Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.924
Filtrar
1.
Int J Nanomedicine ; 19: 3957-3972, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38711614

RESUMEN

Purpose: Current treatment approaches for Prostate cancer (PCa) often come with debilitating side effects and limited therapeutic outcomes. There is urgent need for an alternative effective and safe treatment for PCa. Methods: We developed a nanoplatform to target prostate cancer cells based on graphdiyne (GDY) and a copper-based metal-organic framework (GDY-CuMOF), that carries the chemotherapy drug doxorubicin (DOX) for cancer treatment. Moreover, to provide GDY-CuMOF@DOX with homotypic targeting capability, we coated the PCa cell membrane (DU145 cell membrane, DCM) onto the surface of GDY-CuMOF@DOX, thus obtaining a biomimetic nanoplatform (DCM@GDY-CuMOF@DOX). The nanoplatform was characterized by using transmission electron microscope, atomic force microscope, X-ray diffraction, etc. Drug release behavior, antitumor effects in vivo and in vitro, and biosafety of the nanoplatform were evaluated. Results: We found that GDY-CuMOF exhibited a remarkable capability to load DOX mainly through π-conjugation and pore adsorption, and it responsively released DOX and generated Cu+ in the presence of glutathione (GSH). In vivo experiments demonstrated that this nanoplatform exhibits remarkable cell-killing efficiency by generating lethal reactive oxygen species (ROS) and mediating cuproptosis. In addition, DCM@GDY-CuMOF@DOX effectively suppresses tumor growth in vivo without causing any apparent side effects. Conclusion: The constructed DCM@GDY-CuMOF@DOX nanoplatform integrates tumor targeting, drug-responsive release and combination with cuproptosis and chemodynamic therapy, offering insights for further biomedical research on efficient PCa treatment.


Asunto(s)
Cobre , Doxorrubicina , Grafito , Estructuras Metalorgánicas , Neoplasias de la Próstata , Masculino , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Doxorrubicina/farmacología , Doxorrubicina/química , Animales , Humanos , Línea Celular Tumoral , Cobre/química , Cobre/farmacología , Grafito/química , Grafito/farmacología , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Ratones , Liberación de Fármacos , Especies Reactivas de Oxígeno/metabolismo , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones Desnudos , Nanopartículas/química , Antineoplásicos/farmacología , Antineoplásicos/química , Portadores de Fármacos/química , Ensayos Antitumor por Modelo de Xenoinjerto
2.
ACS Nano ; 18(19): 12386-12400, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38699808

RESUMEN

Current cancer vaccines face challenges due to an immunosuppressive tumor microenvironment and their limited ability to produce an effective immune response. To address the above limitations, we develop a 3-(2-spiroadamantyl)-4-methoxy-4-(3-phosphoryloxy)-phenyl-1,2-dioxetane (alkaline phosphatase substrate) and XMD8-92 (extracellular signal-regulated kinase 5 inhibitor)-codelivered copper-tetrahydroxybenzoquinone (Cu-THBQ/AX) nanosized metal-organic framework to in situ-generate therapeutic vaccination. Once inside the early endosome, the alkaline phosphatase overexpressed in the tumor cells' membrane activates the in situ type I photodynamic effect of Cu-THBQ/AX for generating •O2-, and the Cu-THBQ/AX catalyzes O2 and H2O2 to •O2- and •OH via semiquinone radical catalysis and Fenton-like reactions. This surge of ROS in early endosomes triggers caspase-3-mediated proinflammatory pyroptosis via activating phospholipase C. Meanwhile, Cu-THBQ/AX can also induce the oligomerization of dihydrolipoamide S-acetyltransferase to trigger tumor cell cuproptosis. The production of •OH could also trigger the release of XMD8-92 for effectively inhibiting the efferocytosis of macrophages to convert immunosuppressive apoptosis of cancer cells into proinflammatory secondary necrosis. The simultaneous induction of pyroptosis, cuproptosis, and secondary necrosis effectively converts the tumor microenvironment from "cold" to "hot" conditions, making it an effective antigen pool. This transformation successfully activates the antitumor immune response, inhibiting tumor growth and metastasis.


Asunto(s)
Vacunas contra el Cáncer , Cobre , Macrófagos , Estructuras Metalorgánicas , Piroptosis , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Ratones , Piroptosis/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Humanos , Cobre/química , Cobre/farmacología , Vacunas contra el Cáncer/química , Microambiente Tumoral/efectos de los fármacos , Nanopartículas/química , Fagocitosis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Línea Celular Tumoral , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Neoplasias/metabolismo , Ratones Endogámicos BALB C , Eferocitosis , Nanovacunas
3.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731545

RESUMEN

Functional Lyocell fibers gain interest in garments and technical textiles, especially when equipped with inherently bioactive features. In this study, Lyocell fibers are modified with an ion exchange resin and subsequently loaded with copper (Cu) ions. The modified Lyocell process enables high amounts of the resin additive (>10%) through intensive dispersion and subsequently, high uptake of 2.7% Cu throughout the whole cross-section of the fiber. Fixation by Na2CO3 increases the washing and dyeing resistance considerably. Cu content after dyeing compared to the original fiber value amounts to approx. 65% for reactive, 75% for direct, and 77% for HT dyeing, respectively. Even after 50 household washes, a recovery of 43% for reactive, 47% for direct and 26% for HT dyeing is proved. XRD measurements reveal ionic bonding of Cu fixation inside the cellulose/ion exchange resin composite. A combination of the fixation process with a change in Cu valence state by glucose/NaOH leads to the formation of Cu2O crystallites, which is proved by XRD. Cu fiber shows a strong antibacterial effect against Staphylococcus aureus and Klebsiella pneumonia bacteria, even after 50 household washing cycles of both >5 log CFU. In nonwoven blends with a share of only 6% Cu fiber, a strong antimicrobial (CFU > log 5) and full antiviral effectiveness (>log 4) was received even after 50 washing cycles. Time-dependent measurements already show strong antiviral behavior after 30 s. Further, the fibers show an increased die off of the fungal isolate Candida auris with CFU log 4.4, and nonwovens made from 6% Cu fiber share a CFU log of 1.7. Findings of the study predestines the fiber for advanced textile processing and applications in areas with high germ loads.


Asunto(s)
Antibacterianos , Antifúngicos , Antivirales , Cobre , Antifúngicos/farmacología , Antifúngicos/química , Antibacterianos/farmacología , Antibacterianos/química , Antivirales/farmacología , Antivirales/química , Cobre/química , Cobre/farmacología , Celulosa/química , Celulosa/farmacología , Staphylococcus aureus/efectos de los fármacos , Textiles , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/efectos de los fármacos , Lignina/química , Lignina/farmacología , Humanos
4.
ACS Biomater Sci Eng ; 10(5): 3438-3453, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38564666

RESUMEN

Despite being a weaker metal, zinc has become an increasingly popular candidate for biodegradable implant applications due to its suitable corrosion rate and biocompatibility. Previous studies have experimented with various alloy elements to improve the overall mechanical performance of pure Zn without compromising the corrosion performance and biocompatibility; however, the thermal stability of biodegradable Zn alloys has not been widely studied. In this study, TiC nanoparticles were introduced for the first time to a Zn-Al-Cu system. After hot rolling, TiC nanoparticles were uniformly distributed in the Zn matrix and effectively enabled phase control during solidification. The Zn-Cu phase, which was elongated and sharp in the reference alloy, became globular in the nanocomposite. The strength of the alloy, after introducing TiC nanoparticles, increased by 31% from 259.7 to 340.3 MPa, while its ductility remained high at 49.2% elongation to failure. Fatigue performance also improved greatly by adding TiC nanoparticles, increasing the fatigue limit by 47.6% from 44.7 to 66 MPa. Furthermore, TiC nanoparticles displayed excellent phase control capability during body-temperature aging. Without TiC restriction, Zn-Cu phases evolved into dendritic morphologies, and the Al-rich eutectic grew thicker at grain boundaries. However, both Zn-Cu and Al-rich eutectic phases remained relatively unchanged in shape and size in the nanocomposite. A combination of exceptional tensile properties, improved fatigue performance, better long-term stability with a suitable corrosion rate, and excellent biocompatibility makes this new Zn-Al-Cu-TiC material a promising candidate for biodegradable stents and other biodegradable applications.


Asunto(s)
Implantes Absorbibles , Cobre , Stents , Zinc , Zinc/química , Zinc/farmacología , Cobre/química , Cobre/farmacología , Aleaciones/química , Humanos , Titanio/química , Titanio/farmacología , Aluminio/química , Aluminio/farmacología , Ensayo de Materiales , Corrosión , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas/química , Nanocompuestos/química
5.
Biomacromolecules ; 25(5): 3169-3177, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38684138

RESUMEN

Achieving precise control over gelator alignment and morphology is crucial for crafting tailored materials and supramolecular structures with distinct properties. We successfully aligned the self-assembled micelles formed by a functionalized dipeptide 2NapFF into long 1-D "gel noodles" by cross-linking with divalent metal chlorides. We identify the most effective cross-linker for alignment, enhancing mechanical stability, and imparting functional properties. Our study shows that Group 2 metal ions are particularly suited for creating mechanically robust yet flexible gel noodles because of their ionic and nondirectional bonding with carboxylate groups. In contrast, the covalent nature and high directional bonds of d-block metal ions with carboxylates tend to disrupt the self-assembly of 2NapFF. Furthermore, the 2NapFF-Cu noodles demonstrated selective antibacterial activity, indicating that the potent antibacterial property of the copper(II) ion is preserved within the cross-linked system. By merging insights into molecular alignment, gel extrusion processing, and integrating specific functionalities, we illustrate how the versatility of dipeptide-based gels can be utilized in creating next-generation soft materials.


Asunto(s)
Antibacterianos , Cobre , Geles , Antibacterianos/química , Antibacterianos/farmacología , Cobre/química , Cobre/farmacología , Geles/química , Reactivos de Enlaces Cruzados/química , Dipéptidos/química , Dipéptidos/farmacología , Micelas , Pruebas de Sensibilidad Microbiana , Staphylococcus aureus/efectos de los fármacos , Escherichia coli/efectos de los fármacos
6.
Biomacromolecules ; 25(5): 2770-2779, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38687975

RESUMEN

Drug repurposing uses approved drugs as candidate anticancer therapeutics, harnesses previous research and development efforts, and benefits from available clinically suitable formulations and evidence of patient tolerability. In this work, the drug used clinically to treat chronic alcoholism, disulfiram (DSF), was studied for its antitumor efficacy in a copper-dependent manner. The combination of DSF and copper could achieve a tumor cell growth inhibition effect comparable to those of 5-fluorouracil and taxol on head and neck cancer cells. Both bulk dendrimer hydrogel and microsized dendrimer hydrogel particles were utilized for the localized sustained release of copper in the tumor site. The localized sustained release of copper facilitated the tumor inhibition effect following intratumoral injection in a mouse's head and neck cancer model.


Asunto(s)
Cobre , Preparaciones de Acción Retardada , Disulfiram , Neoplasias de Cabeza y Cuello , Disulfiram/farmacología , Disulfiram/química , Disulfiram/administración & dosificación , Animales , Cobre/química , Cobre/farmacología , Ratones , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Neoplasias de Cabeza y Cuello/patología , Humanos , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos
7.
J Inorg Biochem ; 256: 112550, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599004

RESUMEN

Cisplatin remains the most widely used chemotherapeutic agent in cancer treatment; however, its inherent drawbacks have fueled the development of novel metalloanticancer drugs. In this study, two novel Cu(II) complexes (Cu1 and Cu2) were designed and synthesized. Notably, these Cu(II) complexes showed higher cytotoxicity against HL-7402 cells than cisplatin. Moreover, Cu(II) complexes significantly inhibited liver cancer growth in a xenograft model. A mechanism study revealed that the Cu(II) complexes reduced the mitochondrial membrane potential of cancer cells, produced excessive reactive oxygen species (ROS), induced mitochondrial DNA (mtDNA) damage, and ultimately facilitated cancer cell apoptosis.


Asunto(s)
Antineoplásicos , Apoptosis , Complejos de Coordinación , Cobre , Daño del ADN , ADN Mitocondrial , Neoplasias Hepáticas , Mitocondrias , Especies Reactivas de Oxígeno , Humanos , Cobre/química , Cobre/farmacología , Apoptosis/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/metabolismo , Animales , Daño del ADN/efectos de los fármacos , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , ADN Mitocondrial/genética , Especies Reactivas de Oxígeno/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Línea Celular Tumoral , Hidrazonas/farmacología , Hidrazonas/química , Hidrazonas/síntesis química , Ensayos Antitumor por Modelo de Xenoinjerto , Ratones Desnudos , Ratones Endogámicos BALB C
8.
Colloids Surf B Biointerfaces ; 238: 113891, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38615392

RESUMEN

The three-dimensional-printed Ti6Al4V implant (3DTi) has been widely accepted for the reconstruction of massive bone defects in orthopedics owing to several advantages, such as its tailored shape design, avoiding bone graft and superior bone-implant interlock. However, the osteoinduction activity of 3DTi is inadequate when applied clinically even though it exhibits osteoconduction. This study developes a comprehensive coatless strategy for the surface improvement of 3DTi through copper (Cu) ion implantation and ultraviolet (UV) photofunctionalization to enhance osteoinductivity. The newly constructed functional 3DTi (UV/Ti-Cu) achieved stable and controllable Cu doping, sustained Cu2+ releasing, and increased surface hydrophilicity. By performing cellular experiments, we determined that the safe dose range of Cu ion implantation was less than 5×1016 ions/cm2. The implanted Cu2+ enhanced the ALP activity and the apatite formation ability of bone marrow stromal cells (BMSCs) while slightly decreasing proliferation ability. When combined with UV photofunctionalization, cell adhesion and proliferation were significantly promoted and bone mineralization was further increased. Meanwhile, UV/Ti-Cu was conducive to the migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) in vitro, theoretically facilitating vascular coupling osteogenesis. In conclusion, UV/Ti-Cu is a novel attempt to apply two coatless techniques for the surface modification of 3DTi. In addition, it is considered a potential bone substrate for repairing bone defects.


Asunto(s)
Aleaciones , Adhesión Celular , Cobre , Células Endoteliales de la Vena Umbilical Humana , Neovascularización Fisiológica , Osteogénesis , Impresión Tridimensional , Titanio , Rayos Ultravioleta , Titanio/química , Titanio/farmacología , Aleaciones/química , Aleaciones/farmacología , Osteogénesis/efectos de los fármacos , Cobre/química , Cobre/farmacología , Adhesión Celular/efectos de los fármacos , Humanos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Neovascularización Fisiológica/efectos de los fármacos , Animales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Propiedades de Superficie , Iones/química , Proliferación Celular/efectos de los fármacos , Prótesis e Implantes , Células Cultivadas , Angiogénesis
9.
Environ Sci Pollut Res Int ; 31(20): 30212-30227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602633

RESUMEN

Photocatalytic disinfection is a promising technology with low cost and high efficiency. However, most of the current studies on photocatalytic disinfection ignore the widespread presence of natural organic matter (NOM) in water bodies, so the incomplete conclusions obtained may not be applicable. Herein, this paper systematically studied the influence of humic acid (HA), one of the most important components of NOM, on the photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO2 nanofibers. We found that with the addition of HA, the light transmittance of the solution at 550 nm decreased from 94 to 60%, and the band gap of the photocatalyst was increased from 2.96 to 3.05 eV. Compared with reacting without HA, the degradation amount of RNA of f2 decreased by 88.7% after HA was added, and the RNA concentration increased from 1.95 to 4.38 ng·µL-1 after the reaction. Hence, we propose mechanisms of the effect of HA on photocatalytic disinfection: photo-shielding, passivation of photocatalysts, quenching of free radicals, and virus protection. Photo-shielding and photocatalyst passivation lead to the decrease of photocatalyst activity, and the reactive oxygen species (ROSs) (·OH, ·O2-, 1O2, H2O2) are further trapped by HA. The HA in water also can protect the shape of phage f2 and reduce the leakage of protein and the destruction of ribonucleic acid (RNA). This work provides an insight into the mechanisms for the influence of HA in photocatalytic disinfection process and a theoretical basis for its practical application.


Asunto(s)
Bacteriófagos , Cobre , Desinfección , Sustancias Húmicas , Nanofibras , Titanio , Titanio/química , Titanio/farmacología , Desinfección/métodos , Cobre/química , Cobre/farmacología , Nanofibras/química , Catálisis , Luz
10.
Colloids Surf B Biointerfaces ; 238: 113921, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38631280

RESUMEN

Tumor microenvironment (TME)-responsive size-changeable and biodegradable nanoplatforms for multimodal therapy possess huge advantages in anti-tumor therapy. Hence, we developed a hyaluronic acid (HA) modified CuS/MnO2 nanosheets (HCMNs) as a multifunctional nanoplatform for synergistic chemodynamic therapy (CDT)/photothermal therapy (PTT)/photodynamic therapy (PDT). The prepared HCMNs exhibited significant NIR light absorption and photothermal conversion efficiency because of the densely deposited ultra-small sized CuS nanoparticles on the surface of MnO2 nanosheet. They could precisely target the tumor cells and rapidly decomposed into small sized nanostructures in the TME, and then efficiently promote intracellular ROS generation through a series of cascade reactions. Moreover, the local temperature elevation induced by photothermal effect also promote the PDT based on CuS nanoparticles and the Fenton-like reaction of Mn2+, thereby enhancing the therapeutic efficiency. Furthermore, the T1-weighted magnetic resonance (MR) imaging was significantly enhanced by the abundant Mn2+ ions from the decomposition process of HCMNs. In addition, the CDT/PTT/PDT synergistic therapy using a single NIR light source exhibited considerable anti-tumor effect via in vitro cell test. Therefore, the developed HCMNs will provide great potential for MR imaging and multimodal synergistic cancer therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Imagen por Resonancia Magnética , Compuestos de Manganeso , Óxidos , Fotoquimioterapia , Microambiente Tumoral , Compuestos de Manganeso/química , Compuestos de Manganeso/farmacología , Microambiente Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Óxidos/química , Óxidos/farmacología , Humanos , Cobre/química , Cobre/farmacología , Tamaño de la Partícula , Nanoestructuras/química , Antineoplásicos/farmacología , Antineoplásicos/química , Fototerapia , Nanopartículas/química , Supervivencia Celular/efectos de los fármacos , Propiedades de Superficie , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Animales
11.
Biomater Sci ; 12(10): 2730-2742, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38639196

RESUMEN

Polypropylene (PP) mesh is widely used in hernioplasty, but it is prone to contamination by pathogenic bacteria. Here, we present an infection microenvironment-responsive metal-phenolic network (MPN) coating, which is made up of Cu2+ and tannic acid (TA) (referred to as CT coating), and is fabricated on PP meshes by layer-by-layer (LbL) assembly. The CT coating provided a robust protection for the PP mesh from pathogenic bacterial infection in a pH-responsive manner due to the pH-responsive disassembly kinetics of MPN complexes. Moreover, the PP meshes with ten CT coating cycles (PP-CT(10)) exhibited excellent stability in a physiological environment, with the killing ratio against "superbug" methicillin-resistant Staphylococcus aureus (MRSA) at pH 5.5 exceeding 99% even after 28 days of PBS (pH 7.4) immersion. In addition, the PP-CT(10) exhibited excellent in vivo anti-infective ability in a rodent subcutaneous implant MRSA infection model, and the results of histological and immunohistochemical analyses demonstrated that the reduced bacterial number alleviated the inflammatory response at implant sites. This study revealed that MPN coating is a promising strategy, which could provide a self-defensive ability for various implants to combat post-surgical infections in a pH-responsive manner.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Polipropilenos , Mallas Quirúrgicas , Taninos , Concentración de Iones de Hidrógeno , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Polipropilenos/química , Taninos/química , Taninos/farmacología , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Herniorrafia , Cobre/química , Cobre/farmacología , Ratones
12.
J Colloid Interface Sci ; 666: 434-446, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38608638

RESUMEN

Bacterial infections are among the most significant causes of death in humans. Chronic misuse or uncontrolled use of antibiotics promotes the emergence of multidrug-resistant superbugs that threaten public health through the food chain and cause environmental pollution. Based on the above considerations, copper selenide nanosheets (CuSe NSs) with photothermal therapy (PTT)- and photodynamic therapy (PDT)-related properties have been fabricated. These CuSe NSs possess enhanced PDT-related properties and can convert O2 into highly toxic reactive oxygen species (ROS), which can cause significant oxidative stress and damage to bacteria. In addition, CuSe NSs can efficiently consume glutathione (GSH) at bacterial infection sites, thus further enhancing their sterilization efficacy. In vitro antibacterial experiments with near-infrared (NIR) irradiation have shown that CuSe NSs have excellent photothermal bactericidal properties. These experiments also showed that CuSe NSs exerted excellent bactericidal effects on wounds infected with methicillin-resistant Staphylococcus aureus (MRSA) and significantly promoted the healing of infected wounds. Because of their superior biological safety, CuSe NSs are novel copper-based antimicrobial agents that are expected to enter clinical trials, serving as a modern approach to the major problem of treating bacterially infected wounds.


Asunto(s)
Antibacterianos , Cobre , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Nanoestructuras , Terapia Fototérmica , Cobre/química , Cobre/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Animales , Nanoestructuras/química , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Propiedades de Superficie , Tamaño de la Partícula , Selenio/química , Selenio/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Infecciones Estafilocócicas/tratamiento farmacológico
13.
J Cancer Res Clin Oncol ; 150(4): 213, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662225

RESUMEN

Copper is a necessary micronutrient for maintaining the well-being of the human body. The biological activity of organic ligands, especially their anticancer activity, is often enhanced when they coordinate with copper(I) and (II) ions. Copper and its compounds are capable of inducing tumor cell death through various mechanisms of action, including activation of apoptosis signaling pathways by reactive oxygen species (ROS), inhibition of angiogenesis, induction of cuproptosis, and paraptosis. Some of the copper complexes are currently being evaluated in clinical trials for their ability to map tumor hypoxia in various cancers, including locally advanced rectal cancer and bulky tumors. Several studies have shown that copper nanoparticles can be used as effective agents in chemodynamic therapy, phototherapy, hyperthermia, and immunotherapy. Despite the promising anticancer activity of copper-based compounds, their use in clinical trials is subject to certain limitations. Elevated copper concentrations may promote tumor growth, angiogenesis, and metastasis by affecting cellular processes.


Asunto(s)
Antineoplásicos , Cobre , Neoplasias , Humanos , Cobre/farmacología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Animales , Complejos de Coordinación/farmacología , Complejos de Coordinación/uso terapéutico , Complejos de Coordinación/química
14.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(2): 389-394, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38660841

RESUMEN

OBJECTIVE: To investigate the effects of elesclomol-Cu (ES-Cu) on the proliferation and cuproptosis of human acute myeloid leukemia (AML) cells. METHODS: The effects of ES-Cu on the proliferation of AML cells and the AML cells pre-treated with ammonium tetrathiomolybdate (TTM) were examined by CCK-8 assay. The Calcein/PI kit was used to detected the changes in activity and cytotoxicity of AML cells induced by ES-Cu. Flow cytometry and Cytation3 fully automated cell imaging multifunctional detection system were used to analyze DCFH-DA fluorescence intensity, so as to determine the level of reactive oxygen species (ROS). The GSH and GSSG detection kits were used to measure the intracellular GSH content. Western blot was used to detected the expression of cuproptosis-related proteins ATP7B, FDX1, DLAT and DPYD. RESULTS: ES-Cu inhibited the proliferation of Kasumi-1 and HL-60 cells in a concentration-dependent manner (r Kasumi-1=-0.99, r HL-60=-0.98). As the concentration of ES-Cu increased, the level of intracellular ROS also increased (P <0.01-0.001). TTM could significantly reverse the inhibitory effect of ES-Cu on cell proliferation and its promoting effect on ROS. With the increase of ES-Cu concentration, the content of GSH was decreased (r =-0.98), and Western blot showed that the protein expressions of ATP7B, FDX1, DLAT and DPYD were significantly reduced (P <0.05). CONCLUSION: ES-Cu can induce cuproptosis in AML cells, which provides a new idea for the treatment of AML.


Asunto(s)
Proliferación Celular , Hidrazinas , Leucemia Mieloide Aguda , Molibdeno , Especies Reactivas de Oxígeno , Humanos , Proliferación Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Células HL-60 , Línea Celular Tumoral , Cobre/farmacología
15.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 447-454, 2024 Mar 20.
Artículo en Chino | MEDLINE | ID: mdl-38597435

RESUMEN

OBJECTIVE: To investigate the neuroprotective effect of Huangpu Tongqiao Capsule (HPTQ) in a rat model of Wilson disease (WD) and explore the underlying mechanisms. METHODS: SD rat models of WD were established by feeding of coppersupplemented chow diet and drinking water for 12 weeks, and starting from the 9th week, the rats were treated with low-, moderate- and high-dose HPTQ, penicillamine, or normal saline by gavage on a daily basis for 3 weeks. Copper levels in the liver and 24-h urine of the rats were detected, and their learning and memory abilities were evaluated using Morris water maze test. HE staining was used to observe morphological changes of CA1 region neurons in the hippocampus, and neuronal apoptosis was detected with TUNEL staining. Hippocampal expressions of endoplasmic reticulum stress (ERS)-mediated apoptosis pathway-related proteins GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 at both the mRNA and protein levels were detected using RT-qPCR, immunofluorescence assay or Western blotting. RESULTS: Compared with normal control rats, the rat models with copper overload-induced WD exhibited significantly increased copper levels in both the liver and 24-h urine, impaired learning and memory abilities, obvious hippocampal neuronal damage in the CA1 region and increased TUNEL-positive neurons (P<0.01), with also lowered mRNA and protein expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the hippocampus (all P<0.01). Treatments with HPTQ and penicillamine significantly lowered copper level in the liver but increased urinary copper level, improved learning and memory ability, alleviated neuronal damage and apoptosis in the hippocampus, and decreased hippocampal expressions of GRP78, CHOP, caspase-12, cleaved caspase-9, and cleaved caspase-3 in the rat models (P<0.01 or 0.05). CONCLUSION: HPTQ Capsule has neuroprotective effects in rat models of WD possibly by inhibiting ERS-mediated apoptosis pathway.


Asunto(s)
Disfunción Cognitiva , Degeneración Hepatolenticular , Ratas , Animales , Ratas Sprague-Dawley , Degeneración Hepatolenticular/tratamiento farmacológico , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Caspasa 12/metabolismo , Cobre/metabolismo , Cobre/farmacología , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Apoptosis , Hipocampo/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Penicilamina/farmacología , Disfunción Cognitiva/tratamiento farmacológico , ARN Mensajero
16.
Pestic Biochem Physiol ; 201: 105893, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685255

RESUMEN

Potato virus Y (PVY) is one of the most important pathogens in the genus Potyvirus that seriously harms agricultural production. Copper (Cu), as a micronutrient, is closely related to plant immune response. In this study, we found that foliar application of Cu could inhibit PVY infection to some extent, especially at 7 days post inoculation (dpi). To explore the effect of Cu on PVY infection, transcriptome sequencing analysis was performed on PVY-infected tobacco with or without Cu application. Several key pathways regulated by Cu were identified, including plant-pathogen interaction, inorganic ion transport and metabolism, and photosynthesis. Moreover, the results of virus-induced gene silencing (VIGS) assays revealed that NbMLP423, NbPIP2, NbFd and NbEXPA played positive roles in resistance to PVY infection in Nicotiana benthamiana. In addition, transgenic tobacco plants overexpressing NtEXPA11 showed increased resistance to PVY infection. These results contribute to clarify the role and regulatory mechanism of Cu against PVY infection, and provide candidate genes for disease resistance breeding.


Asunto(s)
Cobre , Resistencia a la Enfermedad , Nicotiana , Enfermedades de las Plantas , Potyvirus , Nicotiana/virología , Nicotiana/genética , Potyvirus/fisiología , Cobre/farmacología , Enfermedades de las Plantas/virología , Resistencia a la Enfermedad/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Plantas Modificadas Genéticamente/virología , Regulación de la Expresión Génica de las Plantas , Transcriptoma
17.
J Nanobiotechnology ; 22(1): 205, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658965

RESUMEN

The elevated level of hydrogen sulfide (H2S) in colon cancer hinders complete cure with a single therapy. However, excessive H2S also offers a treatment target. A multifunctional cascade bioreactor based on the H2S-responsive mesoporous Cu2Cl(OH)3-loaded hypoxic prodrug tirapazamine (TPZ), in which the outer layer was coated with hyaluronic acid (HA) to form TPZ@Cu2Cl(OH)3-HA (TCuH) nanoparticles (NPs), demonstrated a synergistic antitumor effect through combining the H2S-driven cuproptosis and mild photothermal therapy. The HA coating endowed the NPs with targeting delivery to enhance drug accumulation in the tumor tissue. The presence of both the high level of H2S and the near-infrared II (NIR II) irradiation achieved the in situ generation of photothermic agent copper sulfide (Cu9S8) from the TCuH, followed with the release of TPZ. The depletion of H2S stimulated consumption of oxygen, resulting in hypoxic state and mitochondrial reprogramming. The hypoxic state activated prodrug TPZ to activated TPZ (TPZ-ed) for chemotherapy in turn. Furthermore, the exacerbated hypoxia inhibited the synthesis of adenosine triphosphate, decreasing expression of heat shock proteins and subsequently improving the photothermal therapy. The enriched Cu2+ induced not only cuproptosis by promoting lipoacylated dihydrolipoamide S-acetyltransferase (DLAT) heteromerization but also performed chemodynamic therapy though catalyzing H2O2 to produce highly toxic hydroxyl radicals ·OH. Therefore, the nanoparticles TCuH offer a versatile platform to exert copper-related synergistic antitumor therapy.


Asunto(s)
Cobre , Ácido Hialurónico , Sulfuro de Hidrógeno , Mitocondrias , Nanopartículas , Terapia Fototérmica , Profármacos , Tirapazamina , Terapia Fototérmica/métodos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Animales , Cobre/química , Cobre/farmacología , Ratones , Humanos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Profármacos/farmacología , Profármacos/química , Tirapazamina/farmacología , Tirapazamina/química , Nanopartículas/química , Ácido Hialurónico/química , Línea Celular Tumoral , Neoplasias del Colon/terapia , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/química , Ratones Desnudos
18.
Sci Rep ; 14(1): 8418, 2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600062

RESUMEN

Accumulation of bioavailable heavy metals in aquatic environment poses a serious threat to marine communities and human health due to possible trophic transfers through the food chain of toxic, non-degradable, exogenous pollutants. Copper (Cu) is one of the most spread heavy metals in water, and can severely affect primary producers at high doses. Here we show a novel imaging test to assay the dose-dependent effects of Cu on live microalgae identifying stress conditions when they are still capable of sustaining a positive growth. The method relies on Fourier Ptychographic Microscopy (FPM), capable to image large field of view in label-free phase-contrast mode attaining submicron lateral resolution. We uniquely combine FPM with a new multi-scale analysis method based on fractal geometry. The system is able to provide ensemble measurements of thousands of diatoms in the liquid sample simultaneously, while ensuring at same time single-cell imaging and analysis for each diatom. Through new image descriptors, we demonstrate that fractal analysis is suitable for handling the complexity and informative power of such multiscale FPM modality. We successfully tested this new approach by measuring how different concentrations of Cu impact on Skeletonema pseudocostatum diatom populations isolated from the Sarno River mouth.


Asunto(s)
Diatomeas , Metales Pesados , Humanos , Cobre/farmacología , Microscopía , Fractales , Metales Pesados/farmacología
19.
Int J Nanomedicine ; 19: 3217-3232, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38596410

RESUMEN

Background: Skin wounds are a prevalent issue that can have severe health consequences if not treated correctly. Nanozymes offer a promising therapeutic approach for the treatment of skin wounds, owing to their advantages in regulating redox homeostasis to reduce oxidative damage and kill bacteria. These properties make them an effective treatment option for skin wounds. However, most of current nanozymes lack the capability to simultaneously address inflammation, oxidative stress, and bacterial infection during the wound healing process. There is still great potential for nanozymes to increase their therapeutic functional diversity and efficacy. Methods: Herein, copper-doped hollow mesopores cerium oxide (Cu-HMCe) nanozymes with multifunctional of antioxidant, antimicrobial and pro-vascularity is successfully prepared. Cu-HMCe can be efficiently prepared through a simple and rapid solution method and displays sound physiological stability. The biocompatibility, pro-angiogenic, antimicrobial, and antioxidant properties of Cu-HMCe were assessed. Moreover, a full-thickness skin defect infection model was utilized to investigate the wound healing capacity, as well as anti-inflammatory and pro-angiogenic properties of nanozymes in vivo. Results: Both in vitro and in vivo experiments have substantiated Cu-HMCe's remarkable biocompatibility. Moreover, Cu-HMCe possesses potent antioxidant enzyme-like catalytic activity, effectively clearing DPPH radicals (with a scavenging rate of 80%), hydroxyl radicals, and reactive oxygen species. Additionally, Cu-HMCe exhibits excellent antimicrobial and pro-angiogenic properties, with over 70% inhibition of both E. coli and S. aureus. These properties collectively promote wound healing, and the wound treated with Cu-HMCe achieved a closure rate of over 90% on the 14th day. Conclusion: The results indicate that multifunctional Cu-HMCe with antioxidant, antimicrobial, and pro-angiogenic properties was successfully prepared and exhibited remarkable efficacy in promoting wound healing. This nanozymes providing a promising strategy for skin repair.


Asunto(s)
Antiinfecciosos , Antioxidantes , Antioxidantes/farmacología , Cobre/farmacología , Escherichia coli , Staphylococcus aureus , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Hidrogeles
20.
BMC Vet Res ; 20(1): 137, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575964

RESUMEN

OBJECTIVES: Fasciolosis is of significant economic and public health importance worldwide. The lack of a successful vaccine and emerging resistance in flukes to the drug of choice, triclabendazole, has initiated the search for alternative approaches. In recent years, metallic nanoparticles have been extensively investigated for their anthelmintic effects. This study investigates the in vitro anthelmintic activity of copper oxide and zinc oxide nanoparticles against Fasciola hepatica. METHODS: The in vitro study was based on egg hatchability test (EHA), adult motility inhibition tests, DNA damage, ROS levels, as well as several biomarkers of oxidative stress, including glutathione peroxidase (GSH) and glutathione S-transferase (GST), superoxide dismutase (SOD) and malondialdehyde (MDA). For this purpose, different concentrations of copper oxide nanoparticles (CuO-NPs) and Zinc oxide nanoparticles (ZnO-NPs) (1, 4, 8, 12, and 16 ppm) were used to evaluate the anthelmintic effect on different life stages, including egg and adults of Fasciola hepatica, over 24 h. RESULTS: In vitro treatment of F. hepatica worms with both CuO-NPs and ZnO-NPs could significantly increase ROS production and oxidative stress induction (decreased SOD, GST and GSH and increased MDA) compared to control group. CONCLUSIONS: Based on the results, it seems that CuO-NPs and ZnO-NPs may be effective in the control and treatment of F. hepatica infection. Further research is needed to investigate their potential for in vivo use in the treatment of parasitic infections.


Asunto(s)
Antihelmínticos , Fasciola hepatica , Nanopartículas del Metal , Nanopartículas , Óxido de Zinc , Animales , Óxido de Zinc/farmacología , Cobre/farmacología , Especies Reactivas de Oxígeno , Estrés Oxidativo , Antihelmínticos/farmacología , Daño del ADN , Superóxido Dismutasa/metabolismo , Biomarcadores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA