Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Mol Basis Dis ; 1866(5): 165663, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31918006

RESUMEN

Pantothenate kinase (PanK) is the first enzyme in the coenzyme A (CoA) biosynthetic pathway. The differential expression of the four-active mammalian PanK isoforms regulates CoA levels in different tissues and PANK2 mutations lead to Pantothenate Kinase Associated Neurodegeneration (PKAN). The molecular mechanisms that potentially underlie PKAN pathophysiology are investigated in a mouse model of CoA deficiency in the central nervous system (CNS). Both PanK1 and PanK2 contribute to brain CoA levels in mice and so a mouse model with a systemic deletion of Pank1 together with neuronal deletion of Pank2 was generated. Neuronal Pank2 expression in double knockout mice decreased starting at P9-11 triggering a significant brain CoA deficiency. The depressed brain CoA in the mice correlates with abnormal forelimb flexing and weakness that, in turn, contributes to reduced locomotion and abnormal gait. Biochemical analysis reveals a reduction in short-chain acyl-CoAs, including acetyl-CoA and succinyl-CoA. Comparative gene expression analysis reveals that the CoA deficiency in brain is associated with a large elevation of Hif3a transcript expression and significant reduction of gene transcripts in heme and hemoglobin synthesis. Reduction of brain heme levels is associated with the CoA deficiency. The data suggest a response to oxygen/glucose deprivation and indicate a disruption of oxidative metabolism arising from a CoA deficiency in the CNS.


Asunto(s)
Química Encefálica/genética , Encéfalo/patología , Coenzima A/deficiencia , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Encéfalo/citología , Coenzima A/análisis , Coenzima A/biosíntesis , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/genética , Hemo/análisis , Hemo/metabolismo , Hemoglobinas/análisis , Hemoglobinas/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Oxidación-Reducción , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Proteínas Represoras/metabolismo
2.
Nat Commun ; 9(1): 4399, 2018 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-30352999

RESUMEN

Pantothenate kinase (PANK) is a metabolic enzyme that regulates cellular coenzyme A (CoA) levels. There are three human PANK genes, and inactivating mutations in PANK2 lead to pantothenate kinase associated neurodegeneration (PKAN). Here we performed a library screen followed by chemical optimization to produce PZ-2891, an allosteric PANK activator that crosses the blood brain barrier. PZ-2891 occupies the pantothenate pocket and engages the dimer interface to form a PANK•ATP•Mg2+•PZ-2891 complex. The binding of PZ-2891 to one protomer locks the opposite protomer in a catalytically active conformation that is refractory to acetyl-CoA inhibition. Oral administration of PZ-2891 increases CoA levels in mouse liver and brain. A knockout mouse model of brain CoA deficiency exhibited weight loss, severe locomotor impairment and early death. Knockout mice on PZ-2891 therapy gain weight, and have improved locomotor activity and life span establishing pantazines as novel therapeutics for the treatment of PKAN.


Asunto(s)
Neurodegeneración Asociada a Pantotenato Quinasa/terapia , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Animales , Células Cultivadas , Coenzima A/deficiencia , Coenzima A/metabolismo , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Femenino , Ligandos , Magnesio/metabolismo , Masculino , Ratones Noqueados , Neuronas/metabolismo , Especificidad de Órganos , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Conformación Proteica , Multimerización de Proteína
3.
Mol Genet Metab ; 116(4): 281-8, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26549575

RESUMEN

Coenzyme A (CoA) is a ubiquitous cofactor involved in numerous essential biochemical transformations, and along with its thioesters is a key regulator of intermediary metabolism. Pantothenate (vitamin B5) phosphorylation by pantothenate kinase (PanK) is thought to control the rate of CoA production. Pantothenate kinase associated neurodegeneration is a hereditary disease that arises from mutations that inactivate the human PANK2 gene. Aryl phosphoramidate phosphopantothenate derivatives were prepared to test the feasibility of using phosphopantothenate replacement therapy to bypass the genetic deficiency in the Pank1(-/-) mouse model. The efficacies of candidate compounds were first compared by measuring the ability to increase CoA levels in Pank1(-/-) mouse embryo fibroblasts. Administration of selected candidate compounds to Pank1(-/-) mice corrected their deficiency in hepatic CoA. The PanK bypass was confirmed by the incorporation of intact phosphopantothenate into CoA using triple-isotopically labeled compound. These results provide strong support for PanK as a master regulator of intracellular CoA and illustrate the feasibility of employing PanK bypass therapy to restore CoA levels in genetically deficient mice.


Asunto(s)
Amidas/farmacología , Coenzima A/biosíntesis , Hígado/efectos de los fármacos , Neurodegeneración Asociada a Pantotenato Quinasa/dietoterapia , Ácido Pantoténico/análogos & derivados , Ácidos Fosfóricos/farmacología , Fosfotransferasas (Aceptor de Grupo Alcohol)/deficiencia , Administración Oral , Amidas/síntesis química , Animales , Coenzima A/deficiencia , Coenzima A/genética , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/enzimología , Fibroblastos/patología , Expresión Génica , Humanos , Hígado/enzimología , Hígado/patología , Masculino , Ratones , Ratones Noqueados , Neurodegeneración Asociada a Pantotenato Quinasa/enzimología , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Neurodegeneración Asociada a Pantotenato Quinasa/patología , Ácido Pantoténico/síntesis química , Ácido Pantoténico/farmacología , Ácidos Fosfóricos/síntesis química , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Cultivo Primario de Células
4.
Mol Genet Metab ; 105(3): 463-71, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22221393

RESUMEN

Pantothenate kinase-associated neurodegeneration (PKAN) is a rare, inborn error of metabolism characterized by iron accumulation in the basal ganglia and by the presence of dystonia, dysarthria, and retinal degeneration. Mutations in pantothenate kinase 2 (PANK2), the rate-limiting enzyme in mitochondrial coenzyme A biosynthesis, represent the most common genetic cause of this disorder. How mutations in this core metabolic enzyme give rise to such a broad clinical spectrum of pathology remains a mystery. To systematically explore its pathogenesis, we performed global metabolic profiling on plasma from a cohort of 14 genetically defined patients and 18 controls. Notably, lactate is elevated in PKAN patients, suggesting dysfunctional mitochondrial metabolism. As predicted, but never previously reported, pantothenate levels are higher in patients with premature stop mutations in PANK2. Global metabolic profiling and follow-up studies in patient-derived fibroblasts also reveal defects in bile acid conjugation and lipid metabolism, pathways that require coenzyme A. These findings raise a novel therapeutic hypothesis, namely, that dietary fats and bile acid supplements may hold potential as disease-modifying interventions. Our study illustrates the value of metabolic profiling as a tool for systematically exploring the biochemical basis of inherited metabolic diseases.


Asunto(s)
Coenzima A/deficiencia , Mitocondrias/enzimología , Distrofias Neuroaxonales/metabolismo , Neurodegeneración Asociada a Pantotenato Quinasa/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adolescente , Adulto , Ácidos y Sales Biliares/metabolismo , Niño , Preescolar , Codón sin Sentido , Coenzima A/biosíntesis , Coenzima A/genética , Estudios de Cohortes , Femenino , Humanos , Trastornos del Metabolismo del Hierro , Ácido Láctico/sangre , Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/genética , Trastornos del Metabolismo de los Lípidos/metabolismo , Masculino , Metaboloma , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Distrofias Neuroaxonales/diagnóstico , Distrofias Neuroaxonales/enzimología , Neurodegeneración Asociada a Pantotenato Quinasa/enzimología , Neurodegeneración Asociada a Pantotenato Quinasa/genética , Ácido Pantoténico/sangre , Esfingomielinas/sangre , Adulto Joven
5.
Mol Cell Biochem ; 175(1-2): 37-42, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9350031

RESUMEN

Hepatic coenzyme A (CoA) plays an important role in cellular lipid metabolism. Because mitochondria and peroxisomes represent the two major subcellular sites of lipid metabolism, the present study was designed to investigate the specific impact of hepatic CoA deficiency on peroxisomal as well as mitochondrial beta-oxidation of fatty acids. CoA deficiency (47% decrease in free CoA and 23% decrease in total CoA) was produced by maintaining weanling male Sprague-Dawley rats on a semipurified diet deficient in pantothenic acid (the precursor of CoA) for 5 weeks. Hepatic mitochondrial fatty acid oxidation of short-chain and long-chain fatty acids were not significantly different between control and CoA-deficient rats. Conversely, peroxisomal beta-oxidation was significantly diminished (38% inhibition) in livers of CoA-deficient rats compared to control animals. Peroxisomal beta-oxidation was restored to normal levels when hepatic CoA was replenished. It is postulated that since the role of hepatic mitochondrial beta-oxidation is energy production while peroxisomal beta-oxidation acts mainly as a detoxification system, the mitochondrial pathway of beta-oxidation is spared at the expense of the peroxisomal pathway when liver CoA plummets. The present study may offer an animal model to investigate mechanisms involved in peroxisomal diseases.


Asunto(s)
Coenzima A/fisiología , Ácidos Grasos/metabolismo , Hígado/enzimología , Microcuerpos/metabolismo , Mitocondrias Hepáticas/metabolismo , Animales , Coenzima A/deficiencia , Hígado/metabolismo , Masculino , Oxidación-Reducción , Ácido Pantoténico/deficiencia , Ácido Pantoténico/metabolismo , Ratas , Ratas Sprague-Dawley
6.
J Nutr Sci Vitaminol (Tokyo) ; 35(1): 11-23, 1989 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-2738713

RESUMEN

When 400 mg/rat/day of secondary autoxidation products of linoleic acid was orally administered 3 times to rats, they died at 30-40 h after the third dose. To search the markers of the toxicity of secondary products in vivo, the rats were killed at 24h after the third dose, and conditions of their digestive tracts and liver were analyzed. In the stomach, macroscopically, inflation, retention of undigested food, and edema were seen. Slight congestions were detected in the small intestines. It was considered that these injuries led to reduction in food consumption and then depression of the growth, but did not lead to the death of the animals. The lipid peroxide levels in the liver and the activities of its detoxifying enzymes were increased as compared to those in the control groups. The hepatic lipid contents and unsaturated fatty acid compositions were also not changed. The endogenous lipid peroxidation, therefore, did not give the rats a severe stress. The activities of hepatic acetyl-CoA carboxylase and carnitine palmitoyltransferase were 20 and 35% lower than those of control, respectively. The levels of CoASH, acetyl-CoA, and long-chain acyl-CoA were 1/9, 1/2, and 1/4 of those in control, respectively. Thus, one of the markers of the toxicity of secondary products was the depletion of hepatic CoA derivatives. In rat, bio-energy was reduced by the decrease in the intestinal absorption of nutrients, and the depletion of hepatic CoA derivatives also failed to supply energy with beta-oxidation.


Asunto(s)
Coenzima A/deficiencia , Ácidos Linoleicos/toxicidad , Hígado/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Sistema Digestivo/efectos de los fármacos , Ácidos Linoleicos/administración & dosificación , Ácidos Linoleicos/metabolismo , Peróxidos Lipídicos/análisis , Hígado/efectos de los fármacos , Masculino , Tamaño de los Órganos/efectos de los fármacos , Oxidación-Reducción , Ratas , Ratas Endogámicas , Vitamina E/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...