricum spores on gut health have not been reported. In this study, a Spo0A-overexpressing C. tyrobutyricum strain was developed to increase spore production, and its probiotic effects on the gut were assessed. Compared with the wild-type, the engineered strain showed significantly increased sporulation rates. Mice administered with the engineered strain exhibited enhanced intestinal villi and the villus height/crypt depth ratio, weight gain and improved Firmicutes/Bacteroidetes ratio to facilitate intestinal homeostasis. This study demonstrated for the first time that enhanced spore production in C. tyrobutyricum can improve intestinal homeostasis, which is advantageous for its commercial application in food and pharmaceutical industry.


Asunto(s)
Bacteroidetes/crecimiento & desarrollo , Clostridium tyrobutyricum/fisiología , Firmicutes/crecimiento & desarrollo , Microbioma Gastrointestinal , Intestino Delgado/microbiología , Esporas Bacterianas/crecimiento & desarrollo , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteroidetes/clasificación , Peso Corporal , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/crecimiento & desarrollo , Firmicutes/clasificación , Expresión Génica , Homeostasis , Mucosa Intestinal/anatomía & histología , Mucosa Intestinal/microbiología , Masculino , Ratones , Viabilidad Microbiana , Plásmidos , Probióticos , Factores de Transcripción/metabolismo , Transformación Bacteriana
12.
Curr Microbiol ; 77(11): 3685-3694, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32888044

RESUMEN

Clostridium tyrobutyricum is a promising microbial host for the anaerobic production of bio-based chemicals, especially butyric acid. At the same time, it also has great potential as a probiotic for the production of short-chain fatty acids in the intestines. However, due to the insufficient knowledge of the genetic characteristics of this organism, there has been little progress in its genetic engineering to date. Here, we present the complete genome sequence of C. tyrobutyricum L319, which consists of a circular chromosome and a plasmid with a G + C content of 31.69%, encompassing approximately 3.09 Mb with 3052 protein-coding genes. Functional gene annotation revealed better results than previous studies based on KEGG pathway classification. Furthermore, we obtained detailed functional characterization of 93 genes previously annotated as putative proteins. Genomic analysis revealed that this organism contains multiple genes encoding enzymes involved in the CRISPR-Cas systems, substrate utilization, isopeptide and ester bonds, transcriptional regulation, and oxidative stress. The safety evaluation at genetic level indicated that this organism does not possess transferable resistance genes, invasive defensive pathogenicity factors, or harmful enzymes. The genome sequence data analyzed in this study will be available for further research and will facilitate the further understanding and development of potential applications of C. tyrobutyricum.


Asunto(s)
Clostridium tyrobutyricum , Ácido Butírico , Clostridium tyrobutyricum/genética , Fermentación , Humanos , Plásmidos , Análisis de Secuencia
13.
World J Microbiol Biotechnol ; 36(9): 138, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32794091

RESUMEN

Acidogenic clostridia naturally producing acetic and butyric acids has attracted high interest as a novel host for butyrate and n-butanol production. Among them, Clostridium tyrobutyricum is a hyper butyrate-producing bacterium, which re-assimilates acetate for butyrate biosynthesis by butyryl-CoA/acetate CoA transferase (CoAT), rather than the phosphotransbutyrylase-butyrate kinase (PTB-BK) pathway widely found in clostridia and other microbial species. To date, C. tyrobutyricum has been engineered to overexpress a heterologous alcohol/aldehyde dehydrogenase, which converts butyryl-CoA to n-butanol. Compared to conventional solventogenic clostridia, which produce acetone, ethanol, and butanol in a biphasic fermentation process, the engineered C. tyrobutyricum with a high metabolic flux toward butyryl-CoA produced n-butanol at a high yield of > 0.30 g/g and titer of > 20 g/L in glucose fermentation. With no acetone production and a high C4/C2 ratio, butanol was the only major fermentation product by the recombinant C. tyrobutyricum, allowing simplified downstream processing for product purification. In this review, novel metabolic engineering strategies to improve n-butanol and butyrate production by C. tyrobutyricum from various substrates, including glucose, xylose, galactose, sucrose, and cellulosic hydrolysates containing the mixture of glucose and xylose, are discussed. Compared to other recombinant hosts such as Clostridium acetobutylicum and Escherichia coli, the engineered C. tyrobutyricum strains with higher butyrate and butanol titers, yields and productivities are the most promising hosts for potential industrial applications.


Asunto(s)
1-Butanol/metabolismo , Butiratos/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Acetona/metabolismo , Acilcoenzima A , Alcohol Deshidrogenasa/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Sacarosa/metabolismo , Xilosa/metabolismo
14.
Biotechnol Bioeng ; 117(9): 2911-2917, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32437010

RESUMEN

Clostridium tyrobutyricum ATCC 25755 is known as a natural hyper-butyrate producer with great potentials as an excellent platform to be engineered for valuable biochemical production from renewable resources. However, limited transformation efficiency and the lack of genetic manipulation tools have hampered the broader applications of this micro-organism. In this study, the effects of Type I restriction-modification system and native plasmid on conjugation efficiency of C. tyrobutyricum were investigated through gene deletion. The deletion of Type I restriction endonuclease resulted in a 3.7-fold increase in conjugation efficiency, while the additional elimination of the native plasmid further enhanced conjugation efficiency to 6.05 ± 0.75 × 103 CFU/ml-donor, which was 15.3-fold higher than the wild-type strain. Fermentation results indicated that the deletion of those two genetic elements did not significantly influence the end-products production in the resultant mutant ΔRMIΔNP. Thanks to the increased conjugation efficiency, the CRISPR-Cas9/Cpf1 systems, which previously could not be implemented in C. tyrobutyricum, were successfully employed for genome editing in ΔRMIΔNP with an efficiency of 12.5-25%. Altogether, approaches we developed herein offer valuable guidance for establishing efficient DNA transformation methods in nonmodel micro-organisms. The ΔRMIΔNP mutant can serve as a great chassis to be engineered for diverse valuable biofuel and biochemical production.


Asunto(s)
Sistemas CRISPR-Cas/genética , Clostridium tyrobutyricum/genética , Edición Génica/métodos , Plásmidos/genética , Transformación Bacteriana/genética , Técnicas de Cultivo Celular por Lotes , Butiratos/metabolismo , Clostridium tyrobutyricum/metabolismo , Fermentación
15.
J Microbiol Methods ; 169: 105818, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31881287

RESUMEN

Clostridium tyrobutyricum is the major agent that causes the blowing defect in cheese due to the germination of its dormant spores during the ripening stage. As a result, many of the affected cheeses show cavities and cracks, which cause the product loss in most cases. Nowadays, there is not a fast method capable of detecting milk contaminated with C. tyrobutyricum spores. The aim of this study has been to develop a fast and reliable method based on real time PCR (qPCR) to detect C. tyrobutyricum spores in raw milk. One of the main limitations has been to find a good procedure for the spore disruption to extract the DNA due to its high resistance. For this reason, different disruption methods have been tested, including chemical agents, bead beating, enzymatic and microwave treatment. Furthermore, an enzymatic treatment with subtilisin was applied for milk clarification and recovery of spores. The comparison of the assayed methods has been made using sterile milk spiked with C. tyrobutyricum spores, obtained in solid or liquid medium. The results showed that microwave treatment followed by a standard DNA purification step was found to be the best disruption method. The Ct values obtained for spores were higher than those found for vegetative cells by qPCR, for the same quantity of DNA. This difference could be due to the action of the Small Acid Soluble Proteins (SASP) in the DNA packaging of spores. Moreover, spores obtained in agar plate were found more resistant to disruption than those obtained in liquid medium. Subtilisin and microwave treatments were found to be successful for DNA extraction from C. tyrobutyricum spores in milk and subsequent identification by qPCR. However, the differences observed between the amplification of DNA from spores obtained in different media and from vegetative cells have to be taken into account to optimize a method for C. tyrobutyricum detection.


Asunto(s)
Queso/microbiología , Clostridium tyrobutyricum/genética , ADN Bacteriano/genética , Leche/microbiología , Esporas Bacterianas/genética , Animales , Extractos Celulares/genética , Clostridium tyrobutyricum/aislamiento & purificación , Microbiología de Alimentos/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa , Esporas Bacterianas/metabolismo , Subtilisina/farmacología
16.
J Biotechnol ; 305: 18-22, 2019 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-31472166

RESUMEN

C. tyrobutyricum, an acidogenic Clostridium, has aroused increasing interest due to its potential to produce biofuel efficiently. However, construction of recombinant C. tyrobutyricum for enhanced biofuel production has been impeded by the limited genetic engineering tools. In this study, a flavin mononucleotide (FMN)-dependent fluorescent protein Bs2-based gene expression reporter system was developed to monitor transformation and explore in vivo strength and regulation of various promoters in C. tyrobutyricum and C. acetobutylicum. Unlike green fluorescent protein (GFP) and its variants, Bs2 can emit green light without oxygen, which makes it extremely suitable for promoter screening and transformation confirmation in organisms grown anaerobically. The expression levels of bs2 under thiolase promoters from C. tyrobutyricum and C. acetobutylicum were measured and compared based on fluorescence intensities. The capacities of the two promoters in driving secondary alcohol dehydrogenase (adh) gene for isopropanol production in C. tyrobutyricum were distinguished, confirming that this reporter system is a convenient, effective and reliable tool for promoter strength assay and real time monitoring in C. tyrobutyricum, while demonstrating the feasibility of producing isopropanol in C. tyrobutyricum for the first time.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Clostridium tyrobutyricum/crecimiento & desarrollo , Mononucleótido de Flavina/metabolismo , 2-Propanol/metabolismo , Alcohol Deshidrogenasa/genética , Biocombustibles , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crecimiento & desarrollo , Clostridium acetobutylicum/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Fluorescencia , Genes Reporteros , Ingeniería Genética , Regiones Promotoras Genéticas
17.
Bioprocess Biosyst Eng ; 42(4): 583-592, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30788572

RESUMEN

Optimal conditions of hyper thermal (HT) acid hydrolysis of the Saccharina japonica was determined to a seaweed slurry content of 12% (w/v) and 144 mM H2SO4 at 160 °C for 10 min. Enzymatic saccharification was carried out at 50 °C and 150 rpm for 48 h using the three enzymes at concentrations of 16 U/mL. Celluclast 1.5 L showed the lowest half-velocity constant (Km) of 0.168 g/L, indicating a higher affinity for S. japonica hydrolysate. Pretreatment yielded a maximum monosaccharide concentration of 36.2 g/L and 45.7% conversion from total fermentable monosaccharides of 79.2 g/L with 120 g dry weight/L S. japonica slurry. High cell densities of Clostridium acetobutylicum and Clostridium tyrobutyricum were obtained using the retarding agents KH2PO4 (50 mM) and NaHCO3 (200 mM). Adaptive evolution facilitated the efficient use of mixed monosaccharides. Therefore, adaptive evolution and retarding agents can enhance the overall butanol and butyric acid yields from S. japonica.


Asunto(s)
Butanoles/metabolismo , Ácido Butírico/metabolismo , Clostridium acetobutylicum , Clostridium tyrobutyricum , Laminaria/química , Clostridium acetobutylicum/genética , Clostridium acetobutylicum/crecimiento & desarrollo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/crecimiento & desarrollo , Evolución Molecular Dirigida
18.
Appl Microbiol Biotechnol ; 102(10): 4511-4522, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29627851

RESUMEN

Butyric acid fermentation by Clostridium couples with the synthesis of acetic acid. But the presence of acetic acid reduces butyric acid yield and increases separation and purification costs of butyric acid. Hence, enhancing the butyrate/acetate ratio is important for economical butyric acid production. This study indicated that enhancing the acetyl-CoA to butyrate flux by overexpression of both the butyryl-CoA/acetate CoA transferase (cat1) and crotonase (crt) genes in C. tyrobutyricum could significantly reduce acetic acid concentration. Fed-batch fermentation of ATCC 25755/cat1 + crt resulted in increased butyrate/acetate ratio of 15.76 g/g, which was 2.24-fold higher than that of the wild-type strain. Furthermore, in order to simultaneously increase the butyrate/acetate ratio, butyric acid concentration and productivity, the recombinant strain ATCC 25755/ppcc (co-expression of 6-phosphofructokinase (pfkA) gene, pyruvate kinase (pykA) gene, cat1, and crt) was constructed. Consequently, ATCC 25755/ppcc produced more butyric acid (46.8 vs. 35.0 g/L) with a higher productivity (0.83 vs. 0.49 g/L·h) and butyrate/acetate ratio (13.22 vs. 7.22 g/g) as compared with the wild-type strain in batch fermentation using high glucose concentration (120 g/L). This study demonstrates that enhancing the acetyl-CoA to butyrate flux is an effective way to reduce acetic acid production and increase butyrate/acetate ratio.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo , Ingeniería Metabólica , Acetato CoA Ligasa/metabolismo , Fermentación
19.
Prep Biochem Biotechnol ; 48(5): 427-434, 2018 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-29561227

RESUMEN

Butyric acid (C3H7COOH) is an important chemical that is widely used in foodstuffs along with in the chemical and pharmaceutical industries. The bioproduction of butyric acid through large-scale fermentation has the potential to be more economical and efficient than petrochemical synthesis. In this paper, the metabolic pathways involved in the production of butyric acid from Clostridium tyrobutyricum using hexose and pentose as substrates are investigated, and approaches to enhance butyric acid production through genetic modification are discussed. Finally, bioreactor modifications (including fibrous bed bioreactor, inner disk-shaped matrix bioreactor, fibrous matrix packed in porous levitated sphere carriers), low-cost feedstocks, and special treatments (including continuous fermentation with cell recycling, extractive fermentation with solvent, using different artificial electron carriers) intended to improve the feasibility of commercial butyric acid bioproduction are summarized.


Asunto(s)
Ácido Butírico/metabolismo , Clostridium tyrobutyricum/metabolismo , Microbiología Industrial/métodos , Reactores Biológicos/economía , Reactores Biológicos/microbiología , Vías Biosintéticas , Clostridium tyrobutyricum/genética , Diseño de Equipo , Fermentación , Ingeniería Genética/economía , Ingeniería Genética/métodos , Hexosas/metabolismo , Microbiología Industrial/economía , Microbiología Industrial/instrumentación , Mutación , Pentosas/metabolismo
20.
Metab Eng ; 47: 49-59, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29530750

RESUMEN

Although CRISPR-Cas9/Cpf1 have been employed as powerful genome engineering tools, heterologous CRISPR-Cas9/Cpf1 are often difficult to introduce into bacteria and archaea due to their severe toxicity. Since most prokaryotes harbor native CRISPR-Cas systems, genome engineering can be achieved by harnessing these endogenous immune systems. Here, we report the exploitation of Type I-B CRISPR-Cas of Clostridium tyrobutyricum for genome engineering. In silico CRISPR array analysis and plasmid interference assay revealed that TCA or TCG at the 5'-end of the protospacer was the functional protospacer adjacent motif (PAM) for CRISPR targeting. With a lactose inducible promoter for CRISPR array expression, we significantly decreased the toxicity of CRISPR-Cas and enhanced the transformation efficiency, and successfully deleted spo0A with an editing efficiency of 100%. We further evaluated effects of the spacer length on genome editing efficiency. Interestingly, spacers ≤ 20 nt led to unsuccessful transformation consistently, likely due to severe off-target effects; while a spacer of 30-38 nt is most appropriate to ensure successful transformation and high genome editing efficiency. Moreover, multiplex genome editing for the deletion of spo0A and pyrF was achieved in a single transformation, with an editing efficiency of up to 100%. Finally, with the integration of the alcohol dehydrogenase gene (adhE1 or adhE2) to replace cat1 (the key gene responsible for butyrate production and previously could not be deleted), two mutants were created for n-butanol production, with the butanol titer reached historically record high of 26.2 g/L in a batch fermentation. Altogether, our results demonstrated the easy programmability and high efficiency of endogenous CRISPR-Cas. The developed protocol herein has a broader applicability to other prokaryotes containing endogenous CRISPR-Cas systems. C. tyrobutyricum could be employed as an excellent platform to be engineered for biofuel and biochemical production using the CRISPR-Cas based genome engineering toolkit.


Asunto(s)
1-Butanol/metabolismo , Sistemas CRISPR-Cas , Clostridium tyrobutyricum , Edición Génica/métodos , Ingeniería Metabólica/métodos , Clostridium tyrobutyricum/genética , Clostridium tyrobutyricum/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...