Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2312111121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657041

RESUMEN

Class II histone deacetylases (HDACs) are important in regulation of gene transcription during T cell development. However, our understanding of their cell-specific functions is limited. In this study, we reveal that class IIa Hdac4 and Hdac7 (Hdac4/7) are selectively induced in transcription, guiding the lineage-specific differentiation of mouse T-helper 17 (Th17) cells from naive CD4+ T cells. Importantly, Hdac4/7 are functionally dispensable in other Th subtypes. Mechanistically, Hdac4 interacts with the transcription factor (TF) JunB, facilitating the transcriptional activation of Th17 signature genes such as Il17a/f. Conversely, Hdac7 collaborates with the TF Aiolos and Smrt/Ncor1-Hdac3 corepressors to repress transcription of Th17 negative regulators, including Il2, in Th17 cell differentiation. Inhibiting Hdac4/7 through pharmacological or genetic methods effectively mitigates Th17 cell-mediated intestinal inflammation in a colitis mouse model. Our study uncovers molecular mechanisms where HDAC4 and HDAC7 function distinctively yet cooperatively in regulating ordered gene transcription during Th17 cell differentiation. These findings suggest a potential therapeutic strategy of targeting HDAC4/7 for treating Th17-related inflammatory diseases, such as ulcerative colitis.


Asunto(s)
Diferenciación Celular , Colitis , Histona Desacetilasas , Co-Represor 1 de Receptor Nuclear , Células Th17 , Animales , Células Th17/citología , Células Th17/metabolismo , Células Th17/inmunología , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Ratones , Colitis/genética , Colitis/metabolismo , Colitis/inmunología , Transcripción Genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Interleucina-17/metabolismo , Regulación de la Expresión Génica , Ratones Endogámicos C57BL , Humanos , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Interleucina-2/metabolismo
3.
Int J Biol Macromol ; 268(Pt 1): 131865, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670200

RESUMEN

A previous study reported the use of a biosensing technique based on surface plasmon resonance (SPR) for the ligand binding detection of peroxisome proliferator activator receptor gamma (PPARγ). This detection was designed based on the structural properties of PPARγ. Because of cross-linked protein inactivation and the low molecular weight of conventional ligands, direct ligand binding detection based on SPR has low stability and repeatability. In this study, we report an indirect response methodology based on SPR technology in which anti-His CM5 chip binds fresh PPARγ every cycle, resulting in more stable detection. We developed a remarkable improvement in ligand-protein binding detectability in vitro by introducing two coregulator-related polypeptides into this system. In parallel, a systematic indirect response methodology can reflect the interaction relationship between ligands and proteins to some extent by detecting the changes in SA-SRC1 and GST-NCOR2 binding to PPARγ. Rosiglitazone, a PPARγ agonist with strong affinity, is a potent insulin-sensitizing agent. Some ligands may be competitively exerted at the same sites of PPARγ (binding rosiglitazone). We demonstrated using indirect response methodology that selective PPARγ modulator (SPPARM) candidates of PPARγ can be found by competing for the binding of the rosiglitazone site on PPARγ, although they may have no effect on polypeptides and PPARγ binding.


Asunto(s)
Coactivador 1 de Receptor Nuclear , PPAR gamma , Unión Proteica , Resonancia por Plasmón de Superficie , Resonancia por Plasmón de Superficie/métodos , PPAR gamma/metabolismo , PPAR gamma/química , Ligandos , Coactivador 1 de Receptor Nuclear/metabolismo , Coactivador 1 de Receptor Nuclear/química , Péptidos/química , Péptidos/metabolismo , Humanos , Rosiglitazona/farmacología , Co-Represor 2 de Receptor Nuclear
4.
Nat Metab ; 6(5): 825-836, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38622413

RESUMEN

Nuclear receptor corepressors (NCoRs) function in multiprotein complexes containing histone deacetylase 3 (HDAC3) to alter transcriptional output primarily through repressive chromatin remodelling at target loci1-5. In the liver, loss of HDAC3 causes a marked hepatosteatosis largely because of de-repression of genes involved in lipid metabolism6,7; however, the individual roles and contribution of other complex members to hepatic and systemic metabolic regulation are unclear. Here we show that adult loss of both NCoR1 and NCoR2 (double knockout (KO)) in hepatocytes phenocopied the hepatomegalic fatty liver phenotype of HDAC3 KO. In addition, double KO livers exhibited a dramatic reduction in glycogen storage and gluconeogenic gene expression that was not observed with hepatic KO of individual NCoRs or HDAC3, resulting in profound fasting hypoglycaemia. This surprising HDAC3-independent activation function of NCoR1 and NCoR2 is due to an unexpected loss of chromatin accessibility on deletion of NCoRs that prevented glucocorticoid receptor binding and stimulatory effect on gluconeogenic genes. These studies reveal an unanticipated, non-canonical activation function of NCoRs that is required for metabolic health.


Asunto(s)
Gluconeogénesis , Histona Desacetilasas , Hígado , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Receptores de Glucocorticoides , Gluconeogénesis/genética , Animales , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 1 de Receptor Nuclear/genética , Ratones , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Hígado/metabolismo , Hepatocitos/metabolismo , Coactivador 2 del Receptor Nuclear/metabolismo , Coactivador 2 del Receptor Nuclear/genética
6.
Proc Natl Acad Sci U S A ; 121(9): e2320129121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377195

RESUMEN

Despite numerous female contraceptive options, nearly half of all pregnancies are unintended. Family planning choices for men are currently limited to unreliable condoms and invasive vasectomies with questionable reversibility. Here, we report the development of an oral contraceptive approach based on transcriptional disruption of cyclical gene expression patterns during spermatogenesis. Spermatogenesis involves a continuous series of self-renewal and differentiation programs of spermatogonial stem cells (SSCs) that is regulated by retinoic acid (RA)-dependent activation of receptors (RARs), which control target gene expression through association with corepressor proteins. We have found that the interaction between RAR and the corepressor silencing mediator of retinoid and thyroid hormone receptors (SMRT) is essential for spermatogenesis. In a genetically engineered mouse model that negates SMRT-RAR binding (SMRTmRID mice), the synchronized, cyclic expression of RAR-dependent genes along the seminiferous tubules is disrupted. Notably, the presence of an RA-resistant SSC population that survives RAR de-repression suggests that the infertility attributed to the loss of SMRT-mediated repression is reversible. Supporting this notion, we show that inhibiting the action of the SMRT complex with chronic, low-dose oral administration of a histone deacetylase inhibitor reversibly blocks spermatogenesis and fertility without affecting libido. This demonstration validates pharmacologic targeting of the SMRT repressor complex for non-hormonal male contraception.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Represoras , Humanos , Femenino , Masculino , Animales , Ratones , Proteínas de Unión al ADN/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Co-Represoras/genética , Co-Represor 2 de Receptor Nuclear/genética , Tretinoina/farmacología , Anticoncepción , Co-Represor 1 de Receptor Nuclear
7.
Int J Surg Pathol ; 32(3): 556-564, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37461232

RESUMEN

Giant cell-rich lesions of bone represent a heterogeneous group of entities which classically include giant cell tumor of bone, aneurysmal bone cyst, nonossifying fibroma, and Brown tumor of hyperparathyroidism. A recently described subset of giant cell-rich tumors involving bone and soft tissue has been characterized by recurrent HMGA2::NCOR2 fusions and keratin expression. The overlapping clinical, radiographic, and morphological features of these giant cell-rich lesions provide a unique diagnostic challenge, particularly on biopsy. We present 2 additional cases of keratin-positive giant cell-rich tumor of bone with HMGA2::NCOR2 fusions, including 1 patient who developed metastatic disease.


Asunto(s)
Quistes Óseos Aneurismáticos , Neoplasias Óseas , Tumor Óseo de Células Gigantes , Neoplasias Primarias Secundarias , Humanos , Neoplasias Óseas/diagnóstico , Neoplasias Óseas/genética , Neoplasias Óseas/metabolismo , Queratinas , Huesos/patología , Células Gigantes/patología , Neoplasias Primarias Secundarias/patología , Tumor Óseo de Células Gigantes/diagnóstico , Tumor Óseo de Células Gigantes/genética , Co-Represor 2 de Receptor Nuclear
8.
J Cutan Pathol ; 50(11): 977-982, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37496152

RESUMEN

BACKGROUND: Giant cell tumor of soft tissue (GCT-ST) is a rare soft tissue neoplasm that is morphologically similar to but genetically distinct from giant cell tumor of bone. A novel keratin-positive GCT-ST (KPGCT-ST) harboring HMGA2::NCOR2 fusions was recently discovered. Fewer than 30 cases have been described; herein is reported an additional seven. METHODS: Cases diagnosed as GCT-ST were retrieved from institutional archives and consultation files. The histopathologic characteristics were assessed, and the electronic medical record was reviewed. RESULTS: Seven tumors were identified in six women and one man with a median age of 23 years. All patients underwent excision; no recurrences or metastases were noted during a median follow-up period of 7 months. Histopathologically, the tumors were characterized by a multinodular proliferation of keratin-positive mononuclear cells with evenly admixed osteoclast-like giant cells and absent neoplastic bone. A fibrous capsule with lymphoid cuffing was frequently seen. Foamy macrophages, inflammation, hemorrhage, and hemosiderin were variably present. The HMGA2::NCOR2 fusion was detected in all cases. CONCLUSIONS: Our findings support previously reported hypotheses that KPGCT-ST is a spectrum of the same entity as the recently described xanthogranulomatous epithelial tumor. Although follow-up data are limited, to date, KPGCT-ST appears to follow an indolent course.


Asunto(s)
Tumores de Células Gigantes , Neoplasias de los Tejidos Blandos , Masculino , Humanos , Femenino , Adulto Joven , Adulto , Queratinas , Tumores de Células Gigantes/patología , Neoplasias de los Tejidos Blandos/patología , Diagnóstico Diferencial , Células Gigantes/patología , Co-Represor 2 de Receptor Nuclear
9.
J Cancer Res Clin Oncol ; 149(11): 8719-8728, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37131060

RESUMEN

PURPOSE: The significance of the non-classical G-protein-coupled estrogen receptor (GPER) as positive or negative prognostic factor for ovarian cancer patients remains still controversial. Recent results indicate that an imbalance of both co-factors and co-repressors of nuclear receptors regulates ovarian carcinogenesis by altering the transcriptional activity through chromatin remodeling. The present study aims to investigate whether the expression of the nuclear co-repressor NCOR2 plays a role in GPER signaling which thereby could positively impact overall survival rates of ovarian cancer patients. METHODS: NCOR2 expression was evaluated by immunohistochemistry in a cohort of 156 epithelial ovarian cancer (EOC) tumor samples and correlated with GPER expression. The correlation and differences in clinical and histopathological variables as well as their effect on prognosis were analyzed by Spearman's correlation, Kruskal-Wallis test and Kaplan-Meier estimates. RESULTS: Histologic subtypes were associated with different NCOR2 expression patterns. More specifically, serous and mucinous EOC demonstrated a higher NCOR2 expression (P = 0.008). In addition, high nuclear NCOR2 expression correlated significantly with high GPER expression (cc = 0.245, P = 0.008). A combined evaluation of both high NCOR2 (IRS > 6) and high GPER (IRS > 8) expression revealed an association of a significantly improved overall survival (median OS 50.9 versus 105.1 months, P = 0.048). CONCLUSION: Our results support the hypothesis that nuclear co-repressors such as NCOR2 may influence the transcription of target genes in EOC such as GPER. Understanding the role of nuclear co-repressors on signaling pathways will allow a better understanding of the factors involved in prognosis and clinical outcome of EOC patients.


Asunto(s)
Neoplasias Ováricas , Receptores de Estrógenos , Humanos , Femenino , Pronóstico , Proteínas Co-Represoras , Receptores Acoplados a Proteínas G , Neoplasias Ováricas/patología , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Co-Represor 2 de Receptor Nuclear/genética
10.
Am J Surg Pathol ; 47(7): 801-811, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37170907

RESUMEN

Giant cell tumors (GCTs) with high mobility group AT-Hook 2 ( HMGA2 )::nuclear receptor corepressor 2 ( NCOR2 ) fusion are rare mesenchymal tumors of controversial nosology, which have been anecdotally reported to respond to CSFR1 inhibitors. Here, we performed a comprehensive study of 6 GCTs with HMGA2::NCOR2 fusion and explored their relationship with other giant cell-rich neoplasms. Tumors occurred in 4 females and 2 males ranging in age from 17 to 32 years old (median 24). Three lesions originated in subcutaneous soft tissue and 3 in bone. Tumor size ranged from 20 to 33 mm (median 27 mm). The lesions had a nodular/multinodular architecture and were composed of sheets of mononuclear "histiocytoid" cells with uniform nuclei intermingled with multinucleated giant cells. Mitotic activity was low and nuclear atypia and metaplastic bone were absent. Variable findings included necrosis, cystic degeneration, lymphocytic infiltrate (sometimes forming nodules), and xanthogranulomatous inflammation. On immunohistochemistry, all cases focally expressed pan-keratin and were negative with SATB2 and H3.3G34W. Whole RNA-sequencing was performed in all cases of GCT with HMGA2::NCOR2 fusion and a subset of giant cell-rich tumors (tenosynovial-GCT, n = 19 and "wild-type" GCT of soft tissue, n = 9). Hierarchical clustering of RNA-sequencing data showed that GCT with HMGA2::NCOR2 fusion formed a single cluster, independent of the other 2 entities. Methylome profiling showed similar results, but the distinction from "wild-type" GCT of soft tissue was less flagrant. Gene expression analysis showed similar levels of expression of the CSF1/CSFR1 axis between GCT with HMGA2::NCOR2 fusion and tenosynovial-GCT, supporting their potential sensitivity to CSFR1 inhibitors. Clinical follow-up was available for 5 patients (range: 10 to 64 mo; median 32 mo). Three patients (60%) experienced local recurrences, whereas none had distant metastases or died of disease. Overall, our study confirms and expands previous knowledge on GCT with HMGA2::NCOR2 fusion and supports its inclusion as an independent entity.


Asunto(s)
Biomarcadores de Tumor , Tumores de Células Gigantes , Masculino , Femenino , Humanos , Adolescente , Adulto Joven , Adulto , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Tumores de Células Gigantes/patología , Inmunohistoquímica , Huesos/patología , Epigénesis Genética , Co-Represor 2 de Receptor Nuclear/genética
11.
Nat Commun ; 14(1): 2559, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37137875

RESUMEN

Placental development relies on coordinated cell fate decisions governed by signalling inputs. However, little is known about how signalling cues are transformed into repressive mechanisms triggering lineage-specific transcriptional signatures. Here, we demonstrate that upon inhibition of the Fgf/Erk pathway in mouse trophoblast stem cells (TSCs), the Ets2 repressor factor (Erf) interacts with the Nuclear Receptor Co-Repressor Complex 1 and 2 (NCoR1/2) and recruits it to key trophoblast genes. Genetic ablation of Erf or Tbl1x (a component of the NCoR1/2 complex) abrogates the Erf/NCoR1/2 interaction. This leads to mis-expression of Erf/NCoR1/2 target genes, resulting in a TSC differentiation defect. Mechanistically, Erf regulates expression of these genes by recruiting the NCoR1/2 complex and decommissioning their H3K27ac-dependent enhancers. Our findings uncover how the Fgf/Erf/NCoR1/2 repressive axis governs cell fate and placental development, providing a paradigm for Fgf-mediated transcriptional control.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos , Trofoblastos , Ratones , Animales , Femenino , Embarazo , Placenta , Diferenciación Celular/fisiología , Regulación de la Expresión Génica , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear
12.
PLoS One ; 17(12): e0277830, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36454860

RESUMEN

BACKGROUND: Silencing Mediator of Retinoid and Thyroid hormone receptors (SMRT; NCoR2) is a transcriptional corepressor (CoR) which has been recognized as an important player in the regulation of hepatic lipogenesis and in somatic development in mouse embryo. SMRT protein is also widely expressed in mouse connective tissues, for example adipocytes and muscle. We recently reported that mice with global deletion of SMRT develop significant obesity and muscle wasting which are independent from thyroid hormone (TH) signaling and thermogenesis. However, the tissue specific role of SMRT in skeletal muscle is still not clear. METHODS: To clarify role of SMRT in muscle differentiation, we made myogenic C2C12 clones which lack SMRT protein (C2C12-SKO) by using CRISPR-Cas9. Wild-type C2C12 (C2C12-WT) and C2C12-SKO cells were cultured in differentiation medium, and the resulting gene and protein profiles were compared between the two cell lines both before and after differentiation. We also analyzed muscle tissues which were dissected from whole body SMRT knockout (KO) mice and their controls. RESULTS: We found significant up-regulation of muscle specific ß-oxidation markers; Peroxisome proliferator-activated receptor δ (PPARδ) and PPARγ coactivator-1α (PGC-1α) in the C2C12-SKO cells, suggesting that the cells had a similar gene profile to what is found in exercised rodent skeletal muscle. On the other hand, confocal microscopic analysis showed the significant loss of myotubes in C2C12-SKO cells similar to the morphology found in immature myoblasts. Proteomics analysis also confirmed that the C2C12-SKO cells had higher expression of markers of fibrosis (ex. Collagen1A1; COL1A1 and Fibroblast growth factor-2; FGF-2), indicating the up-regulation of Transforming growth factor-ß (TGF-ß) receptor signaling. Consistent with this, treatment with a specific TGF-ß receptor inhibitor ameliorated both the defects in myotube differentiation and fibrosis. CONCLUSION: Taken together, we demonstrate that SMRT functions as a pivotal transcriptional mediator for both ß-oxidation and the prevention for the fibrosis via TGF-ß receptor signaling in the differentiation of C2C12 myoblasts. In contrast to the results from C2C12 cells, SMRT does not appear to play a role in adult skeletal muscle of whole body SMRT KO mice. Thus, SMRT plays a significant role in the differentiation of myoblasts.


Asunto(s)
Fibras Musculares Esqueléticas , Co-Represor 2 de Receptor Nuclear , PPAR delta , Animales , Ratones , Diferenciación Celular , Factor 2 de Crecimiento de Fibroblastos , Fibrosis , Músculo Esquelético , Co-Represor 2 de Receptor Nuclear/genética
13.
Nat Immunol ; 23(12): 1763-1776, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316474

RESUMEN

The nuclear corepressors NCOR1 and NCOR2 interact with transcription factors involved in B cell development and potentially link these factors to alterations in chromatin structure and gene expression. Herein, we demonstrate that Ncor1/2 deletion limits B cell differentiation via impaired recombination, attenuates pre-BCR signaling and enhances STAT5-dependent transcription. Furthermore, NCOR1/2-deficient B cells exhibited derepression of EZH2-repressed gene modules, including the p53 pathway. These alterations resulted in aberrant Rag1 and Rag2 expression and accessibility. Whole-genome sequencing of Ncor1/2 DKO B cells identified increased number of structural variants with cryptic recombination signal sequences. Finally, deletion of Ncor1 alleles in mice facilitated leukemic transformation, whereas human leukemias with less NCOR1 correlated with worse survival. NCOR1/2 mutations in human leukemia correlated with increased RAG expression and number of structural variants. These studies illuminate how the corepressors NCOR1/2 regulate B cell differentiation and provide insights into how NCOR1/2 mutations may promote B cell transformation.


Asunto(s)
Hematopoyesis , Transducción de Señal , Ratones , Humanos , Animales , Proteínas Co-Represoras , Núcleo Celular , Genómica , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/genética
14.
Front Immunol ; 13: 910705, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238311

RESUMEN

Dendritic cell (DC) fine-tunes inflammatory versus tolerogenic responses to protect from immune-pathology. However, the role of co-regulators in maintaining this balance is unexplored. NCoR1-mediated repression of DC immune-tolerance has been recently reported. Here we found that depletion of NCoR1 paralog SMRT (NCoR2) enhanced cDC1 activation and expression of IL-6, IL-12 and IL-23 while concomitantly decreasing IL-10 expression/secretion. Consequently, co-cultured CD4+ and CD8+ T-cells depicted enhanced Th1/Th17 frequency and cytotoxicity, respectively. Comparative genomic and transcriptomic analysis demonstrated differential regulation of IL-10 by SMRT and NCoR1. SMRT depletion represses mTOR-STAT3-IL10 signaling in cDC1 by down-regulating NR4A1. Besides, Nfkbia and Socs3 were down-regulated in Ncor2 (Smrt) depleted cDC1, supporting increased production of inflammatory cytokines. Moreover, studies in mice showed, adoptive transfer of SMRT depleted cDC1 in OVA-DTH induced footpad inflammation led to increased Th1/Th17 and reduced tumor burden after B16 melanoma injection by enhancing oncolytic CD8+ T-cell frequency, respectively. We also depicted decreased Ncor2 expression in Rheumatoid Arthritis, a Th1/Th17 disease.


Asunto(s)
Interleucina-10 , Interleucina-6 , Animales , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Células Dendríticas/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-23/metabolismo , Interleucina-6/metabolismo , Ratones , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear , Factor de Transcripción STAT3 , Serina-Treonina Quinasas TOR/metabolismo
15.
Proc Natl Acad Sci U S A ; 119(33): e2205276119, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35939699

RESUMEN

Brown adipose tissue (BAT) is a key thermogenic organ whose expression of uncoupling protein 1 (UCP1) and ability to maintain body temperature in response to acute cold exposure require histone deacetylase 3 (HDAC3). HDAC3 exists in tight association with nuclear receptor corepressors (NCoRs) NCoR1 and NCoR2 (also known as silencing mediator of retinoid and thyroid receptors [SMRT]), but the functions of NCoR1/2 in BAT have not been established. Here we report that as expected, genetic loss of NCoR1/2 in BAT (NCoR1/2 BAT-dKO) leads to loss of HDAC3 activity. In addition, HDAC3 is no longer bound at its physiological genomic sites in the absence of NCoR1/2, leading to a shared deregulation of BAT lipid metabolism between NCoR1/2 BAT-dKO and HDAC3 BAT-KO mice. Despite these commonalities, loss of NCoR1/2 in BAT does not phenocopy the cold sensitivity observed in HDAC3 BAT-KO, nor does loss of either corepressor alone. Instead, BAT lacking NCoR1/2 is inflamed, particularly with respect to the interleukin-17 axis that increases thermogenic capacity by enhancing innervation. Integration of BAT RNA sequencing and chromatin immunoprecipitation sequencing data revealed that NCoR1/2 directly regulate Mmp9, which integrates extracellular matrix remodeling and inflammation. These findings reveal pleiotropic functions of the NCoR/HDAC3 corepressor complex in BAT, such that HDAC3-independent suppression of BAT inflammation counterbalances stimulation of HDAC3 activity in the control of thermogenesis.


Asunto(s)
Tejido Adiposo Pardo , Co-Represor 1 de Receptor Nuclear , Co-Represor 2 de Receptor Nuclear , Termogénesis , Tejido Adiposo Pardo/metabolismo , Animales , Histona Desacetilasas/metabolismo , Inflamación/metabolismo , Ratones , Ratones Noqueados , Co-Represor 1 de Receptor Nuclear/genética , Co-Represor 1 de Receptor Nuclear/metabolismo , Co-Represor 2 de Receptor Nuclear/genética , Co-Represor 2 de Receptor Nuclear/metabolismo , Receptores de Ácido Retinoico/metabolismo , Termogénesis/genética , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
16.
Mod Pathol ; 35(11): 1656-1666, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690644

RESUMEN

Xanthogranulomatous epithelial tumor (XGET) and keratin-positive giant cell-rich soft tissue tumor with HMGA2-NCOR2 fusion (KPGCT) are two recently described neoplasms with both distinct and overlapping clinical and histopathologic features. We hypothesized that XGET and KPGCT may be related and represent a histologic spectrum of a single entity. To test this, we sought to characterize the clinical, radiographic, immunohistochemical, ultrastructural and molecular features of additional tumors with features of XGET and/or KPGCT, which we refer to descriptively as keratin-positive xanthogranulomatous/giant cell-rich tumors (KPXG/GCT). The archives were searched for potential cases of KPXG/GCT. Clinical and imaging features were noted. Slides were assessed for histologic and immunohistochemical findings. Ultrastructural and next generation RNA sequencing-based analysis were also performed. Nine cases were identified arising in seven women and two men [median age of 33 years (range: 12-87)]. Median tumor size was 4 cm (range: 2.4-14.0 cm) and tumors presented in the thigh (2), buttock (1), forearm (2), groin (1), cranial fossa (1), ilium (1), and tibia (1). Morphologically, tumors were most frequently characterized by a fibrous capsule, with associated lymphoid reaction, enclosing a polymorphous proliferation of histiocytes, giant cells (Touton and osteoclast-types), mixed inflammatory infiltrate, hemorrhage and hemosiderin deposition, which imparted a variably xanthogranulomatous to giant cell tumor-like appearance. One case clearly showed mononuclear cells with eosinophilic cytoplasm characteristic of XGET. All cases expressed keratin and 7 of 9 were found to harbor HMGA2-NCOR2 fusions including cases with xanthogranulomatous appearance. One patient developed local recurrence and multifocal pulmonary lesions, which were radiographically suspicious for metastases. Shared clinical, histologic and immunohistochemical features, and the shared presence of HMGA2-NCOR2 fusions supports interpretation of KPXG/GCT as a single entity which includes XGET and KPGCT. Given limited clinical follow-up to date and rare cases with apparently aggressive findings, we provisionally regard these tumors as having uncertain biologic potential.


Asunto(s)
Tumores de Células Gigantes , Neoplasias Glandulares y Epiteliales , Proteínas de Fusión Oncogénica , Neoplasias de los Tejidos Blandos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven , Células Gigantes/patología , Hemosiderina , Queratinas , Neoplasias Glandulares y Epiteliales/patología , Co-Represor 2 de Receptor Nuclear/genética , Neoplasias de los Tejidos Blandos/genética , Neoplasias de los Tejidos Blandos/patología , Proteínas de Fusión Oncogénica/genética , Proteína HMGA2/genética
17.
Nat Cancer ; 3(6): 734-752, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35618935

RESUMEN

Resistance to antitumor treatment contributes to patient mortality. Functional proteomic screening of organoids derived from chemotherapy-treated patients with breast cancer identified nuclear receptor corepressor 2 (NCOR2) histone deacetylase as an inhibitor of cytotoxic stress response and antitumor immunity. High NCOR2 in the tumors of patients with breast cancer predicted chemotherapy refractoriness, tumor recurrence and poor prognosis. Molecular studies revealed that NCOR2 inhibits antitumor treatment by regulating histone deacetylase 3 (HDAC3) to repress interferon regulatory factor 1 (IRF-1)-dependent gene expression and interferon (IFN) signaling. Reducing NCOR2 or impeding its epigenetic activity by modifying its interaction with HDAC3 enhanced chemotherapy responsiveness and restored antitumor immunity. An adeno-associated viral NCOR2-HDAC3 competitor potentiated chemotherapy and immune checkpoint therapy in culture and in vivo by permitting transcription of IRF-1-regulated proapoptosis and inflammatory genes to increase IFN-γ signaling. The findings illustrate the utility of patient-derived organoids for drug discovery and suggest that targeting stress and inflammatory-repressor complexes such as NCOR2-HDAC3 could overcome treatment resistance and improve the outcome of patients with cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Detección Precoz del Cáncer , Femenino , Humanos , Recurrencia Local de Neoplasia , Co-Represor 2 de Receptor Nuclear/genética , Organoides/metabolismo , Proteómica
18.
Mol Nutr Food Res ; 66(12): e2100826, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35384292

RESUMEN

SCOPE: Quercetin (QU) is one of the most abundant flavonoids in plants and has attracted the attention of researchers because of its remarkable antirheumatoid arthritis (RA) effects and extremely low adverse reactions. However, the underlying mechanism needs further study. METHODS AND RESULTS: Flow cytometry, immunofluorescence, enzyme linked immunosorbent assay (ELISA), and quantitative real-time polymerase chain reaction (qRT-PCR) reveal the obvious inhibitory effects of QU on Th17 cell differentiation in arthritic mice. More importantly, QU markedly limits the development of Th17 cell polarization, which is virtually compromised by the treatment with peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662 and knockdown of PPARγ. Additionally, molecular dynamics simulation and immunofluorescence exhibit QU directly binds to PPARγ and increases PPARγ nuclear translocation. Besides, QU confers its moderation effect on suppressor of cytokine signaling protein (SOCS3)/signal transducer and activator of transcription 3 (STAT3) axis partially depending on PPARγ. Furthermore, coimmunoprecipitation shows QU redistributes the corepressor silencing mediator for retinoid and thyroid-hormone receptors (SMRT) from PPARγ to STAT3. Finally, the inhibition of Th17 response and the antiarthritic effect of QU are nullified by GW9662 treatment in arthritic mice. CONCLUSION: QU targets PPARγ and consequently inhibits Th17 cell differentiation by dual inhibitory activity of STAT3 to exert antiarthritic effect. The findings facilitate its development and put forth a stage for uncovering the mechanism of other naturally occurring compounds with chemical structures similar to QU.


Asunto(s)
Artritis , Factor de Transcripción STAT3 , Animales , Diferenciación Celular , Proteínas Co-Represoras/metabolismo , Proteínas Co-Represoras/farmacología , Ratones , Co-Represor 2 de Receptor Nuclear/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Quercetina/farmacología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Células Th17/metabolismo , Activación Transcripcional
19.
Cancer Genomics Proteomics ; 19(2): 163-177, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35181586

RESUMEN

BACKGROUND/AIM: Chimeras involving the high-mobility group AT-hook 2 gene (HMGA2 in 12q14.3) have been found in lipomas and other benign mesenchymal tumors. We report here a fusion of HMGA2 with the nuclear receptor co-repressor 2 gene (NCOR2 in 12q24.31) repeatedly found in tumors of bone and the first cytogenetic investigation of this fusion. MATERIALS AND METHODS: Six osteoclastic giant cell-rich tumors were investigated using G-banding, RNA sequencing, reverse transcription polymerase chain reaction, Sanger sequencing, and fluorescence in situ hybridization. RESULTS: Four tumors had structural chromosomal aberrations of 12q. The pathogenic variant c.103_104GG>AT (p.Gly35Met) in the H3.3 histone A gene was found in a tumor without 12q aberration. In-frame HMGA2-NCOR2 fusion transcripts were found in all tumors. In two cases, the presence of an HMGA2-NCOR2 fusion gene was confirmed by FISH on metaphase spreads. CONCLUSION: Our results demonstrate that a subset of osteoclastic giant cell-rich tumors of bone are characterized by an HMGA2-NCOR2 fusion gene.


Asunto(s)
Neoplasias Óseas , Fusión Génica , Tumores de Células Gigantes , Proteína HMGA2 , Lipoma , Co-Represor 2 de Receptor Nuclear , Osteoclastos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Tumores de Células Gigantes/genética , Tumores de Células Gigantes/patología , Células Gigantes/patología , Proteína HMGA2/genética , Humanos , Hibridación Fluorescente in Situ , Lipoma/genética , Lipoma/patología , Co-Represor 2 de Receptor Nuclear/genética , Osteoclastos/patología
20.
Cephalalgia ; 42(7): 631-644, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35166138

RESUMEN

HYPOTHESIS: To identify genetic factors predisposing to migraine-epilepsy phenotype utilizing a multi-generational family with known linkage to chr12q24.2-q24.3. METHODS: We used single nucleotide polymorphism (SNP) genotyping and next-generation sequencing technologies to perform linkage, haplotype, and variant analyses in an extended Finnish migraine-epilepsy family (n = 120). In addition, we used a large genome-wide association study (GWAS) dataset of migraine and two biobank studies, UK Biobank and FinnGen, to test whether variants within the susceptibility region associate with migraine or epilepsy related phenotypes in a population setting. RESULTS: The family showed the highest evidence of linkage (LOD 3.42) between rs7966411 and epilepsy. The haplotype shared among 12 out of 13 epilepsy patients in the family covers almost the entire NCOR2 and co-localizes with one of the risk loci of the recent GWAS on migraine. The haplotype harbors nine low-frequency variants with potential regulatory functions. Three of them, in addition to two common variants, show nominal associations with neurological disorders in either UK Biobank or FinnGen. CONCLUSION: We provide several independent lines of evidence supporting association between migraine-epilepsy phenotype and NCOR2. Our study suggests that NCOR2 may have a role in both migraine and epilepsy and thus would provide evidence for shared pathophysiology underlying these two diseases.


Asunto(s)
Epilepsia , Trastornos Migrañosos , Epilepsia/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Migrañosos/genética , Co-Represor 2 de Receptor Nuclear/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...